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Abstract: The nonlinear mechanical behaviour of cervical tissue causes unpredictable changes in
measured elastograms when pressure is applied. These uncontrolled variables prevent the reliable
measurement of tissue elasticity in a clinical setting. Measuring the nonlinear properties of tissue is
difficult due to the need for both shear modulus and strain to be taken simultaneously. A simulation-
based method is proposed in this paper to resolve this. This study describes the nonlinear behaviour
of cervical tissue using the hyperelastic material models of Demiray–Fung and Veronda–Westmann.
Elastograms from 33 low-risk patients between 18 and 22 weeks gestation were obtained. The
average measured properties of the hyperelastic material models are: Demiray–Fung—A1α = 2.07
(1.65–2.58) kPa, α = 6.74 (4.07–19.55); Veronda–Westmann—C1C2 = 4.12 (3.24–5.04) kPa, C2 = 4.86
(2.86–14.28). The Demiray–Fung and Veronda–Westmann models performed similarly in fitting to
the elastograms with an average root mean square deviation of 0.41 and 0.47 ms−1, respectively.
The use of hyperelastic material models to calibrate shear-wave speed measurements improved the
consistency of measurements. This method could be applied in a large-scale clinical setting but
requires updated models and higher data resolution.

Keywords: shear-wave elastography; hyperelastic materials; cervical tissue

1. Introduction

The use of Shear-wave Elastography (SWE) has garnered significant interest in the
medical community. The ability to quantitatively measure tissue elasticity has been used
with different levels of success to evaluate pathologies in various fields. Some examples
include evaluating liver fibrosis [1,2], differentiating between benign and malignant breast
lesions [3,4], and evaluating tendon injury [5,6].

In obstetrics, there is interest in using the elasticity of cervical tissue as a diagnostic
tool. The elasticity of the cervical tissue changes throughout the pregnancy to accommodate
the changes in its function. The initial role of the cervix is to provide mechanical support to
the fetus. At the point of labour, the elasticity of the cervix decreases drastically to allow
the passage of the fetus through the birth canal without causing excessive tissue damage.
Measurements of cervical elasticity could predict success in the induction of labour [7] and
predict preterm birth [8,9].

Most commercial SWE equipment reports the shear-wave speed or elasticity calculated
from a linearly elastic model. These measurements assume that the elasticity of the cervix
is constant, but this assumption disagrees with the current research that describes soft
tissue to exhibit nonlinear stress–strain behaviour. Multiple studies have noted that this
is a significant issue in SWE measurements [6,10]. The nonlinear behaviour of tissue
causes errors in the measurements made since, in most clinical settings, the pressure
from ultrasound probes is unregulated. This phenomenon, known as “tissue stiffening”
or “strain stiffening”, is present in most soft tissues, for example, breast tissue [11], heel
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pad [12,13], calf muscle [14] and thyroid gland [15]. The occurrence of tissue stiffening is
especially detrimental for cervical elastography as the probe is in direct contact with the
tissue, and the shape of the probe causes non-uniform deformation [16]. In prior studies,
researchers have used acoustoelasticity theory and hyperelastic material models to describe
the nonlinear behaviour of tissue mathematically. In most of these experiments, researchers
use a controlled pressure or indentation to deform the tissue of interest. They then measure
the change in shear-wave speed at the controlled deformation to fit the parameters of the
material model [17–19]. However, measuring the nonlinear properties of cervical tissue
using these methods in the current clinical environment is impractical. Cervical tissue
is not as exposed as the other tissues, and the probe cannot be modified to put uniaxial
pressure on the tissue.

The overall objective of this work is to generate a practical framework to measure the
nonlinear properties of cervical tissue using shear-wave elastography in a clinical environ-
ment and use it to calibrate the “tissue stiffening” effects. This pilot study accomplishes
three aims: Firstly, the implementation of a simulation-based method of determining the
material parameters of cervical tissue—secondly, evaluating the fit of two hyperelastic ma-
terials in describing cervical tissue behaviour. Finally, determining the necessary changes to
the method and equipment for a future large scale study to establish a diagnosis protocol.

