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ABSTRACT: Recently, the dry-surface method [Langmuir 2016, 31,
8335−8345] has been developed to compute the work of adhesion of
solid−liquid and other interfaces using molecular dynamics via thermody-
namic integration. Unfortunately, when long-range Coulombic interactions
are present in the interface, a special treatment is required, such as solving
additional Poisson equations, which is usually not implemented in generic
molecular dynamics software, or as fixing some groups of atoms in place,
which is undesirable most of the time. In this work, we replace the long-
range Coulombic interactions with damped Coulomb interactions, and
explore several thermal integration paths. We demonstrate that regardless of
the integration path, the same work of adhesion values are obtained as long as the path is reversible, but the numerical efficiency
differs vastly. Simple scaling of the interactions is most efficient, requiring as little as 8 sampling points, followed by changing the
Coulomb damping parameter, while modifying the Coulomb interaction cutoff length performs worst. We also demonstrate that
switching long-range Coulombic interactions to damped ones results in a higher work of adhesion by about 10 mJ/m2 because of
slightly different liquid molecule orientation at the solid−liquid interface, and this value is mostly unchanged for surfaces with
substantially different Coulombic interactions at the solid−liquid interface. Finally, even though it is possible to split the work of
adhesion into van der Waals and Coulomb components, it is known that the specific per-component values are highly dependent on
the integration path. We obtain an extreme case, which demonstrates that caution should be taken even when restricting to
qualitative comparison.

■ INTRODUCTION
The miniaturization of semiconductors continues to advance
with the latest lithography technology enabling resolutions
below 10 nm.1 At such scales, the surface-to-volume ratio
greatly increases and interfacial effects start to have a great
influence on overall properties, such as heat dissipation,2,3

wetting,4−6 and flow.7,8 For all these topics, molecular
dynamics (MD) simulation has been widely and successfully
used for several decades,9−12 either as a complement or as an
alternative to experimental work.

This Article focuses on using MD to obtain the solid−liquid
work of adhesion, that is, the reversible work needed to
separate the solid and liquid phases. The solid−liquid work of
adhesion Wsl is an important interface property and is related
to wettability via the Young−Dupre ́ equation:

= +W (1 cos )sl lv (1)

where γlv is the liquid−vapor interfacial tension and θ is the
contact angle. In addition, a correlation between wettability,
therefore, also work of adhesion, and interfacial thermal
properties has also been reported.13−17 The work of adhesion,
or the interfacial tension, has often been obtained from the
contact angle of simulated droplets10 and eq 1. While

straightforward, easy to implement and demonstrated to
strictly hold for smooth surfaces,18 complications such as
ambiguity of fitting parameters, long relaxation times,19

pinning on nonhomogeneous surfaces20,21 and size effects
such as line tension22−25 are often encountered creating
uncertainty in the results. As an alternative and less
computationally intensive method, the application of the
Wilhelmy equation via MD has also been proposed but is yet
to be applied to more complex systems.26

Recently, obtaining the work of adhesion directly via
thermodynamic integration has become more prominent.
Various integration paths have been taken, such as using a
virtual piston to separate the solid and liquid phases (phantom-
wall method),27 switching solid−liquid interactions to
repulsive-only (dry-surface method)28 or turning the liquid
phase into an ideal gas.29 In particular, the dry-surface method
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is very straightforward, has the advantage that the systems
midpath can also be physical and of interest, and has been
applied not only to atomistic systems,18,21,30,31 but also coarse-
grained ones.32,33 The basic concept is that both van der Waals
and Coulomb interactions between solid and liquid are
gradually switched off via coupling parameters. The work of
adhesion is obtained from partial derivatives of the system
Hamiltonian with respect to the coupling parameters. Note
that the dry-surface method obtains the reversible work needed
to separate the solid−liquid interface into solid-vacuum and
liquid-vacuum interfaces, while contact angles are usually
measured in humid environment, and in such case eq 1 would
not strictly hold. In practice, however, there is little effect for a
large number of systems, where liquids with very low saturated
vapor pressure, such as water are used.34 Indeed, a good match
between the contact angle of water on various silica surfaces
and the work of adhesion obtained via an equivalent method to
the dry-surface approach has been obtained in a previous
numerical computational work by one of the authors.35 In case
of liquids with significantly higher vapor pressure, it has been
demonstrated that there is a non-negligible discrepancy
between solid−vacuum and solid−vapor interfacial free
energies that can result in overestimation of the solid−liquid
work of adhesion by over 10%, although it can be corrected by
also obtaining the work of solid−vapor adhesion via the dry-
surface method.18,26 A similar approach has also been
successfully used to predict contact angles of fluid mixtures
above the fluid saturation pressures via the phantom-wall
method.36

Most realistic systems have Coulombic interactions at the
interfaces, and the authors have demonstrated that it is
possible to use the dry-surface method also for systems with
long-range Coulombic solid−liquid interactions.37 Unfortu-
nately, while theoretically straightforward, this either requires
solving additional Poisson equations, which is generally not
implemented in generic MD software, or fixing some groups of
atoms in place, which in itself changes interfacial properties
and is often undesirable. To get around this practical problem,
we replace in this work the long-range Coulombic interactions
with the widely used damped interactions developed by
Fennell et al.,38 which is an improvement on the Wolf model39

and ensures smooth decay of both energy and force at the
cutoff. This allows several possible approaches for turning off
solid−liquid Coulombic interactions, and makes the imple-
mentation in generic MD software easier. We investigate six
possible thermodynamic integration paths and demonstrate a
suitable scheme to apply the dry-surface method for obtaining
the solid−liquid work of adhesion. At the same time, we also
provide several more general insights into effect of using
damped Coulombic interactions on the interfacial properties,
and demonstrated the difficulty of dividing the work of
adhesion into nonarbitrary physically meaningful contribu-
tions.

