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Improving the local climate zone 
classification with building height, 
imperviousness, and machine learning for 
urban models
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Abstract 

The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The 
current classification method does not incorporate crucial urban auxiliary GIS data on building height and impervi‑
ousness that could significantly improve urban‑type LCZ classification utility as well as accuracy. This study utilized a 
hybrid GIS‑ and remote sensing imagery‑based framework to systematically compare and evaluate different machine 
and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but 
it requires multi‑pixel input, which reduces the output’s spatial resolution and creates a tradeoff between accuracy 
and spatial resolution. The Random Forest (RF) classifier performs best among the single‑pixel classifiers. This study 
also shows that incorporating building height dataset improves the accuracy of the high‑ and mid‑rise classes in the 
RF classifiers, whereas an imperviousness dataset improves the low‑rise classes. The single‑pass forward permutation 
test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near‑infrared 
and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ 
classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by 
adopting building height and imperviousness information. This framework can be easily applied to different cities to 
generate LCZ maps for urban models.
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1 Introduction
Urbanization is defined as the process of the human 
population shifting from natural to artificial land surface 
(Tisdale 1942), including migration and clustering of the 
population from the rural to the urban area and trans-
forming natural land cover to urban land use. Although 
urban areas cover less than 3% of the world’s land sur-
face, the 2018 UN World Urbanization Prospect (United 
Nations 2019) shows that more than 55% of the global 

population resides on it. High population density (Oke 
1973; Peng et  al. 2012; Ramírez-Aguilar & Souza 2019), 
building materials (Arnfield 2003), anthropogenic activi-
ties (Peng et  al. 2012; Shahmohamadi et  al. 2011), and 
urban morphology (Oke 1981; Zhou et al. 2017) are some 
of the factors that create the warmer urban environment 
compared to the surrounding rural areas. This phenom-
enon is called urban heat island (UHI). UHIs have been 
found to exacerbate heatwaves (Founda & Santamouris 
2017; Li & Bou-Zeid 2013; Zhao et  al. 2018), precipita-
tion (Changnon 1968; Fung et  al. 2021; Liu and Niyogi 
2019; Han et al. 2014), and air pollution (ozone concen-
tration; Sarrat et  al. 2006; Li et  al. 2016; Swamy et  al. 
2017).
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The evaluation of UHI impact can be performed by 
using land use land cover (LULC) data to separate the 
urban areas from the rural areas for measuring and simu-
lating the temperature difference. The Moderate Resolu-
tion Imaging Spectroradiometer (MODIS; Friedl et  al. 
2010) and the Climate Change Institute Land Cover 
(CCI-LC) dataset developed by the European Space 
Agency (ESA) are examples of global LULC datasets 
with only urban class. The National Land Cover Data-
base (NLCD) land cover data (Homer et  al. 2011), only 
available in the US, contains four urban classes. The lim-
ited urban classes from these typical global and national 
LULC are  often insufficient to represent the highly het-
erogeneous urban areas.

To address this deficiency,  the Local Climate Zone 
(LCZ) classification was developed by Stewart and Oke 
(2012) and has  ten urban LCZ classes (class 1–10) and 
seven natural LCZ classes (class A-G; Table  1). LCZs 
can be  classified based on various properties, includ-
ing building height, impervious surface fraction, canyon 
aspect ratio, surface albedo, anthropogenic heat flux, 
etc. Studies have shown that LCZs can capture the spa-
tial variation of temperature (Stewart et al. 2014; Stewart 
& Oke 2012), ventilation (Zhao et al. 2020), and specific 
humidity (Yang et al. 2020). Several studies also showed 
that incorporating LCZ in numerical models, such as the 
Weather Research and Forecasting (WRF) model, can 
improve the simulated temperature (Molnár et  al. 2019; 
Vuckovic et al. 2020) and precipitation (Patel et al. 2020) 
accuracy.

There are three major ways to generate an LCZ map 
(a) GIS-based, (b) remote sensing imagery-based, and 
(c) hybrid method (Lehnert et al. 2021). The GIS-based 
methods use the geometric properties derived from 
GIS databases such as buildings, roads, and topogra-
phy to classify LCZs (Geletič & Lehnert 2016; Oliveria 

et  al. 2020). Lehnert et  al., (2021) has summarized the 
GIS-based method into Lelovics-Gál (Lelovics et  al. 
2014) and Geletič-Lehnert (Geletič & Lehnert 2016) 
method. Both methods calculate the geometric proper-
ties required for each class. In comparison, the Geletič-
Lehnert method has an additional parameter related to 
the number of buildings per hectare. The primary dis-
advantage of the GIS-based method is data availability, 
because building information data may not be available 
for every city.