2. Theory

The theory of large acoustoelastic effect relates shear-wave speed to tissue deformation.
The derivation is detailed in a paper by Ogden [20]. This section provides a basic summary
and its use in this context. Hyperelastic material models describe the elastic behaviour
of the materials with strain energy density functions. These material functions provide a
method to model the nonlinear stress–strain behaviour observed in materials such as soft
tissue. The strain energy density function relates strain energy density (Ψ) in the material
to the deformation gradient (F)). The deformation gradient describes the change of the
material from an initial reference configuration to the current configuration as shown in
Equation (1)—χ maps the reference configuration (X) to a new deformed configuration.

F =
∂χ

∂X
(1)

The stress and elasticity of hyperelastic materials are described as a function of the
right Cauchy–Green tensor (C), which relates to the deformation gradient in Equation (2).
I1, I2 and I3 are the invariants of the right Cauchy–Green tensor and can be related to the
principal stretches of the deformation gradient (λ1,2,3), as shown in Equations (3)–(5). The
principal stretches are the eigenvalues of the deformation gradient.

C = FT F (2)

I1 = λ2
1 + λ2

2 + λ2
3 (3)

I2 = λ2
1λ2

2 + λ2
1λ2

3 + λ2
2λ2

3 (4)

I3 = λ2
1λ2

2λ2
3 (5)

The material elastic tensor (C) for the deformed configuration relates to the shear-wave
speed (cs) and the density of the material (ρ) in Equation (6). For this paper, ρ was assumed
to be approximately 1 g/cm3 for ease of conversion.

ρcs
2 = C = 2λ2

2

(
∂Ψ
∂I1

+
∂Ψ
∂I2

λ−2
2 λ−2

1

)
(6)

The hyperelastic materials chosen in this study are the Demiray–Fung (DF) and
Veronda–Westmann (VW) models. These models are phenomenological models designed
to describe the stress–strain behaviour of soft biological tissue and skin, respectively [21–23].
The strain energy density functions for DF and VW are summarised in Table 1. This study
aims to describe the material properties of the cervical tissue effectively in a clinical envi-
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ronment with minimal resources. Due to time restrictions in the hospital, the sonographer
only took two frames in the same plane of view to measure the tissue’s elasticity. These
material models DF and VW have the minimum amount of parameters needed to describe
the elastogram with the given restrictions.

Table 1. A summary of strain-energy density functions, and the parameters to be calculated for
material models of DF and VW [21,23].

Model Ψ ∂Ψ
∂I1

∂Ψ
∂I2

Parameters

DF A1

[
eα(I1−3) − 1

]
A1αeα(I1−3) 0 A1, α

VW
C1

[
eC2(I1−3) − 1

]
−

C1C2
2 (I2 − 3)

C1C2eC2(I1−3) −C1C2
2 C1, C2

The two types of parameters of each material will be referred to as the base and
stiffening parameters. The base parameters are the products A1α and C1C2. They describe
the base speed of the material. This paper defines the base speed as the shear-wave speed
in the undeformed reference state, while the measured shear-wave is the shear-wave speed
in the current configuration. The stiffening parameters α and C2 describe the proportional
change in the base speed depending on the deformation of the tissue.

3. FEBio Simulation

Due to the irregular shape of the ultrasound probe, the deformation caused by the
probe is uneven across the cervix. The unique changes in the shear-wave speed of the tissue
caused by the probe shape and compression magnitude can be simulated and matched to
the elastogram to determine the tissue properties. Consequently, in this study, the authors
used FEBio [24] to simulate the compression. The 3D scanned CAD model of the ultrasound
probe is used to indent a block of nearly incompressible tissue (52 × 40 × 35 mm) as a static
structural mechanics problem. Figure 1 shows the simulation, and Table 2 describes the
simulation elements. The indentation range applied was 0 to 20 mm.

(a) (b)

Figure 1. Figures of the simulation in FEBio. (a) 3D scan of Toshiba probe used in this study, and (b)
sample indentation frame with the centre of the probe marked.
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Table 2. Elements in FEBio simulation.