■ SIMULATION AND ANALYSIS METHODS
The overall potential and simulation system models are based
on the silica−water system of our previous work.37 A detailed
description will be given only for conditions that are different
in this work, while identical conditions will be described in
brief.

Potential Model. The flexible SPC/Fw model40 was used
for water molecules. An α-cristobalite (101̅) face was used for
the silica surface, with the potential parameters taken from the

work of Emami et al.41 Unlike in our previous work, solid
atoms were not constrained, and bonds and angles in both
water and silica surface models were maintained by their
respective harmonic potentials.

Intermolecular van der Waals interactions between solid and
liquid atoms were expressed via the 12−6 Lennard-Jones (L-J)
potential:
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where rij is the distance between the atoms, while σ and ε are
the L-J length and energy parameters. The L-J parameters
between two different atom types were obtained via the
Lorentz−Berthelot mixing rules: σij = 0.5(σi + σj), =ij i j .
The λLJ is the coupling parameter used to modify the solid−
liquid van der Waals interactions during thermodynamic
integration. Solid−solid and liquid−liquid interactions were
identical with eq 2, except there was no coupling parameter,
that is, λLJ was always 1.

Intermolecular solid−liquid Coulomb interactions were
represented via a short-range damped interactions modeled
by Fennell:38
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where q is the charge of the corresponding atom, α is the
damping parameter, and rcut(C) is the cutoff distance of the
Coulomb interactions. The damping parameter was set to a
standard value of α = 0.2 Å−1.38 Similar to eq 2, the coupling
parameter λC was used to turn off solid−liquid Coulombic
interactions, while for solid−solid and liquid−liquid inter-
actions it was always 1. As an alternative to using λC to turn-off
solid−liquid Coulomb interactions, rcut(C) or α were also used
to obtain similar results.

While in our previous work the switching function from the
CHARMM force field42 was used for the L-J interactions, and
the PPPM method43 was used to treat long-range electro-
statics; in this work, both eqs 2, 3 were used with a simple
cutoff scheme at rcut(LJ) = rcut(C) = 12 Å for most computations.
Thus, the Coulomb interactions are cut off at 2.4 times the
decay length α−1 of the damped Coulomb potential. Only in
several control systems full long-range Coulomb interactions
were realized via the PPPM method with a precision of 10−6

instead of using eq 3.43 Regarding the treatment of L-J
interactions, it has been demonstrated that the contact angle,
that is, the work of solid−liquid adhesion, is also sensitive to
the L-J cutoff length,44 where best agreement with
experimental measurements was achieved by treating the L-J
dispersive term as long-range, equivalent to that of Coulomb.
Indeed, many force fields tend to underestimate surface
tensions, and considering long-range dispersion forces often
brings those values closer to the experimental ones,45 which
creates a predicament as most force fields were optimized
under an assumption of short-range L-J interactions. In recent
years, several MD software packages have added long-range L-J
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solvers, and because of the existence of mixing rules, it is trivial
to only modify a specific subset of interactions; therefore, no
special treatment is needed when applying the dry-surface
approach to such systems, with the only disadvantage being the
increased computational cost.

Instead of having a gas phase to keep the system at saturated
vapor pressure, a virtual wall was used as a piston to keep the
system pressure at a specific value. The piston-liquid
interaction was set as the 9−3 L-J potential acting only
between the virtual piston and the oxygen atoms of water:
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where li is the distance of oxygen atom i from the virtual
piston. The L-J parameters of σpl and εpl were setup to mimic
the oxygen−silica interaction:
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where σSiOd2
and εSiOd2

were set as a rough approximation of the
average L-J parameters for silica, and NSiOd2

≈ 0.07 Å−3 is the
atom number density of silica obtained from the density of
2.32 g/cm3 in the work of Emami et al.41 Strictly speaking,
according to the mixing rules in this work, the value of σpl in eq
7 should have been set to 0.5(σSiOd2

+ σO(Hd2O)), but the values
are close and there is no real fundamental need for the piston−
liquid interactions to have any specific parameters. The cutoff
distance for piston−liquid interactions was set to rcut(pl) =
(2.5)−1/6σpl to have only repulsive interaction.

In addition, several control systems were created, where
silica was replaced with a magnesium oxide (MgO) surface.
The MgO potential parameters for L-J and Coulomb
interactions were taken from the ClayFF force field,46 while
the piston settings were kept unchanged.