The remote sensing imagery-based method create an 
LCZ map using spectral properties retrieved from the 
satellite imageries. Such a methodology has been docu-
mented in the WUDAPT (Ching et  al. 2018) project 
using Landsat 8 imageries (Bechtel et al. 2015). Landsat 
8 imageries were first trimmed into the region of inter-
est (ROI), and then different training areas were drawn 
using Google Earth. Both the Landsat 8 imageries and 
the training areas were then passed into a random for-
est classifier in the System for Automated Geoscientific 
Analysis (SAGA-GIS) software. Some studies have shown 
that implementing the deep learning classifiers, such as 
the convolution neural networks (CNNs), and different 
satellite imageries, such as Sentinel-2, can also improve 
the classification accuracy (Qiu et  al. 2018; Yoo et  al. 
2019). Paticularly, Yoo et  al. (2019) showed a 19–29% 
improvement in the urban classes when using the CNN 
classifier.

The hybrid methods make use of both GIS and remote 
sensing data to create the LCZ maps. The building height 
data are often used as auxiliary information to supple-
ment remote sensing imageries. Yoo et  al. (2020) have 
shown that local building height data derived from 
LiDAR can improve the classification accuracy of urban 
classes by 7–9%. Furthermore, Qiu et al. (2018) showed 
that additional global urban footprint, OpenStreetMap 
building layers, and Nighttime Light data could improve 
the accuracy of the urban-type classes even with a small 
sample size.

This study compared the LCZ classification perfor-
mance from different machine/deep learning classifiers 
and urban auxiliary datasets. The study area and input 
features used in this study were described in section  2. 
The evaluation methodology and metrics were described 
in section  3. The comparison results of various classi-
fiers were summarized in section  4.1, and the impacts 
and importance of including the urban auxiliary dataset 
were summarized in sections 4.2–4.5. The major findings 
and significance of the study were discussed in section 5. 
The hybrid framework used in this study can be used to 
advance the conventional classification framework sug-
gested by WUDAPT and apply it to different cities for 
urban modeling studies.

Table 1 The urban and natural LCZ classes (Stewart & Oke 2012)

Urban classes Name Natural classes Name

1 Compact high‑
rise

A Dense trees

2 Compact mid‑rise B Scattered trees

3 Compact low‑rise C Bush, scrub

4 Open high‑rise D Low plants

5 Open mid‑rise E Bare rock or paved

6 Open low‑rise F Bare soil or sand

7 Lightweight 
low‑rise

G Water

8 Large low‑rise

9 Sparsely built

10 Heavy Industry
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2  Study area and data processing
2.1  Study area
Austin is located in central Texas (Fig. 1a) of the US and 
covers an area of 790  km2. It is the capital city of Texas, 
with a population of about 1 million, according to the 
2020 census data (https:// world popul ation review. com/ 
us- cities/ austin- tx- popul ation). Austin is located in the 

transition zone between the dry desert on the west and 
the humid coastal region on the east. Under the Kop-
pen Climate Classification, it is classified as a “humid 
subtropical climate” (Cfa). According to the Climate 
Summary report given by the National Weather Service, 
Austin’s winter (December – February) has a usual high 
temperature of 61 °F (16 °C) and precipitation of 6.64 in. 

Fig. 1 a The Texas map showing the Austin ROI (red box) investigated in this study. b The zoomed‑in Austin map with training polygons for each 
LCZ class

https://worldpopulationreview.com/us-cities/austin-tx-population
https://worldpopulationreview.com/us-cities/austin-tx-population
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(168 mm). The summer (June – August) has a typical high 
temperature of 90 °F (32 °C) and precipitation of 8.56 in. 
(217 mm). The annual-averaged rainfall is about 34.32 in. 
(872 mm), peaking in May, June, and October.

The ROI for this study has a latitude: 29.9 to 30.8oN 
and longitude: 97.3 to 98.1oW (Red box in Fig. 1a), which 
has embedded the Austin metropolitan area, includ-
ing most of the Travis County and part of Williamson, 
Burnet, Hays, Bastrop, and Caldwell Counties. The ROI 
covers area with land use of residential, commercial, rec-
reational, and other types of land uses, according to the 
Land Use Inventory map created by the City of Austin in 
2018 (https:// data. austi ntexas. gov/ Locat ions- and- Maps/ 
Land- Use- Inven tory- Map/ pstw- 7bkg).

2.2  Input features for LCZ classification
2.2.1  Landsat 8 imageries
Landsat 8 contains two instruments: Operational Land 
Imager (OLI) and Thermal Infrared Sensor (TIRS). 
OLI has nine spectral bands (wavelengths ranging from 
0.43 μm to 2.29 μm). TIRS has two spectral bands (wave-
lengths ranging from 10.6 μm to 12.51 μm). All bands 
except band 8 (panchromatic) and band 9 (cirrus) were 
used as inputs following Bechtel et  al. (2015) and Patel 
et al. (2020) to generate the 30-m Austin LCZs map. As 
seasonality strongly impacts vegetation spectral prop-
erties, we have included Landsat 8 imageries in differ-
ent seasons. To minimize the impact of the cloud cover 
blockage, we ensure that all imageries do not have cloud 
cover on the ROI. Three Landsat 8 imageries were used 
(1 Nov 2018, 4 Jan 2019, and 26 Apr 2019). The Landsat 
8 imageries were downloaded from the USGS EarthEx-
plorer: https:// earth explo rer. usgs. gov/

2.2.2  Lidar derived building height data
The building height data were provided by the City of 
Austin in 2017. The raw data provide different build-
ing footprint polygons in the format of shapefiles. Each 
footprint polygon has an attribute value for the average 
height derived from the Lidar Orthoimagery. The poly-
gons were rasterized into 30-m spatial resolution. The 
data were downloaded from the City of Austin GIS Data 
Portal: https:// austi ntexas. app. box. com/s/ 8ah8i tbha7 
u6lis 9eipy pnz5l jvwta 4t.