Part Element Type Number of Elements

Probe (rigid) 4-node linear tetrahedral element 3998
Tissue 8-node trilinear hexahedral element 25,600

This study defines shear-wave speed in the tissue with no deformation as the base
speed (cs0) of the tissue. The principal stretches for each tissue element within the ul-
trasound frame of view are taken for every indentation step in the simulation. At each
indentation, the principal stretches cause a proportional increase in the base speed of the
tissue. The proportional-increase (P) from the base speed (cs0) for stiffening parameters
within the range 0.01 < α < 100 and 0.01 < C2 < 100 is calculated. This is shown in
Equations (7)–(9). The proportional increase field is the increase from the base speed value
within the area of interest and is not dependent on the base parameter.

P = cs/cs0 (7)

PDF = λ2

√
eα(I1−3) (8)

PVW = λ2

√√√√√ eC2(I1−3) − λ−2
2 λ−2

1
2

1 − λ−2
2 λ−2

1
2

(9)

In the simulation, λ1 is defined as the principal stretch in the direction of the probe
indentation. The simulation showed a decrease in the λ1 and an increase in the λ2,3 values
with increasing indentation. Figure 2 shows the pattern of deformation caused by the probe
in polar coordinates.
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Figure 2. Cont.
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Figure 2. FEBio simulation of λ1,2,3 values at 8 and 14 mm indentations. (a) λ1 at 8 mm. (b) λ1 at 14
mm. (c) λ2 at 8 mm. (d) λ2 at 14 mm. (e) λ3 at 8 mm. (f) λ3 at 14 mm.

The maximum change in λ is at the point of contact between the probe and the tissue.
The effect spreads out from the point of contact, decreasing in magnitude with distance
from the probe. This study defines the area of effect at the different threshold intensities
(AOEthres) as the number of pixels where the proportional increase from the base speed is
above the threshold.

The magnitude of change increases with increasing indentation. Figure 3 shows
the difference in the areas of varying thresholds with rising levels of indentation. The
thresholds used range from 1.10 to 3.00 proportional-increase from the base speed.
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Figure 3. Changes in AOEthres with the threshold value and indentation value for (a) DF (α = 5) and
(b) VW (C2 = 5) material models

The simulated tissue was converted from Cartesian to polar coordinates for efficient
translation between clinical elastograms and simulated elastograms. The dimensions of
each pixel are 0.023◦ and 0.008 mm. Figure 4 shows samples of the simulated proportional-
increase field with traced outlines of AOEthres.

Each proportional-increase field is unique to the material model, indentation and
stiffening parameter. The area of effect (AOEthres) and the peak proportional-increase (Pmax)
can be used to define each unique proportional-increase field. This study defines Pmax as
the average proportional increase from the base speed along the central axis from the probe
where there is the maximum change in the magnitude of principal stretch. Simulation-based
fitting is used to determine the parameters of each elastogram. The values of the measured
AOEthres and Pmax are used to calculate the indentations and stiffening parameters for each
material model, as shown in Figures 5 and 6.
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Figure 4. FEBio simulations of the proportional increase in tissue (DF, α = 3.2) when the probe is at
(a) 8 and (b) 14 mm indentations. Borders of proportional increase thresholds are marked by contours
on the image. Areas within the borders have a proportional increase from base speed higher than
stated thresholds.
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Figure 5. Change in estimated indentation with AOE1.25 and Pmax for (a) DF and (b) VW mate-
rial models.
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Figure 6. Change in Pmax with indentation and stiffening parameters α and C2 from 3 to 6 for (a) DF
and (b) VW material models, respectively.

The assumptions applied for this simulation are as follows: Firstly, cervical tissue
is nearly incompressible. Secondly, the parameters of the tissue are constant within the
measured area. Section 6 discusses the problems and limitations of these assumptions.

4. Method and Materials
4.1. Collection of Data

The data were collected from the Royal Prince Alfred Hospital (RPAH) from November
2020 to August 2021. This study used data from a single cohort of women who came in
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for standard morphology (18–22 weeks) scans. The study excluded patients with high-risk
obstetric history (previous preterm birth, previous cervical surgery) or identification of
a short cervix at the morphology scan. Eligible women were informed about the study
and asked to consent to a cervical elastography scan. The sonographer used the Aplio
500 machine (Canon Medical Systems, Japan) equipped with a 3–11 MHz transvaginal
transducer to make all measurements. The local hospital ethics committee approved the
study (Protocol No. X15-0274 and HREC/15/RPAH/375)

For the standard measures of the shear-wave speed, the sonographer took four elas-
tograms with two measurements in each, an internal os and external os measurement. Two
elastograms had minimal applied pressure, and two elastograms had some amount of
pressure. The amount of pressure was described as “maximum pressure without causing
discomfort to the patient”. A Region of interest (ROI) bubble of diameter 5 mm was placed
in an area representing the interior of the cervix and the exterior of the cervix along the
anterior lip. This is shown in Figure 7.