Simulation Systems. A silica−water system displayed in
Figure 1 was used, where there were no hydroxyl groups at the
silica surface, that is, the surface was terminated by siloxane
bridges. This is very similar to our previous work,37 except that
no recalculation of silica unit cell parameters was done, and the
silica surface models provided by Emami et al. were used,41

resulting in a system xy cross-section of approximately 33.4 ×
34.8 Å2. Also, while in the previous work the whole silica
surface was fixed, only the leftmost layer of 84 oxygen atoms
was fixed in this work, as indicated in Figure 1. The number of
water molecules was set to 7200, and was chosen to give a
liquid layer that is large enough to have a bulk region not
affected by short-range forces from both the solid surface and
heat bath region, that is at least 50 Å thick.

An external pressure of 1 atm was applied to the virtual
piston at the right side of Figure 1 by a constant external force
of about 0.017 kcal/(mol Å) in the −z direction, and its
position adhered to classical Newtonian equation of motion,
where the piston mass was approximately 1163 kg/mol,
obtained by setting the piston area density to 1000 g/(mol Å).

To damp the oscillation of the virtual piston, which occurred
because of the repulsive-only interactions with water
molecules, a Langevin thermostat,47 with a damping coefficient
of 1000 fs and a control temperature of 0 K was coupled to the
piston. To compensate for the energy loss due to damping and
to control the system temperature, two additional Langevin
heat baths were setup, both having the damping coefficient set
to 100 fs and control temperature to 300 K. The first heat bath
was coupled to the water molecules within 20 Å from the
virtual piston. The second heat bath was set to the leftmost
silicon and second-leftmost oxygen atom layers, composed of
84 and 168 atoms, respectively. Both are illustrated in Figure 1.

Several additional simulation system types were also
constructed to better illustrate the effect of Coulomb damping
versus full long-range electrostatics. First, silica−water systems
were created with long-range electrostatic interactions, that is,
no damping, where all silica atoms were fixed at their mean
positions, with the other conditions being identical. The mean
positions were obtained from the 8 ns sampling data of the
initial state of the thermodynamic integration, that is, a system
with normal silica−water interactions.

In addition, systems where MgO surface replaces silica were
also created, illustrated in Figure S1, with either damped or
full, long-range Coulomb interactions. The positions of the
MgO atoms were fixed to form a perfect fcc (100) face, with a
lattice constant of 4.212 Å. The system size was adjusted to be
close to that of water−silica systems, resulting in a xy cross-
section of approximately 33.7 × 33.7 Å2 with 12 MgO layers in
the z direction. The number of water molecules was 10272.

Each system was equilibrated with various coupling
parameters for at least 2 ns and either the following silica−
water data of 8 ns or MgO−water runs of 14 ns were used for
thermodynamic integration. The number of sampling points
depended on the integration path and desired precision and
will be discussed in detail below.

Figure 1. Front view of the simulation system. The depth (y) dimension is 34.8 Å.
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Thermodynamic Integration. A detailed description of
the dry-surface method is provided in the original paper,28 but
in brief, it uses coupling parameters to reversibly switch the
solid−liquid interactions from realistic to mostly repulsive, and
it obtains the work of solid−liquid adhesion via thermody-
namic integration. As in our previous work,37 we chose a
reversible path, where λ = 0 indicates fully repulsive
interactions, while λ = 1 represents the original systems for
which we want to obtain the solid−liquid work of adhesion.
Therefore, the work of adhesion can be obtained via

=W
u

dsl
0

1
sl

(9)

where λ is an arbitrary coupling parameter in the range of 0 ≤
λ ≤ 1 and usl = Φsl/A is the total solid−liquid potential energy
per unit area, A being the area of the xy cross-section.

In case of our silica−water system in Figure 1, there are both
van der Waals and Coulomb interactions between solid and
liquid. As one simple approach, we chose to first turn off the
Coulomb interactions and then gradually switch van der Waals
interactions to repulsive via modifying the solid−liquid L-J
interactions. For the Coulomb interactions, we tried three
approaches: change the scaling coupling parameter in the range
of 0 ≤ λC ≤ 1 (Coulomb scaling integration path; λC path),
change the solid−liquid Coulomb interaction cutoff rcut(C) in
the range of 0 Å ≤ rcut(C) ≤ 12 Å (Coulomb cutoff integration
path; rcut(C) path) and change the damping parameter α in the
range of 0.2 Å−1 ≤ α ≤ 3.4 Å−1, where 3.4 Å−1 is a large
enough value to effectively turn off Coulombic interactions
(Coulomb damping integration path, α path). In accordance
with eq 9, the contributions to the work of solid−liquid
adhesion can be each obtained for these integration paths

=W
u

dsl( )
0

1 sl(C)

C
CC (10)

=W
u

r

r
drsl( )

0

1 sl(C)

cut(C)

cut(C)

cut(C)
cut(C)cut(C)

(11)

=W
u

dsl( )
0

1 sl(C)