2.2.3  US national categorical mapping of building heights
The US national categorical mapping of building heights 
dataset (DOI: https:// doi. org/ 10. 5066/ F7W09 416) was 
derived from the Shuttle Radar Topography Mission 
(SRTM) data. SRTM data were acquired during Febru-
ary 11–22, 2000. The C-band Imaging Radar and X-band 
Synthetic Aperture Radar were equipped on the space 
shuttle. The antennas collected signals from the land 

surface at different angles to calculate the surface eleva-
tion. The SRTM data were processed and aggregated into 
different block groups according to census block groups. 
Data were only processed for the continental US. Each 
block group was classified into six classes and contains 
average height information. Data were downloaded from: 
https:// www. scien cebase. gov/ catal og/ item/ 57754 69ce4 
b07dd 077c7 088a.

2.2.4  Global man‑made impervious surface data
The Global Man-made Impervious Surface (GMIS) data-
set (Brown de Colstoun et  al., 2017) was derived from 
the 2010 Global Land Survey Landsat image archive, 
which consists of Landsat 5 Thematic Mapper, Land-
sat 7 Enhanced Thematic Mapper, and Earth Observer 
1 Advanced Land Imaging images. The GMIS data-
set provides a 30-m resolution impervious percentage 
for each grid point globally. The data were downloaded 
from: https:// sedac. ciesin. colum bia. edu/ data/ set/ uland 
sat- gmis- v1.

2.2.5  National land cover database imperviousness data
The National Land Cover Database (NLCD) was devel-
oped by the US Geological Survey (USGS) for the past 
two decades. The imperviousness data were derived from 
Landsat images, IKONOS Space Imaging, and USGS 
National Aerial Photography Program Digital Ortho-
photo Quadrangles using a regression tree algorithm 
(Yang et  al., 2003). The 2019 imperviousness data were 
available in 30-m resolution (Dewitz & U.S. Geological 
Survey, 2021). The data were downloaded from: https:// 
www. mrlc. gov/ data/ nlcd- 2019- perce nt- devel oped- imper 
vious ness- conus.

3  Methodology
This study extends the understanding of various machine 
learning classifiers and input data (Landsat 8 imageries, 
building height, and imperviousness) on the perfor-
mance of urban-type classes using a similar framework 
as WUDAPT. This study used of the Texas Advanced 
Computer Center’s Stampede 2 supercomputer with one 
Indel Xeon Phi 7250 (“Knights Landing”) compute node 
with 68 cores, 1.4 GHz clock rate, and 96 Gb. of tradi-
tional Double Data Rate 4 (DDR4) Random Access Mem-
ory (RAM). We have tested four single-pixel classifiers, 
including K-Nearest Neighbor (KNN), Random Forest 
(RF), Gaussian Naïve Bayes (GNB), and Artificial Neu-
ral Network (ANN), which train and classify each pixel 
separately. In addition, a multi-pixel deep learning clas-
sifier CNN was also tested. CNN takes in the informa-
tion of surrounding pixels for training and classification. 
The best performing single-pixel classifiers and CNN 
were used to further test the performance of different 

https://data.austintexas.gov/Locations-and-Maps/Land-Use-Inventory-Map/pstw-7bkg
https://data.austintexas.gov/Locations-and-Maps/Land-Use-Inventory-Map/pstw-7bkg
https://earthexplorer.usgs.gov/
https://austintexas.app.box.com/s/8ah8itbha7u6lis9eipypnz5ljvwta4t
https://austintexas.app.box.com/s/8ah8itbha7u6lis9eipypnz5ljvwta4t
https://doi.org/10.5066/F7W09416
https://www.sciencebase.gov/catalog/item/5775469ce4b07dd077c7088a
https://www.sciencebase.gov/catalog/item/5775469ce4b07dd077c7088a
https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1
https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-v1
https://www.mrlc.gov/data/nlcd-2019-percent-developed-imperviousness-conus
https://www.mrlc.gov/data/nlcd-2019-percent-developed-imperviousness-conus
https://www.mrlc.gov/data/nlcd-2019-percent-developed-imperviousness-conus
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combinations of the input dataset. The setup consisted 
of four experiments. The first experiment ingested only 
Landsat 8 imageries (LS8), the second used only Landsat 
8 and building height data (LS8 + BH), the third experi-
ment used only Landsat 8 and imperviousness data 
(LS8 + GMIS), and the last one used all Landsat 8, build-
ing height, and imperviousness data (LS8 + BH + GMIS).