(a) (b)
Figure 7. (a,b) Sample patient elastograms taken with the normal measurement method with minimal
pressure applied

4.2. Hyperelastic Material Measurement

For the measurements of hyperelastic material, the sonographer used the same four
elastograms without the placement of ROI bubbles. Due to the limitations of the software,
the authors could not obtain a raw measurement of the continuous shear-wave speed
field. The ultrasound machine does not provide a continuous map of the shear-wave
speed values shown. Instead, the measurements were limited to the mean and standard
deviation values within the ROI bubbles and not of the entire area chosen. The continuous
shear-wave speed field was calculated from the hue of the elastogram. The conversion
from hue to shear-wave speed, as shown in Figure 8, is obtained by taking the hue value
within an ROI and the corresponding shear-wave speed and fitting it to a material model.
The effects of this limitation are further discussed in Section 6.

For consistency, this paper used shear-wave speeds measured between 6 and 10 mm
depth from the surface of the probe (16 to 20 mm from the centre of the probe). The area
measured needed to be constrained to the anterior lip of the cervix for all elastograms as
the presence of the cervical canal disrupts the propagation of shear waves. Furthermore,
it is reported that areas too close and too far away from the probe suffer from a lack of
resolution [3,5].
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Figure 8. Conversion function of measured hue in image to raw speed value in the elastogram.

Figures 9–12 demonstrate the process of collecting and estimating the hyperelastic
material properties of the cervix for a single case. The shear-wave speed colour map was
isolated and converted from Cartesian to polar coordinates, as shown in Figure 9a. The
initial base speed estimate was taken as the mean speed between the two elastograms
(elastogram with minimum and maximum pressure applied, respectively) in areas with less
than 10% difference in the measured shear-wave speed values. The Pmax of the elastogram
was measured, and the effect of the probe was assumed to be symmetrical. From the base
speed estimate and the shear-wave speed map, the proportional-increase field is calculated.
Figure 9b shows the proportional-increase field and the contours of the thresholds for
AOEthres for the sample case.
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Figure 9. (a) Sample elastogram of a patient in polar coordinates with the marked area of interest.
(b) Sample elastogram with angle measured from the central axis of applied force. Contours on
the image mark borders of proportional increase for thresholds from 1.10 to 3.00. Areas within the
borders have proportional increase from base speed higher than stated thresholds.
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Figure 10. (a) Predicted λ1 values and (b) simulated base speed values using predicted material
properties for sample elastogram in DF and VW models.
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Figure 11. Simulated elastograms for the sample case based on the measured indentation and
parameters for the (a) DF and (b) VW models.
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Figure 12. Percentage difference of predicted proportional increase in speed to measured proportional
increase in speed with λ1 for (a) DF and (b) VW in the sample case.

The method discussed in Section 3 is used to estimate the indentation and stiffen-
ing parameters from the measured AOEthres and Pmax of the proportional-increase field.
The predicted indentation and stiffening parameters are used to calculate the theoreti-
cal proportional-increase from base speed. The theoretical proportional-increase field is
compared to the measured proportional-increase, as shown in Figure 12. The theoretical
base speed is calculated by removing the theoretical proportional-increase field from the
original elastogram, as shown in Figure 10b. The theoretical base speed is compared to
the initial estimate of the base speed. The simulated elastogram was calculated from the
theoretical base speed, indentation and stiffening parameter, as shown in Figure 11. The
simulated elastogram is compared to the original elastogram using the root mean square
deviation (RMSD) measurement between the two images. The similarity between the raw
elastogram and the simulated elastogram reflects the simulation’s accuracy.
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5. Results
5.1. Normal Measurement

The demographic information for the cohort is found in Table 3.