(12)

where λcut(C) = rcut(C)/12 Å is used for eq 11, λα= (3.4 Å−1 −
α)/3.2 Å−1 is used for eq 12 and usl(C) is the Coulomb
component of the solid−liquid energy per unit area. In case of
van der Waals interactions, decreasing the coupling parameter
to a very small value λLJ ≪ 1 is a straightforward way also used
in previous works28,37 to create a mostly repulsive interaction.
In this work, the values were taken in the range of 0+ < λLJ ≤ 1
(L-J integration path; λLJ path), where the “+” superscript
indicates a tiny value larger than 0, as we only need to make
the L-J potential well small enough to cause repulsive-only
interaction, and setting it to 0 would be either numerically
unstable or cause nonreversible change in the system. As the
exact choice of the value has less effect than numerical
uncertainty, we chose an extrapolation scheme to 0, that will be
described in the integration scheme section, and use 0 notation
in definite integral for simplicity. Note that there were no
Coulombic contributions in solid−liquid interactions at this
phase. The contribution to the work of solid−liquid adhesion
can be obtained in a straightforward manner

=W
u

dsl( )
0

1 sl(LJ)

LJ
LJLJ

(13)

where usl(LJ) is the L-J component of the solid−liquid energy
per unit area.

We also adopted alternative integration paths where we
modified both van der Waals and Coulomb solid−liquid
interactions simultaneously. We tried three approaches:
modifying solid−liquid L-J interactions and Coulombic
interactions via λ = λLJ = λC, (L-J/Coulomb scaling integration
path; λLJλC path), modifying them via λ = λLJ = λcut(C), (L-J
scaling/Coulomb cutoff integration path; λLJrcut(C) path), and
finally via λ = λLJ = λα, (L-J scaling/Coulomb damping
integration path; λLJα path), where the sampling range for all
was 0 < λ ≤ 1. The work of adhesion of these integration paths
closely resembles eqs 10−13:

=W
u u

d dsl( )
0

1 sl(LJ)
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LJ

0

1 sl(C)

C
CLJ C

(14)
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=W
u u
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(16)

Because the work of solid−liquid adhesion of the same
system must not depend on the integration path, all
approaches should give identical values, except for numerical
errors:

+

+

+
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W W W

r

r

sl sl( ) sl( )

sl( ) sl( )

sl( ) sl( )

sl( ) sl( ) sl( )

LJ C

LJ cut(C)

LJ

LJ C LJ cut(C) LJ (17)

As in our previous work,37 the LAMMPS MD package48 was
used to perform all simulations and part of the postprocessing
with the integration being done by the velocity Verlet
algorithm at a time step of 0.5 fs. The integration time step
was chosen according to a general rule of using one-tenth of
the fastest motion period, the vibration of the O−H water
bond at approximately 9 fs.49

To obtain systems with different rcut(C) and α for only solid−
liquid interaction as described in eq 3, the pair_style hybrid
capability was used. On the other hand, to implement different
λC, we had to use the pair_style table capability due to technical
limitations, although this would not have been necessary if we
used one of the available soft core Coulomb potentials. Finally,
to efficiently compute Hamiltonian derivatives, new pair
potentials matching the analytical Hamiltonian derivatives
were constructed via the pair_style python capability and were
then tabulated for pair_style table via pair_write command,
using the bitmap style with 216 points, with the inner and outer
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cutoff being set to 0.4 and 12 Å, respectively. The number of
tabulation points was chosen by setting a high enough value to
give identical results within numerical error. Once the
tabulation was completed, the rerun capability was used to
compute the Hamiltonian derivative values from simulation
trajectory files.

Numerical Integration Scheme. To obtain the work of
adhesion values described in the previous section, we had to
numerically integrate the mean Hamiltonian derivatives. One
of the challenges of numerical integration is correctly
estimating the error. In particular, for MD, computation of
each data point is numerically expensive, so a good error
estimation scheme is crucial to allow efficient sampling.
Although many numerical integration schemes allow for
theoretical error estimation, this requires higher derivatives
of the integrand, which are usually unknown and numerical
derivation is not realistic because of numerical instability.50

We, therefore, chose a simple adaptive quadrature algorithm,
that is, an iterative algorithm that chooses new sampling points
based on estimated local error in separate integration intervals,
where the errors were estimated using a simple heuristic,
similar to that in previous literature.51 We will describe the
approach briefly here, and will refer to a χ integration path (χ
path) when an operation is applicable to all of the integration
paths. At step 1, λ is sampled at 65 equally spaced points in the
range of [0, 1] for λC, rcut(C) and α paths. On the other hand,
because of technical limitations, for λLJ, λLJλC, λLJrcut(C), and
λLJα paths, 64 equally spaced point in the range of (0, 1] are
sampled and values at λ = 0 are obtained via extrapolation from
the two nearest data points. At step 2, the work of adhesion for
the χ path is obtained via both the trapezoidal rule and the
definite integral of a fitted cubic B-spline curve as Wsl

t and Wsl
s ,

respectively. B-spline fitting and integration is done via the
SciPy library,52 which uses FITPACK for spline-related
algorithms.53 These two integration schemes are chosen
because of the simplicity and ease of accessibility, although
other integration schemes can be used instead, provided the
level precision is substantially different. At step 3, the global
relative error is estimated as

=e
W W

W
g

t s

s
sl sl

sl (18)

and the local relative error per unit measure is computed for
each interval between adjacent sampling points as

=
+

e
W W

W( )i
l i

t
i

s

i i
s

sl( ) sl( )