All input feature datasets (Landsat 8, building height, 
and imperviousness data) were reprojected and clipped 
into the ROI. To ensure that the dimensions of the input 
datasets were the same, the building height (BH) and 
imperviousness (GMIS) datasets were resampled or 
rasterized into the same grid system as Landsat 8 (LS8) 
imageries. Two BH datasets were tested, including Lidar 
derived dataset (BH_LD) and the US national categori-
cal mapping of building height dataset (BH_C). The Lidar 
datasets are not always available, while the US national 
categorical dataset is available at the national level. 
Showing the value of using this SRTM-derived categori-
cal building height dataset may help extend the training 
accuracy to cities with Lidar data available. Then train-
ing polygons were created using Google Earth (See sec-
tion  3.1). The input features concerning the training 
pixels as identified by the training polygons were passed 
into different machine learning classifiers to train and 
evaluate the models. The optimal classifier was then 

determined using the LS8 imageries only, following the 
guidelines from WUDAPT. The identification of the 
optimal classifier was followed by the evaluation of the 
value of the BH_LD and GMIS. Then, multiple sources 
of urban auxiliary datasets were tested. Lastly, a single-
pass permutation test was done to identify the prominent 
feature in the classifiers. The workflow is summarized in 
Fig. 2).

3.1  Input features preprocessing
LCZ polygons were digitized in Google Earth by con-
structing polygons to bound a relatively homogeneous 
region for each class (Fig. 1b). There are eight urban-type 
classes in Austin (class 1–6, 8, and 9). Polygons of the 
same class should cover different variations, such as dif-
ferent roof colors, building materials, and building spac-
ing. As suggested by WUDAPT, each class should have 
at least five polygons, and each polygon should have a 
size of at least 0.125  km2 (Stewart & Oke 2012). However, 
some classes (class 1, 2, and 4) in Austin were unavail-
able to follow this suggestion. The training polygons were 
applied to all features by extracting the corresponding 
regions of each feature as training and testing data.

There were altogether 411 polygons and 250,434 pixels 
labelled. 70% of the labelled pixels (175,303 pixels) were 
used in the training process for the single-pixel machine 

Fig. 2 A workflow summary for this study
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learning classifier. The rest of the pixels (75,131 pixels) 
were used to test the accuracy of the classification results. 
The 7:3 ratio of training:testing was kept for all classes. 
To avoid bias due to the combination of training and test-
ing sample separation, each classifier was cross-validated 
20 times using various training and testing samples. The 
ensemble of 20 times classification results was evaluated. 
Considering that some classes have fewer samples, those 
classes were upsampled to a similar number of samples 
by duplicating the samples multiple times.

The training polygons preprocessing processes for 
CNN are slightly different from the other single-pixel 
machine learning classifiers. First, the input features 
bounded by the polygons were extracted in the same way. 
Second, the extracted features were trimmed into patches 
of 5 by 5 pixels, and the surroundings were padded as 
zeros if the patches were not perfectly trimmed into 5 by 
5. Third, the class with fewer patches were also upsam-
pled. Fourth, these patches were separated into training 
and testing using the 7:3 ratio for 20 times with different 
training and testing splitting combinations. Then, each 
patch in both training and testing was rotated for  90o, 
 180o, and  270o to improve the training dataset’s diversity 
without increasing the training samples (see Fig. 3).

The evaluation of the machine learning classifiers was 
first done using the Landsat 8 imageries only. Then, the 
best single-pixel classifier and CNN were selected to 
evaluate the value of including the building height and 
imperviousness dataset.

3.2  Machine learning classifier selection
The optimal machine learning model was first selected 
by using the LS8 only. The machine learning classifi-
ers tested include the single-pixel classifiers: K-Nearest 
Neighbor (KNN), Random Forest (RF), Gaussian Naïve 
Bayes (GNB), and Artificial Neural Network (ANN), and 
multi-pixel classifier: CNN. For the KNN classifier, 5, 
10, and 15 nearest neighbor were tested. In addition, 10, 
25, 50, and 100 trees were tested with the RF classifier. 
RF models (Fig. 4a) were trained with bootstrap samples, 
and the trees’ depths were expanded until all leaves were 
pure  (i.e. children nodes contain only one result). GNB 
was tested by assuming the likelihoods are Gaussian.

Many more parameters need to be tested for the ANN 
classifier (Fig. 4b). The “Optuna” package in python was 
used to select the optimal combination of the activation 
functions (including rectified linear unit, sigmoid, soft-
max, softplus, softsign, hyperbolic tangent, scaled expo-
nential linear unit, and exponential linear unit), number 
of layers (ranging from 2 to 10 hidden layers), and num-
ber of nodes (ranging from 12 to 66). To avoid overfitting, 
25% of the nodes in each layer were randomly turned off. 
The selected ANN model configuration was as follows: 
hyperbolic tangent activation function, seven hidden lay-
ers, the numbers of nodes were 57, 34, 48, 45, 32, 59, and 
57, respectively.