Table 3. Demographics of the study population.

N = 33
Value [Mean (SD)]

Maternal age (years) 32.76 ± 4.10
Gestational age at test (weeks) 21.32 ± 0.75

Gravidity ( N ) 1 26
2 4
≥ 3 3

Table 4 reports the mean measurements of the internal and external shear-wave speed
with and without pressure. The internal measurements were higher than the external
measures by 24% without pressure and 38% with pressure. The addition of pressure
increased the shear-wave speed measurements of the internal ROI by an average of 27%
and the external ROI by 13%. The relative change in speed with pressure is consistent
with prior studies comparing internal and external areas of the cervix and its increase with
pressure [9].

Table 4. Median (range) measurements of the shear-wave speed measured using the normal method
for the internal and external regions of the cervix.

Measurement Internal (ms−1) External (ms−1) Mean (ms−1)

Speed (No pressure) 2.86 ± 0.75 2.30 ± 0.94 2.58 ± 0.69
Speed (Pressure) 3.63 ± 1.26 2.64 ± 0.94 3.14 ± 0.81

Figure 13 shows the distribution of the shear-wave speed measurements. The internal
measures have a slightly wider distribution than the external measures of speed. Similar
measurements are expected as they come from the same low-risk cohort.

2

4

6

External Internal

Position

S
p
e
e
d
 (

m
s

−
1
)

without pressure

with pressure

Figure 13. Distribution of measured shear-wave speed values at the internal and external positions
with and without pressure.

The mean shear-wave speed measured for each elastogram is compared for each
patient. The mean difference between the two measurements taken at each pressure level
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was 0.041 ms−1 (95% CI: −0.53, 0.62) without pressure and 0.032 ms−1 (95% CI: −1.23,
1.31) with pressure. The standard deviation of the differences was much higher in the
values measured with pressure (0.65 ms−1) than the values measured without pressure
(0.29 ms−1). Figure 14 shows the Bland–Altman plot for the test-retest with and without
pressure. Based on the Shapiro–Wilk test, the differences are normally distributed for
measurements taken without pressure (W = 0.96392, p-value = 0.3324) and with pressure
(W = 0.97066, p-value = 0.4987).

The values measured with pressure are less precise than those measured without
pressure. The magnitude of applied pressure is random and thus causes a randomly
varying increase in the measured shear-wave speed.
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Figure 14. Bland–Altman plot of mean speed in the image for test–retest mean measured speed
(a) without pressure and (b) with pressure. The 95% confidence intervals are marked in red.

The increase in shear-wave speed is not uniform with the length cervix; it is concen-
trated at the point of contact. The positioning of the discrete ROI bubbles is another factor
that causes measurement errors. If pressure is applied at the internal os, the measured
value at the internal os will increase while the value at the external os will remain the
same. The change is concentrated such that small shifts in the ROI placement can lead
to significant inconsistencies. In addition to problems with changes in shear-wave speed
measures, the application of pressure also deforms the cervix. As a result, the ROI needs
to be replaced for each elastogram. The difference in positions is an average of 1.47 mm
horizontal 1.44 mm vertical for the internal ROI and an average of 1.23 mm horizontal
1.38 mm vertical for the external ROI. The shift in the ROI bubbles may be another source
of error in the measurement values.

5.2. Hyperelastic Material Measurement

Table 5 summarises the mean predicted indentation and stiffening parameters of the
anterior lip of the cervix in a low-risk population. The mean base speeds for the material
models were 2.06 and 2.04 ms−1 DF and VW, respectively. This speed is lower than the
mean speed without pressure measured in Section 5.1. The difference in speed is likely due
to some excess pressure from the probe. The pressure is present even without explicitly
applying pressure due to the contact needed for ultrasound imaging. An example of this
scenario is shown in the sample case in Figure 7.
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Table 5. Median (range) indentation and parameter estimates for DF and VW material models.

