
PEARLS

The entanglement between flaviviruses and

ER-shaping proteins

Maaran Michael RajahID
1,2, Blandine MonelID

1☯*, Olivier SchwartzID
1,3☯*

1 Institut Pasteur, Virus and Immunity Unit, CNRS-UMR3569, Paris France, 2 Ecole Doctorale Bio Sorbonne
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Love at first site: The endoplasmic reticulum and Flavivirus

replication

The endoplasmic reticulum (ER) is a continuous intracellular membrane system that com-

poses the nuclear envelope and radiates out to the peripheries of the cell, transitioning from

ribosome-studded, flat cisternal sheets to highly curved reticulated tubules. It has been impli-

cated in a diverse array of cellular functions, including production, trafficking, and degrada-

tion of proteins; synthesis and distribution of lipids and steroids; calcium sequestration and

release; cell signaling and innate immunity; carbohydrate metabolism; and detoxification of

harmful substances [1]. Such a ubiquitous and functionally versatile organelle is parasitized by

viruses in order to facilitate their life cycle. Rotavirus, vaccinia virus (VV), hepatitis C virus

(HCV), as well as members of the Flavivirus genus—dengue virus (DENV), West Nile virus

(WNV), yellow fever virus (YFV), and Zika virus (ZIKV)—are all intimately associated with

the ER [2]. The flaviviruses replicate on the ER membranes and form immature viral particles

that bud into the ER lumen. These particles are then trafficked through the ER–Golgi network

and undergo a maturation process brought about by pH alteration and cleavage by the host-

protease Furin. This viral takeover of the ER requires the co-opting of cellular proteins as well

as the active remodeling of the ER membrane to create a cellular environment more conducive

to replication [3]. Several ER proteins have been identified as host factors in flavivirus replica-

tion [4], but a class of resident proteins that shape and maintain the dynamic ER architecture

are of particular interest. These “ER-shaping” proteins could potentially serve as host factors

that support viral replication or restriction factors that protect the ER. Interactome and

CRISPR screens have produced somewhat discordant results, but the less stringent screens

suggest that ER-shaping proteins may be targets of viral proteins [5] [6] [7]. This Pearl review

will explore the virus-induced ER-membrane rearrangement and the relationship between

ER-shaping proteins and the flavivirus life cycle.

Virulent and manipulative passions: Virus-induced manipulation to

the ER structure

Virus-induced morphological changes to the ER membrane are brought about by active

restructuring facilitated by interactions between viral proteins and host factors. The functional

benefits of membrane alterations include the spatial compartmentalization of the viral-replica-

tion machinery—increasing the accessibility and concentration of necessary host factors—pro-

tection from the innate immune response, and the possibility of increased viral spread [3] [8].

The characteristics of the replication-supporting ER-membrane structures differ between

viruses. HCV forms a “membranous web” and double-membrane vesicles, and VV
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manipulates the ER into wrapping around the cytosolic site of viral-DNA replication [9] [10].

Flaviviruses form invaginations in the ER referred to as vesicle packets (VPs), which are clus-

ters of vesicle membranes housing the viral-replication machinery [3] [11] [12] [13] [14].

Immature flavivirus virions form paracrystalline arrays within the ER lumen [11]. In some cell

types, flaviviruses also form convoluted membranes (CMs), which are potential sites for the

translation and processing of viral proteins [3] [11] [12]. Interestingly, ZIKV infection in cer-

tain cell types produces large ER-derived vacuoles, which are followed by an implosive cell

death (Fig 1A) [8]. Several Flavivirus proteins and host factors (i.e., reticulophagy factor

FAM134B [15]) have been implicated in the ER-modification process. Of recent interest are

ER-shaping proteins, that can be operationally subdivided into proteins that help form the

structure and curvature of the ER and fusogens that maintain the reticulated ER network.