1 sl (19)

where λi and λi+1 are the sampling points of interval i, while
Wsl(i)

t and Wsl(i)
s are the definite integrals over the interval i via

the trapezoidal rule and fitted cubic B-spline, respectively.
Note that for Wsl(i)

s all the sampling points are used for the
fitting. It is assumed that the relative error between the two
estimates of different quadrature degrees, degree 1 for
trapezoidal rule and degree 3 for B-spline integration, is at
the same magnitude as the relative error between the more
precise numerical integration scheme and the true value.51

While, in general, there is no such guarantee, for short intervals
where the integrand is well behaved and its values do not
change greatly, it has been demonstrated to hold and has been
successfully used in various adaptive quadrature algorithms.51

The local relative error per unit measure was used instead of the

simple local relative error to give larger weights to intervals
where the integrand has high gradients, that is, steep peaks. If
the global error eg is smaller than the global error threshold
et(g), and local errors for all integrals eil are smaller than the local
error threshold et(l), the numerical integration is terminated,
and Wsl

s is used as the estimated value. Otherwise, the
algorithm advances to the next step. At step 4, the n intervals
with the largest errors are chosen, and new sampling points are
picked at their midpoints. In principle, setting n = 1 would
allow to reach the desired global error with the least additional
sampling points, but it is beneficial to set it to a larger value as
it allows parallel evaluation of partial Hamiltonian derivatives
via MD simulation. In this work, all intervals with an error
above a certain threshold were selected. The threshold was
initially set to et(l), and then decreased by 0.01 in case of no
intervals above it. The algorithm continues to step 2 afterward,
unit both the global and local error estimates are below their
thresholds.

The global relative error threshold was set to et(g) = 0.01,
while the threshold of local relative error per unit measure was
set to et(l) = 0.05. As briefly described in the section about the
simulation system, at fixed λ the Hamiltonian derivatives were
analytically computed via MD, and each point was sampled for
8 ns. To check the validity of the algorithm, Laguerre
polynomials were also integrated to verify that the estimated
error is of acceptable accuracy. Laguerre polynomials were
chosen instead of, for example, Chebyshev polynomials used in
previous literature,51 as Laguerre polynomials oscillate at
varying periods, and their definite integrals are small when
compared to the oscillation amplitudes, which is similar to
worst-case scenarios for Hamiltonian derivatives observed in
this work. The polynomial degrees were varied from 3 to 99,
and the integration ranges were set from 0 to 1−20, with an
increment of 1. In most cases good estimates were achieved,
where the real relative error differed from the estimated one by
less than 0.01. Only when the oscillation period became too
short for the initial sampling to capture, did the error estimates
become unreliable. For the Hamiltonian derivatives used in
this work, even the worse-case ones had only few large
oscillations that were fully captured by the initial sampling.

■ RESULTS AND DISCUSSION
Solid−Liquid Potential Energies and Hamiltonian

Derivatives. Solid−liquid potential energies for all integration
paths are displayed in Figure 2, where both L-J and Coulomb
contributions are shown if applicable. Corresponding Hamil-
tonian derivatives are shown in Figure 3. As expected, all three
Coulomb integration paths (λC, α, and rcut(C)) in Figure 2a−c
have identical L-J potential energies at λ = 0, while for other
integration paths (λLJ, λLJλC, λLJα, and λLJrcut(C)) in Figure 2d−
g the total potential becomes almost zero at λ ≈ 0.

The scaling integration paths (λC, λLJ, and λLJλC) all show
monotonic change in both potential energies in Figure 2a, d, e
and Hamiltonian derivatives in Figure 3a, d, e, which is a highly
desirable property from the point of numerically integrating.
Integration paths with damping (α and λLJα) show a single
potential energy dip with a local minimum in Figure 2b, f and a
more pronounced dip/peak set in Hamiltonian derivatives in
Figure 3b, f, which is slightly less desirable than a strictly
monotonic change, but the total magnitude of the values is
comparable to that in the scaling integration paths, and
therefore should not be much more difficult to handle. On the
other hand, integration paths with cutoff modification (rcut(C)
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and λLJrcut(C)) show large potential energy oscillations in Figure
2c, g and even larger Hamiltonian derivative oscillations in
Figure 3c, g. This is caused by shortened Coulomb cutoff, and
such artifacts are reported in literature.55 Because of the large
oscillation magnitude in comparison to the definite integrals, it
is clear that these paths are the most difficult to evaluate
correctly.

Work of Solid−Liquid Adhesion. By integrating the
values in Figure 3 according to eqs 10−17, we obtained the
work of solid−liquid adhesion for a total of 6 integration paths,
which is shown in Table 1. Also show in Table 1 is the result of
a control silica−water system with long-range electrostatics,
obtained via the λLJλC integration path with 8 sampling points,
which provide sufficient precision, as will be described in more

detail in the next section. For integration paths with both L-J
scaling and Coulomb modification, L-J and Coulomb
contributions of Wsl(LJ) and Wsl(C) from eqs 14−16 are also
included. To adequately evaluate the precision of the
computations and to make the source of possible inaccuracy
clearer, the standard error of the mean due to statistical
uncertainty is indicated in brackets, while the estimated error
due to numerical integration is indicated after the ± symbol.
To account for statistical inefficiency,54 the standard error of
the mean was computed by dividing the sampled data into four
blocks and individually conducting the numerical integration.
The numerical error estimate was obtained in a manner
equivalent to the relative global error estimate in eq 18. In case
of α, λC, and rcut(C) paths, total work of adhesion Wsl was
obtained by combining with λLJ path results, as indicated in eq

Figure 2. Solid−liquid energies for each integration path. The
statistical error of the mean for each point was evaluated by block
averaging54 and is at most 0.7 mJ/m2 for Coulomb cutoff integration
paths (c, g), and at most 0.15 mJ/m2 for the remaining paths, and not
show in the figure because of the small magnitude.