For the CNN classifier (Fig. 4c), four convolution layers 
with 5 × 5 kernel size and 128 nodes were included. The 
rectified linear unit was used as the activation function 
in each convolution layer. Then, a 2x2 max pooling was 

Fig. 3 Framework for generating CNN inputs by rotating samples
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Fig. 4 The architecture of a random forest (RF), b artificial neural network (ANN), and c convolution neural network (CNN) classifier used in this 
study. Red circles in ANN and CNN denote the dropout nodes
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used with padding the output with zeros at the surround-
ing to maintain the output at a size of 5 × 5. A 25% drop-
out  nodes was used in each convolution layer to avoid 
overfitting. Finally, the softmax activation function was 
used for the fully connected layer at the end to convert 
the output of maximum probability as the final class.

3.3  Single‑pass forward permutation test
The single-pass forward permutation test was used to 
evaluate the relative importance of the input feature in 
altering the outcome, following  the idea introduced by 

Breiman (2001). The importance of the input feature was 
measured by evaluating the accuracy metrics reduction 
after random shuffling to cause a mismatch between the 
input features and the labels. Only one feature was shuf-
fled each time. First, the classifier (F) was trained using 
the whole input features matrix (X) contains all features 
(xj). Second, the F1-score and the area under the receiver 
operating characteristics (ROC) curve (AUROC) were 
used as the evaluation metrics (m).

The metrics were calculated as follows:

where TP is true positive, FP is false positive, TN is true 
negative, and FN is false negative. A ROC curve is con-
structed by the relationship of TPR (eq.  5) against FPR 
(eq.  6) for a classifier with various parameters. AUROC 
has a range from 0.5 to 1.0, which 1.0 indicates the clas-
sifier has good performance. Third, each feature (xj) was 
shuffled each time to create a permuted input feature 

(1)m = F(X)

(2)Precision = TP/(TP + FP)

(3)Recall = TP/(TP + FN )

(4)F1 score =
(

Recall−1
+ Precision−1

)

−1/2

(5)True positive rate (TPR) = TP/(TP + FN )

(6)False positive rate (FPR) = FP/(FP + TN )

Fig. 5 The evaluation indices (macro‑ and micro‑average of precision, recall, F1‑score, and AUROC) for different machine learning classifiers. Solid 
(stripe) shading indicates the macro‑(micro‑) averaged indices

Table 2 The computational efficiency for different machine 
learning algorithms in preprocessing, training, validating, and 
classifying

Classifiers Preprocess 
(s)

Training time 
(s)

Validation 
time (s)

Classification 
time (s)

KNN‑5 590.7 303.1 685.5 >100,000

KNN‑10 590.7 280.5 784.8 >100,000

KNN‑15 590.7 289.2 846.7 >100,000

RF‑10 590.7 65.4 2.7 46.1

RF‑25 590.7 162.3 4.8 112.3

RF‑50 590.7 323.7 8.3 217.8

RF‑100 590.7 660.8 15.3 432.3

GNB 590.7 1.0 3.5 58.3

ANN 590.7 937.1 18.7 973.0

CNN 10,469.0 532.6 7.7 83.8
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matrix ( Xperm
j  ), and the new evaluation metrics were cal-

culated ( mperm
j  ; eq. 7). The metric losses (Lj; eq. 8) were 

calculated and ranked to evaluate the importance of each 
feature (xj).

(7)m
perm
j = F

(

X
perm
j

)

(8)Lj = m−m
perm
j

Fig. 6 The evaluation indices (macro‑ and micro‑average of precision, recall, F1‑score, and AUROC) for different input datasets using a RF100 and b 
CNN classifier. Solid (stripe) shading indicates the macro‑(micro‑) averaged indices

Fig. 7 The confusion matrix of the urban‑type classes from RF100 classifier using a LS8, b LS8 + BH_LD, c LS8 + GMIS, and d LS8 + BH_LD + GMIS 
input dataset
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4  Results
4.1  Performance of machine learning classifiers
The KNN, RF, GNB, and ANN classifiers carry out 
training and classification for every pixel individually. 
The CNN takes in 5 x 5 pixels and produces output at a 
spatial resolution of twenty-five times coarser than the 
input. Therefore, we have separated the classifiers into 
two different sets: single-pixel and multi-pixel classifi-
ers. The best model in single-pixel and CNN classifiers 
were selected. Multiple indices were used to evaluate the 
classification accuracy performance: precision, recall, 
F1-score, and AUROC.

Each index can be calculated as either micro- or 
macro-average. Every individual sample was weighted 
the same in the micro-average method, while the macro-
average method weighted every class equally. Therefore, 
the sample imbalance between classes does not affect 
macro-average indices. Austin has a small commercial 

center, which makes it impossible to create many train-
ing samples for the compact high-rise and compact mid-
rise classes compared to the open low-rise class. Hence, 
sample imbalance is an issue, and macro-average indices 
should be considered when there are inconsistent results 
with micro-average indices.