Material Indentation (mm) Parameter

Demiray–Fung 7.10 (3.81–9.69) Aα = 2.07 (1.65–2.58) kPa,
α = 6.74 (4.07–19.55)

Veronda–Westmann 7.19 (3.90–10.56) C1C2 = 4.12 (3.24–5.04) kPa,
C2 = 4.86 (2.86–14.28)

The mean shear-wave speed measured for each predicted elastogram is compared for
each material. The mean difference between the two measurements with pressure using
the simulation-based method was 0.001 ms−1 (95% CI: −0.37, 0.38) and -0.04 ms−1 (95% CI:
−0.45, 0.36) for DF and VW, respectively. The standard deviation of the differences was 0.19
and 0.21 ms−1 for DF and VW, respectively. Figure 15 shows the Bland–Altman plot for the
test–retest with pressure with the simulation-based method. The Shapiro–Wilk test shows
that the differences are normally distributed for the DF (W = 0.96414, p-value = 0.337) and
VW (W = 0.98249, p-value = 0.8577) material models. The method proposed improves the
precision of the measurements made when additional pressure is applied.
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Figure 15. Bland–Altman plot of mean speed in the image for test–retest mean measured speed
(a) DF and (b) VW material models. The 95% confidence intervals are marked in red.

The simulated and measured elastograms were compared by measuring the RMSD
difference between the images. The average RMSD of the images DF and VW was 0.41 ms−1

(95% CI: 0.38, 0.45) and 0.47 ms−1 (95% CI: 0.43, 0.52), respectively. Figure 16 shows the
distribution of the RMSD of the images, which shows DF performed slightly better than
VW. For the majority of the cases, the differences were highest in the areas further from the
probe at the cervical canal area.

Figure 17 compares the theoretical base speed value calculated from the indentation
and parameters to the initial base speed estimated from the elastograms for each case. For
DF material model estimates, 68% of the cases had a theoretical base speed value higher
than the initial base speed estimate. For VW this was 52%. The differences in the base
speeds are likely due to the elasticity gradient across the cervix and pre-stress from the
surrounding environment. The effects of these factors are discussed in Section 6.

The measured proportional increase is compared to the theoretical proportional in-
crease. The residual standard error (RSE) of the proportional increase is a measure of how
well the measured value fit the proposed function of the material model. The comparison
in percentage difference is demonstrated for the sample case in Figure 12. Figure 18 shows
the distribution of the RSE for DF and VW. DF performed marginally better than VW in
describing the behaviour of cervical tissue.
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Figure 16. Distribution of root mean square deviation of predicted elastogram with measured
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Figure 17. Difference in base speed values estimated and measured for (a) DF and (b) VW.
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Figure 18. Residual standard error of the predicted proportional increase and the measured propor-
tional increase for DF and VW material models.
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6. Discussion

This study and many other studies support the theory that pressure on soft tissue
changes its shear-wave speed measurement [11–15]. The raw results showed that even
when minimal pressure is applied, there are still changes in the measured speed due to the
placement of the probe. Figure 7 shows an example of this behaviour. The images are taken
with minimal applied pressure, but there is a 0.67 ms−1 change in the measurement taken
at the internal os while that of the external os is 0.17 ms−1. The increase in shear-wave
speed along the cervix is uneven due to the shape of the probe. The increase in shear-
wave speed from the base speed depends entirely on the placement of the probe and the
amount of pressure applied. Additionally, there is a shift in the ROI bubble placement
when compression is used due to the deformation.

Other studies investigating the nonlinear characteristics of cervical tissue have sim-
ilarly used hyperelastic materials to describe it. Badir et al. used the aspiration method
to characterise cervical tissue throughout the pregnancy [25]. The aspiration method uses
suction on a small area of the tissue at the external os. The pressure required to deform
the tissue up to 4 mm is measured. Inverse finite element analysis is then used to calculate
the neo-Hookean model of the tissue. The study shows a decrease in the neo-Hookean
parameter c1 from 1.895 to 0.650 kPa from the first to the third trimester. Callejas et al. used
uniaxial tension experiments to characterise the properties of ex vivo cervical tissue from
hysterectomy patients. The Mooney–Rivlin and Ogden models were used in the study. The
results showed that there are distinctly different properties for the epithelium layer and the
connective layers of the tissue. The mean parameters of the Ogden model were µr = 0.41
MPa, αr = 5.27 and µr = 0.94 MPa, αr = 6.40 for the epithelial and connective layer of the
cervical tissue, respectively [26].