Figure 3. Hamiltonian derivatives for each integration path. The
statistical error of the mean for each point was evaluated by block
averaging54 and is at most 0.15 mJ/m2 for scaling-only integration
paths (a, d, e), at most 0.9 mJ/m2 for Coulomb damping paths (b, f),
and at most 8 mJ/m2 for Coulomb cutoff paths (c, g) and not show in
the figure due to small magnitude.
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17, and numerical uncertainty and the numerical estimation
were computed via error propagation.

First, all integration paths for systems with damped
Coulombic interactions gave comparable work of solid−liquid
adhesion Wsl values of approximately 58 mJ/m2, which is close
to 50.86 mJ/m2 of the control system with long-range
electrostatics. It is also close to 48 mJ/m2 from our previous
work,37 where we used integration paths equivalent to λLJ and
λC paths, and the system is mostly identical with our control
system with long-range Coulombic interactions, except the
silica surface had slightly larger lattice spacing than in this
work. The difference in the total work of adhesion between
systems with damped and full, long-range electrostatics is quite
significant and indicates that there can only be a semi-
quantitative match at most. This is not unexpected, as this
family of damped interactions, originally derived by Wolf et
al.,39 assumes a homogeneous bulk environment, although its
applicability to systems with interfaces has also been
investigated.56,57 To gauge the effect of damping in systems
with stronger solid−liquid Coulomb interactions, the work of
adhesion was also obtained for MgO−water systems via the
λLJλC integration path with 8 sampling points, provided in
Table 2. While, because of the ionic nature of the MgO crystal,

the work of adhesion is more than twice that in silica−water
systems, the difference between damped and undamped
systems is also roughly 10 mJ/m2, which is very close to the
silica−water systems. A stronger orientation of water hydrogen
atoms toward the solid surface was observed in systems with
damped Coulomb interactions, shown in Figure S2. This
makes it difficult to devise an analytical correction, for example
using a dielectric continuum model as in the Born hydration
energy equation.58,59 In addition, the Wolf model has also been
reported to underestimate the liquid−vapor interfacial
tension.56 Both of these points are believed to contribute to
a larger work of adhesion in systems with damped electro-
statics. Finally, from the Hamiltonian derivative graph of the α

path in Figure 3b, it appears that the Coulomb contribution to
the work of adhesion could be reduced by decreasing the
damping coefficient α, therefore, in theory, it should be
possible to align the work of adhesion between the damped
and long-range electrostatic systems exactly. The validity and
soundness of doing so, however, is beyond the scope of this
work.

As a final note, it is worth pointing out the large difference
between the L-J and Coulomb components, Wsl(LJ) and Wsl(C),
for several of the integration paths in Table 1. As discussed in
existing literature,60 even though we can unambiguously
separate the L-J and Coulomb potential energies in our
model, the same does not hold for their contributions to the
work of adhesion, even though it is still a rather straightforward
operation, as shown in eqs 10−16. Indeed, as the λLJλC path
demonstrates, even qualitative tendencies are not guaranteed
to be reproduced as the components are somewhat arbitrary
and depend on the chosen integration path.

Numerical Efficiency of Different Integration Paths.
As can be observed from Table 1, even in the worst cases the
error estimates of numerical integration are comparable to
statistical uncertainty inherent in MD and they are all relatively
small due to the adaptive quadrature algorithm we applied.
This is true even for the cutoff integration paths (rcut(C) and
λLJrcut(C)), which resulted in problematic integrand shapes with
large oscillations as shown in Figure 3c, g. Therefore, provided
any integration path eventually gives the correct answer, it is
preferable to select the one which needs the least sampling
points.

Before doing any further comparison between different
integration paths, we note that for paths with modified
damping (α and λLJλα) in Figure 3b, f, the upper limit of the
damping coefficient at 3.4 Å−1 appears to be too large, as
relevant Hamiltonian derivatives are effectively zero already at
α = 1.8 Å−1. This is demonstrated in Figure 4, where the
cumulative work of adhesion, obtained by eq 12, is shown for
increasing α, with the corresponding λα also indicated. From
there, we can observe that an upper bound of α = 1.6 Å−1 (λα =
0.6) is enough for the cumulative value to converge within the
margin of error. Thus, we will use this value when discussing
numerical efficiency of the integration paths below. On the
other hand, the same approach cannot be used with current
data for the λLJα path, as the damping coefficient α is coupled
with L-J interaction scaling parameter λLJ.

Because of our adaptive quadrature algorithm, the exact
number of iterations and the order of new sampling points
highly depends on the number of new sample points chosen at
each iteration, step 4 of the numerical integration scheme.