Fig.  5 summarizes the indices of different machine 
learning classifiers using only the LS8 inputs. Within 
the KNN experiments, the macro-averaged (solid 
green bars) recall and F1-score show that 5-neigh-
bors (KNN5) has better performance. In contrast, 
the macro-averaged precision and AUROC show that 
15-neighbors (KNN15) performed the best, not giving 
a consistent result about the best KNN classifier. All 
micro-averaged indices (stripe green bars) show that 
5, 10, and 15-neighbors KNN did not significantly dif-
fer from each other (lee than 0.01 difference). In the 
RF experiment, both macro-averaged (solid blue) and 

Fig. 8 The a Google Earth image, b RF100 with LS8 as input, c RF100 with LS8 and BH_LD as input, and d RF100 with LS8, BH_LD, and GMIS as 
input at the Texas Memorial Stadium
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micro-averaged (stripe blue) indices also show that 
increasing the ensemble trees from 10 to 25 gives the 
greatest improvements (Precision: 0.041, Recall: 0.074, 
F1-score: 0.013, AUROC: 0.027). The improvement 
from 25 ensemble trees to 100 trees was weaker (Preci-
sion: 0.019, Recall: −0.005, F1-score: -0.004, AUROC: 
0.013). Overall, the greater number of ensemble trees 
still performed better with higher AUROC. GNB per-
forms better when the classes are well-separated. How-
ever, urban classes are often not well-separated due to 
the similar spectral properties between classes, such 
as roof colors. Therefore, the GNB model (red bars in 
Fig.  5) performed the worst among all models. Over-
all, the RF classifiers with 100 ensemble trees (RF100) 
performed the best among the single-pixel classifiers, 
with F1-score and AUROC 15% and 1% higher than 

KNN15, respectively. The only multi-pixel classifier 
used in this was CNN (brown bars in Fig.  5), which 
performed significantly better than RF100 in all indi-
ces, F1-score, and AUROC are 14% and 1% higher than 
RF100, respectively.

The computational time for each algorithm was sum-
marized in Table 2. The RF classifiers take less time (less 
than 30 minutes) than the KNN and ANN classifiers for 
the whole classification process. Although GNB used the 
least time for classification, the accuracy is too low com-
pared with other classifiers. The CNN algorithm takes 
most of the time in the preprocessing stage when trim-
ming samples into patches and rotating samples occurs, 
while the classification and training time is about 10 min-
utes. Therefore, the RF and CNN classifiers were selected 
for further analysis.

Fig. 9 The a Google Earth image, b RF100 with LS8 as input, c RF100 with LS8 and BH_LD as input, and d RF100 with LS8, BH_LD, and GMIS as 
input at the Northlake Hills
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4.2  Performance of different datasets in RF100
After selecting the RF100 and the CNN classifiers, the 
effect of urban auxiliary datasets (BH_LD and GMIS) 
were evaluated (Fig. 6). Considering the random forest 
classifier (Fig.  6a), the precision, recall, F1-score, and 
AUROC also show a higher score after adding either 
urban auxiliary datasets or both as the input features. 
The macro-averaged indices show that including build-
ing height has slightly more improvement (F1-score: 
1.93%; AUROC: 0.101%) than imperviousness 
(F1-score: 0.985%; AUROC: 0.101%). While the micro-
average indices show including imperviousness feature 
has more significant improvement (F1-score: 0.110%; 
AUROC: 0.101%) than the building height feature(F1-
score: 0.989%; AUROC: 0.201%) dataset. The results 
show that including both urban auxiliary datasets 
have the best performance with the macro-averaged 
F1-score and AUROC improvement of 3% and 0.3%, 
respectively, compared with using Landsat 8 as the only 
input feature. This can be explained by the confusion 
matrix normalized by predicted labels (Fig. 7).

A significant improvement of the building height 
dataset was found in high-rise urban classes. LCZ 1, 

2, and 4 also experienced a 0.04 increment of accuracy 
(see Fig.  7a and b). Figure  8 shows an example of the 
Texas Memorial Stadium that was misclassified as the 
large low-rise (class 8) when using LS8 only as the input 
feature (Fig. 8b) or LS8 + GMIS (Fig. 8d). However, by 
including the building height dataset (Fig.  8c and 5e), 
the stadium was regarded as mid- and high-rise class. 
The mid- and high-rise buildings have highly variable 
building heights. Therefore building height data can 
provide extra vertical information to distinguish mid- 
and high-rise from the low-rise.

On the other hand, imperviousness feature improves 
low-rise classes. Class 6, 8, and 9 also had 0.01–0.02 
accuracy improvement (see Fig. 7a and Fig. 6c). Figure 9 
shows an example at the Northlake Hill, LS8 (Fig.  9b) 
and LS8 + BH_LD (Fig. 9c) experiments misclassified the 
sparely built class (class 9) into open low-rise (class 6), 
while LS8 + GMIS (Fig.  9d) and LS8 + BH_LD + GMIS 
(Fig.  9e) experiments captured most sparsely built class 
(class 9). The low-rise classes have much more uniform 
building height, making the BH_LD dataset indistin-
guishable. GMIS data can provide extra information 

Fig. 10 The confusion matrix of the urban‑type classes from the CNN classifier using a LS8, b LS8 + BH_LD, c LS8 + GMIS, and d LS8 + BH_
LD + GMIS input dataset
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for the impervious materials coverage to differentiate 
between open and more compact classes.