The estimates made in this study are similar to the measurements made by Badir
et al. on a similar population. The results in this experiment measured slightly higher
shear modulus measurements, which are expected as the measurements are of the entire
cervix, while Badir et al. only made measurements in the external os, which has lower
elasticity than the internal os [25]. This study initially considered the neo-Hookean material
model. However, it could not fit the high values of the proportional increase caused by the
pressure. Measurements from 12/33 patients failed to fit a set of parameters in this case.
The neo-Hookean material model is a poor fit because the proportional increase in speed is
dependent solely on the principal stretch, as shown in Equations (10)–(12).

ΨNH = C1(I1 − 3) (10)

∂ΨNH
∂I1

= C1 (11)

PNH = λ2 (12)

In many of the cases, the rate of change is higher than the principal stretch and
is slightly different from patient to patient. Similarly, another study that analysed the
nonlinear hyperelastic model fits to brain tissue shear-wave speed data found that neo-
Hookean models had the worst fits due to the lack of a stiffening parameter [27]. Therefore,
this study excluded the neo-Hookean model. The estimates made in the study by Callejas
et al. gave values much higher than the values measured in this study. The differences
measured are due to the difference in the loading mechanisms used as soft tissues such as
cervical tissue exhibit tension-compression asymmetry.

The method suggested in this study improves the measurement of cervical elasticity.
Still, it is not appropriate for use in clinical diagnosis settings as the margin of error is
too broad. The measurement errors could be due to several factors. Firstly, the modelled
cervical tissue is a simplified model, which ignores some characteristics that it is known to
possess. The features include an elasticity gradient from the internal os to the external os
and anisotropy in the cervical tissue. The simplified model also ignores pressure effects
from the surrounding environment. External sources of pressure cause incorrect estimates
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of indentation and material properties. Secondly, the method of acquiring raw shear-wave
speed data has inaccuracies as it is also an estimate calculated from the colour map. The
use of this estimation method is forced by the lack of raw shear-wave speed data from the
proprietary software on the SWE equipment. Finally, a limited number of images were
collected as the collection process is part of a standard ultrasound imaging procedure at
the hospital.

The initial results suggest that to measure the nonlinear properties of cervical tissue,
a hyperelastic material model with a stiffening parameter is required. The stiffening
parameters of the DF and VW models describe the rate at which the stretch affects the
measured shear-wave speed. They are relatively consistent in the data and can be used
as additional parameters for diagnosis in future studies. Measurement of the elasticity of
the cervix as a continuous structure is more valuable than measuring it with discrete ROI
bubbles as it will not be affected by the elasticity gradient across the cervix as well as areas
where pressure is concentrated. The shortcomings in this study result from the limited
resources and lack of interaction between clinical research and equipment design. The
ideal method of quantifying the nonlinear properties of tissue is with measured pressure
or strain. For future studies, measured strain using speckle tracking in raw B-mode data
is recommended.

The results show that for the nonlinear characteristics of cervical tissue to be effectively
measured in a clinical setting, the raw output from the ultrasound machines is required.
The proposed method of measuring the strain data would be using the raw B-mode output
from the ultrasound machine or tracking the movement of the cervical canal at different
pressure levels.

7. Conclusions

This study is an initial exploration of hyperelastic material models to replace the exist-
ing linear models of tissue representation in elastography. The simulation-based method
of measuring the nonlinear characteristics of tissue acquired an approximate baseline of
material properties. Applying a general strain map based on the probe shape improved
the precision of the measurements. However, a general strain map is not appropriate for
adoption as a clinical diagnosis method; a customised strain map is required for each
individual case. The approximate nonlinear characteristics of cervical tissue show that
models with an exponential increase in shear-wave speed as a function of indentation are
necessary to represent cervical tissue with the degree of accuracy required. For future
studies, raw data from SWE equipment are needed.
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Abbreviations
The following abbreviations are used in this manuscript:

DF Demiray–Fung
VW Veronda–Westmann
SWE Shear-wave Elastography
os orifice
CI Confidence Interval
RMSD root mean square deviation
RSE residual standard error
ROI Region of interest
RPAH Royal Prince Alfred Hospital
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