Table 1. Work of Solid−Liquid Adhesion and Its L-J and Coulomb Components in Silica−Water Systemsa

Wsl(LJ) Wsl(C) Wsl

λLJ 41.57(6) ± 0.0007 N/A N/A
λC N/A 16.10(1) ± 0.0002 57.67(6) ± 0.0007
α N/A 16.12(1) ± 0.05 57.68(6) ± 0.05
rcut(C) N/A 16.05(6) ± 0.08 57.62(8) ± 0.08
λLJλC 40.95(8) ± 0.007 16.82(2) ± 0.0008 57.8(1) ± 0.008
λLJα 41.53(3) ± 0.001 16.76(2) ± 0.09 58.29(3) ± 0.09
λLJrcut(C) −31.95(3) ± 0.03 90.7(1) ± 0.02 58.7(1) ± 0.008
λLJλC (PPPM) 55.55(5) ± 0.05 −4.69(1) ± 0.004 50.86(4) ± 0.04

aIn case of α, λC, and rcut(C) paths, Wsl was obtained by combining with λLJ path results, as indicated in eq 17. The brackets indicate the standard
error of the mean because of the statistical uncertainty in MD, while the values after the ± symbol are the estimated numerical integration error.
The control system with long-range electrostatic interactions is indicated by “PPPM”. All values are in mJ/m2.

Table 2. Work of Solid−Liquid Adhesion and Its L-J and
Coulomb Components in MgO−Water Systemsa

Wsl(LJ) Wsl(C) Wsl

λLJλC −11.70(3) ± 0.3 140.7(3) ± 0.4 129.0(3) ± 0.2
λLJλC (PPPM) 0.52(9) ± 0.3 117.4(2) ± 0.4 117.9(3) ± 0.1

aThe brackets indicate the standard error of the mean due to
statistical uncertainty in MD, while the values after the ± symbol are
the estimated numerical integration error. System with long-range
electrostatic interactions is indicated by “PPPM”. All values are in mJ/
m2.
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Therefore, we chose to evaluate the error and precision based
on the number of sampling points and not iterations.
Numerical integration was redone, where only the sampling
points at 2n equally spaced intervals in the integration range
were chosen. This was redone for each integration path with n
starting from 3 to up to 12 for the λcut(C) path. Only for the α
path, sampling points above α = 1.6 were omitted. Note that at
n higher than 6, the total number of sampling points was lower
than 2n + 1 and the actual sampling order did not occur in the
other of increasing n, both because of the adaptive quadrature
algorithm.

The relation of sampling points and precision is shown in
Figure 5. The left panel of Figure 5 indicates the estimated
global error of numerical integration, the center panel indicates
the maximum value of the estimated local error per unit length
of each integration interval, and the right panel shows the
relative difference from the integral with the most sampling
points. Note that due to the nature of logarithmic scale, data
points for most sampling points are not shown in the right
panel of Figure 5. From an overall point of view, the relative
global error estimate of numerical integration roughly reflects
the actual relative difference between the integral with the
most sampling points. On the other hand, the maximum local
error in the center panel shows substantially higher values than

global error, and does not appear to converge even at a large
sampling point number.

First, looking at the left panel of Figure 5, we notice a
sudden increase in numerical error after 29 sampling points for
the α path and 65 points for rcut(C), λLJα, and λLJrcut(C) paths.
This is the point where adaptive quadrature algorithm started
and the integration intervals were no longer of equal length. It
has been demonstrated that the trapezoidal rule is very efficient
at integrating peak functions,61 and a switch to a nonequally
spaced sampling could indeed decrease the precision of
trapezoidal integration, increasing the estimated numerical
error. This, however, does not mean that the precision of the
spline integral was decreased. It is interesting to note that as far
as the relative global error estimate for numerical integration eg
is concerned, it was below the threshold of et(g) = 0.01 for all
integration paths after the initial sampling and the algorithm
could have been terminated if that had been the only criterion.
Because the maximum relative local error estimate eil, shown in
the center panel of Figure 5, was above the threshold of et(l) =
0.05 for α, rcut(C), λLJα, and λLJrcut(C) paths, the adaptive
quadrature algorithm turned on and increased the number of
sampling points. On the other hand, the scaling-only
integration paths (λLJ, λC, and λLJλC), had both the global
and local error estimates below their thresholds, and finished
without applying the adaptive quadrature algorithm. In fact,
the Hamiltonian derivatives (Figure 3a, d, e) for these
integration paths are very well behaved, and even with as
few as 9 sampling points, their relative global estimate is below
the threshold. This is not just an artifact or underestimation, as
in the left panel of Figure 5, we can observe that the relative
difference between the numerical integrals with most sampling
points is below 0.01. Therefore, we can conclude that the
integration paths with only scaling (λLJ, λC, and λLJλC) are the
most numerically efficient. From the point of fewest sampling
points, the λLJλC path is the most efficient, as the scaling is
done at once for both L-J and Coulomb interactions. The
second most efficient integration path is the α path, as even
though it has a dip and a peak in the Hamiltonian derivative
(Figure 3b) and needed the adaptive quadrature algorithm, the
overall number of sampling points is relatively low, due to only
needing to sample in the range of 0.2 Å−1 ≤ α ≤ 1.6 Å−1. This
should be also applicable to the λLJα path, provided we choose
this integration range from the start and adjust the λLJ and α
relation. Coulomb cutoff integration paths (rcut(C) and
λLJrcut(C)) proved to be most difficult and inefficient to
numerically integrate due to their steep peaks and dips in

Figure 4. Cumulative work of solid−liquid adhesion from α path,
obtained by changing the integration range. Inner filled red curves
show the standard error of the mean because of the numerical
uncertainty, while outer filled blue curves show the estimated
numerical integration error. The dashed line is the value when
integrated over the whole interval.