Hence, the LS8 + BH_LD + GMIS experiment per-
forms best in all indices (Red; Fig.  6a). The confusion 
matrixes show that LS8 + BH_LD + GMIS (Fig. 7d) could 
inherit most of the advances brought by the building 
height and imperviousness datasets. The performance 
of class 1, 2, 5, 6, 8, and 9 also improved compared to 
the conventional LS8 only (Fig.  7a). However, class 1 
and 2 performed poorer than the other classes due to 
less training and testing samples (Fig.  7a). The macro-
average indices weigh each class equally. Hence, the 
poor performance of class 1 and 2 weighs more in the 
macro-average indices than the micro-averaged indices. 
Therefore, macro-averaged indices were comparatively 
lower than micro-averaged indices. At the same time, the 
smaller sample size for class 1 and 2 could lead to a more 

substantial improvement due to building height than the 
imperviousness feature shown in Fig. 6a.

4.3  Performance of different datasets in CNN
The macro-averaged (Fig.  6b solid shading) and micro-
averaged indices (Fig.  6b stripe shading) also show that 
building height and imperviousness data could improve 
the classification performance. In addition, the macro-
averaged show that building height data could offer a 
more significant performance improvement than the 
imperviousness data. This feature can be noted in the 
substantial magnitude of improvement for class 1 includ-
ing building height feature, with a 0.14 increment (see 
Fig.  10b). At the same time, LS8 + GMIS (Fig.  10c) and 
LS8 + BH_LD + GMIS (Fig.  10d) only improves by 
0.04 and 0.02, respectively. At the same time, the num-
ber of samples for class 1 was the least among all LCZs. 
Therefore, the building height feature  only improves 

Fig. 11 The a Google Earth image, b CNN with LS8 as input, c CNN with LS8 and BH_LD as input, and d CNN with LS8, BH_LD, and GMIS as input at 
the eastern Cedar Park



Page 14 of 20Fung et al. Computational Urban Science            (2022) 2:16 

significantly more than the imperviousness feature in the 
macro-indices.

Figure  11 show a class 3 (compact low-rise) region in 
eastern Cedar Park, LS8 (Fig.  11b), which cannot cap-
ture the compactness and misclassify into class 6 (open 
low-rise). While including either or both building height 
and imperviousness data can also help capture the com-
pactness. Compared with RF100, BH_LD (GMIS) dataset 
improves high-rise (low-rise) classes in CNN as CNN has 
convolution layers that take multi-pixels information for 
a single sample. Therefore, the compactness information 
was contained even when  only considering the building 
height dataset.

The macro- and micro-indices did not show consensus 
about the choices of different dataset combinations to 
increase accuracy. Therefore, the only robust conclusion 
that can be made is that the classification accuracy can 
be improved by including either one or both the urban 
auxiliary datasets (BH_LD and GMIS).

The product of the LCZs map for Austin using LS8 
imageries with building height and imperviousness 

with RF100 and CNN classifiers are shown in Fig.  12. 
Also, Fig. 13 shows the ground-level photos for each class 
in Austin, which can help validating the accuracy of clas-
sification results. Austin only contains urban class 1–6, 8, 
and 9. The high-rise classes (class 1 and 4) were found in 
the downtown area, located north of the Colorado River. 
The mid-rise classes (class 2 and 5) were situated north of 
the downtown area. The low-rise classes (class 3 and 6) 
were the dominant classes, which spread across Austin. 
The large low-rise class (class 8) was found at the sideway 
of the main roads. The sparsely built class (class 9) was 
found at the periphery of Austin. The coverage of each 
urban class from each classifier is summarized in Table 3. 
Both classifiers also show that Austin is covered mainly 
by urban class 6 (~ 30%), 8 (~ 10%), and 9 (~ 40–50%).

4.4  Performance comparison with the LCZ Generator
The LCZ Generator developed by Demuzere et  al. 
(2021) has the advantage of generating LCZ maps  rap-
idly and easily. Users are only required to pass the train-
ing polygons into the generator, and the LCZ map will be 

Fig. 12 The LCZ products derived from a RF100 and b CNN classifier using LS8 + BH_LD + GMIS dataset
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generated in about 20 minutes. We compared the results 
from the LCZ Generator with this study. The identical 
training polygons used in this study were passed into the 
generator, and the product was shown in Fig.  14 (Fung 
2022). The map generated by both processes is similar, at 
the center of Austin. However, the LCZ Generator mis-
classified some regions of open low-rise into sparely built 
at the periphery in southwestern Austin (see Figs. 12 and 
14). The overall accuracy was used as the identical met-
ric for both products, which is defined as the sum of true 
positives and true negatives divided by the number of 
samples. The accuracy for all classes from the LCZ Gen-
erator is 0.81 and 0.82 for urban classes, while the ran-
dom forest classifiers using both urban auxiliary datasets 
in this study is 0.92 and 0.88, respectively. In conclu-
sion, the methodology in this study has the advantage of 
accuracy and flexibility for incorporating urban auxiliary 

Fig. 13 The ground‑level photos of each urban LCZ class in Austin

Table 3 Percentage coverage of urban LCZ classes in Austin 
classified by RF 100‑trees and CNN

Urban classes Coverage (RF 100‑trees) (%) Coverage 
(CNN) 
(%)

1 0.02 0.04

2 0.04 0.07

3 4.79 6.12

4 0.01 0.02

5 0.33 0.80

6 33.52 35.63

8 10.38 14.00

9 50.91 43.33
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datasets. In contrast, the LCZ generator has the advan-
tage of quickly and easily generating an LCZ map.

4.5  Performance of different building height dataset
As the availability of building height lidar (BH_LD) data 
is limited across the world and the US. The BH_C was 
tested to evaluate its value in improving classification 
results. Figure 15 shows that BH_C has a slightly higher 
value in all evaluation metrics (precision, recall, F1-score, 

and AUROC) than BH_LD. This confirms the impor-
tance of BH_C in improving the classification accuracy 
even building height lidar data are unavailable.

4.6  Performance of different imperviousness dataset
The most recent global imperviousness dataset GMIS 
used in this study is limited to 2010. Therefore, a more 
recent US national dataset NLCD in 2019 was tested with 
20 cross-validation results. Figure  16 shows that NLCD 

Fig. 14 The LCZ map derived from LCZ Generator

Fig. 15 The macro indices (precision, recall, F1‑score, and AUROC) for different BH datasets, BH_LD (red) and BH_C (blue) using RF100 (solid fill) and 
CNN (checked fill) classifier
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has a slightly higher value in all evaluation metrics (preci-
sion, recall, F1-score, and AUROC) for the random forest 
classifier, while the impact on the CNN classifier is insig-
nificant. This confirms that the more recent impervious-
ness can improve classification accuracy. However, the 
NLCD dataset is only available in the US. Based on the 
location of interest, including the GMIS dataset can still 
provide a significant improvement for cities located out 
of the US.

4.7  Importance of input features
The single-pass forward permutation test permutes 
one feature at a time to see the F1 score and AUROC 
decline. The more significant decline indicates a more 
important feature in governing the LCZ classification 
accuracy. Figure  13 shows the overall magnitude of 
F1-score and AUROC decline from both the CNN and 
RF classifier and building height datasets (BH_LD and 
BH_C). The results from both building height datasets 
did not show significant differences in both classifiers 
and evaluation metrics. Furthermore, the comparison 
between F1-score and AUROC metrics decline also 
shows similar results.

In the CNN classifier (Fig.  17a and b), Band 5 (near-
infrared) dominate the metrics decline, followed by 
Band 10 and 11 (thermal infrared). Building height and 
imperviousness rank after Band 6. This indicates that the 
characteristic temperature pattern from different urban 
land uses governs more than the building height and 
impervious coverage pattern in the CNN classification 
results. Building height and imperviousness dominate 

the metrics decline in the RF classifier (Fig. 17c and d), 
followed by Band 10 and 11. This highlights that build-
ing height and imperviousness have a strong influence 
on improving the LCZ classification results in the RF 
algorithm.

Comparison between the CNN and RF classifiers show 
that the overall magnitude decline in CNN is higher than 
RF. This indicates that the RF is more stable than the 
CNN. The number of samples difference could contrib-
ute to this. Both classifiers use the same pixels for train-
ing and testing. However, CNN required samples to be 
grouped into 5 × 5 pixels, which decreased the number 
of samples by ~25 times.

5  Conclusion
This study used a hybrid framework that ingests urban 
GIS datasets and remote sensing to systematically com-
pare and evaluate different machine learning classifiers 
and urban auxiliary datasets. The CNN classifier has 
the relatively  best performance among different clas-
sifiers, but the product has a coarser spatial resolution 
and requires a larger sampling size. In our study, the 
CNN classifier produces the LCZ map that has 25-times 
coarser spatial resolution than the other classifiers. This 
study also evaluated the best classifier using single-pixel 
input, the random forest with 100 ensemble trees.

Our results show that the building height dataset 
can substantially  enhance the classification perfor-
mance of mid-rise and high-rise classes. At the same 
time, the imperviousness data can improve the low-rise 
classes in the random forest classifier. Furthermore, the 

Fig. 16 The macro indices (precision, recall, F1‑score, and AUROC) for different imperviousness datasets, GMIS (orange) and NLCD (blue) using 
RF100 (solid fill) and CNN (checked fill) classifier
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single-pass forward permutation test shows that build-
ing height and imperviousness are the most critical 
features in determining LCZ classes. Removal of these 
two features results in the most significant decline in 
F1-score and AUROC.

Lidar-derived building height dataset may not be 
available to every city. Therefore, a satellite-derived 
building height dataset was also evaluated. The US 
national categorical mapping of building heights data-
set, which is available throughout the continental US, 
also shows the ability to improve LCZ classification 
performance. Even though the US national categori-
cal mapping of building height is only available in the 
continental US, the WUDAPT framework can be easily 
improved by including the imperviousness data.

The study can serve as a guide for advancing the 
WUDAPT classification framework by using CNN and/
or including urban auxiliary datasets. This framework 
can be applied to different cities for generating LCZ 
maps for urban models.
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