Figure 5. (Left) Estimated relative global numerical error of partial Hamiltonian numerical integration versus the number of sampling points.
(Middle) Estimate of the maximum local relative numerical error per unit length of partial Hamiltonian numerical integration versus the number of
sampling points. (Right) The relative difference from the values of the numerical integration of partial Hamiltonian with the most sampling points.
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Figure 3c, g, and they needed the most iterations to reach a
required precision. In fact, the relative local error eil of rcut(C)
and λLJrcut(C) paths never converged to below the threshold of
et(l) = 0.05. Iterations were in fact terminated after the relative
global error was small enough. Overall, modifying the
Coulomb cutoff to obtain the work of adhesion should be
avoided if possible from the point of numerical efficiency.
Although our choice prioritized steep peaks, as intended, the
local error formulation in eq 19 also had the problem that it
was slow to converge (center panel of Figure 5). This might be
due to integration intervals approaching 0, as been briefly
mentioned by Gonnet in his review;51 therefore, the local error
might never converge. From an algorithmic point of view, this
is suboptimal. Hence either only the global error estimate
should be used for the algorithm termination, as we eventually
did with rcut(C) and λLJrcut(C) paths or an alternative local error
formulation is needed, which would properly decrease to 0
when the integration interval approaches 0, although it might
be still preferable to have it prioritize steep peaks.

■ CONCLUSION
In this work, we investigated how to efficiently obtain the
solid−liquid work of adhesion from MD systems with damped
Coulomb interactions by using the dry-surface approach,28

which is a thermodynamic integration method. This was done
to demonstrate an alternative to using systems with long-range
Coulombic solid−liquid interactions because modifying only
solid−liquid interactions is nontrivial in practice, as it would
require solving additional Poisson equations, which is not
available in most MD software packages. This has been
circumvented by fixing solid surface atoms in place in previous
works,37 but this is also often undesirable. For damped
Coulomb interactions, the formulation by Fennell et al.38 was
used, as it let us to both modify the damping coefficient and
cutoff length, while maintaining a smooth potential curve at
the cutoff, but the conclusions should also be applicable to
other formulations, such as soft core potentials.

A total of 6 different reversible paths were chosen for
thermodynamic integration, with either scaling the solid−
liquid Coulomb interactions, modifying their damping
coefficient or changing their Coulomb cutoff length, and also
scaling their Lennard-Jones (L-J) interactions either at the
same time or separately from the Coulomb ones. Regardless of
the integration path, the same work of solid−liquid adhesion
values were obtained but differed by a non-negligible amount
(approximately 10 mJ/m2) from that of systems with long-
range Coulomb interactions, although the discrepancy was
mostly unchanged regardless if the Coulombic interactions
over the solid−liquid interface were weak or strong. Because of
the different liquid structure near the interface being different
for the two treatments, an analytical correction might be not
trivial. It might be possible, however, to obtain close-enough
values by increasing the damping coefficient, although further
validation has not been done. As it currently stands, although
the approach presented in this work does not produce the
work of solid−liquid adhesion that is quantitatively comparable
to that obtained from systems with long-range Coulombic
interactions, the discrepancy appears to be mostly unchanged
across wide range of solid−liquid interaction strengths, akin to
a sort of systematic error. Therefore, applying the dry-surface
method to systems with damped Coulomb interactions still
allows qualitative comparison between different interfaces, with
an added benefit of a much lower computational cost. The

comparison should be especially efficient if the two interfaces
are similar, such as having different functional groups, which
would allow qualitative comparison by determining the
discrepancy using a control system.

Even though all integration paths resulted in the same work
of adhesion values due to being reversible, different numbers of
sampling points were needed to obtain an acceptable precision
because numerical integration was used. To increase the
efficiency of data sampling for more difficult paths, an adaptive
quadrature algorithm was successfully used. The fewest
sampling points were required for integration paths with
simple interaction scaling. More sampling points were needed
for integration paths with changing of the damping coefficient,
and most were needed when the Coulomb cutoff was modified,
due to large potential energy oscillations at shorter cutoff
values. Therefore, interaction scaling should be used when
available, with damping coefficient modification also being
acceptable, while the cutoff modification approach should be
avoided if possible.

From the point of the equations in the process of obtaining
the work of adhesion, it is also possible to split free energy
contributions to various components, such as L-J and
Coulomb. However, as is known from thermodynamics,
while the total work of adhesion does not depend on the
integration path, the components can vary greatly and are path
dependent. Therefore, it is not possible to divide free energy
into separate contributions unambiguously.
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