Curvy and sturdy: ER curvature-stabilizing proteins and virus

interactions

The class of ER-shaping proteins labeled as curvature-stabilizing proteins are subdivided into

two families, the receptor expression-enhancing protein (REEP)/DP1/yop1p and the reticu-

lons [1]. The REEPs are a family of six proteins that interact with microtubules through an

extended C-terminal cytoplasmic domain. By facilitating the association of the ER membrane

to cytoskeletal dynamics, they provide the mechanics necessary to extend ER tubules, as well

as to form the positive curvature of the ER membrane [16] [1]. Mutations in the REEP1 pro-

teins are associated with hereditary spastic paraplegias (HSP), a family of inherited neurologi-

cal disorders characterized by spastic weakness in the extremities, which is partly reminiscent

of symptoms induced by neurotropic flaviviruses [1] [16]. The effect of the REEP family on fla-

vivirus replication has not been thoroughly explored, with one investigation reporting that the

depletion of REEP1 does not affect DENV replication [17].

Fig 1. Microscopy images of ZIKV-infected HeLa Cells 24 hours after infection. (A) Electron micrograph of ER-derived vacuoles in a ZIKV-infected

cell. (B) Confocal microscopy image showing the colocalization (yellow/orange) of ER-shaping protein ATL3 (green) with the ZIKV protein NS3 (red).

ATL3, Atlastin-3; ER, endoplasmic reticulum; NS3, nonstructural protein 3; ZIKV, Zika virus.

https://doi.org/10.1371/journal.ppat.1008389.g001
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The reticulon family consists of four (Reticulon 1 [RTN1] to RTN4) membrane-bound pro-

teins that contain hydrophobic domains occupying the outer leaflet of the ER membrane. The

resultant hydrophobic wedging, and possibly the scaffolding and protein–protein crowding

formed by reticulon oligomers, contributes to the curvature of the ER membrane [1]. Several

studies have identified reticulons as host factors in viral replication; Enterovirus 71 protein 2C

and brome mosaic virus protein 1a both interact with RTNs to facilitate replication [18] [19].

Contrarily, RTN3 acts as a restriction factor in HCV replication by preventing nonstructural

protein 4A (NS4A) self-interaction [20].

DENV, WNV, and ZIKV recruit RTN3.1A to the viral-replication site [21]. RTN3.1A

depletion reduces viral titers and decreases viral RNA and protein levels [21]. The RTN3.1A

colocalizes with the NS4A proteins of DENV, ZIKV, and WNV, but it only directly interacts

with WNV NS4A via its N-terminal transmembrane domain (Fig 2A) [21]. The expression of

WNV and DENV NS4A alone is sufficient to induce ER rearrangements [22] [23]. Depletion

of RTN3.1A differentially alters the formation of the ER-derived replication organelles

between flaviviruses. In ZIKV-infected and WNV-infected cells, there is a noticeable decrease

in the amount of vesicle membranes present per VP (Fig 2C) [21]. While amount of vesicle

membranes per VP was not altered in DENV-infected cells, their morphology became more

elongated (Fig 2C), and there was an increase in immature viral particles upon RTN3.1A

depletion (Fig 2C) [21]. Overall, while RTN3.1A may differently influence the life cycle of spe-

cific flaviviruses, it interacts with viral proteins and induces morphological changes to the ER

in order to promote replication.

Together at-last-in each other’s embrace: Virus interaction with the

atlastin fusogens

The atlastins (ATLs) are a family of three membrane-bound, dynamin-related guanosine tri-

phosphate (GTP)ases that mediate the construction of the reticulated ER network. The hydro-

lysis of GTP dissociates cis-membrane dimers and supports the tethering and dimerization

with ATLs situated on a different ER membrane [24]. The homotypic fusion of ER membranes

results in the formation of three-way junctions, shaping the smooth ER into an intricate and

dynamic web of tubules. The depletion of ATL reduces the density of the ER network [25], and

mutations in ATLs are also associated with HSP. In addition to their role as an ER-shaping

protein, ATLs also influence protein targeting to the inner nuclear membrane and the biogen-

esis of nuclear pore complexes, regulate lipid droplet size, and facilitate selective autophagy

[26] [27] [28]. Thus, ATLs could potentially be expedient host factors for several pathogens. A

previous study implicated ATL3 in remodeling the ER to promote the formation of vacuoles

that facilitate the intracellular replication of Legionella pneumophila [29].

Two recent investigations examined the relationship between the three ATLs and different

flaviviruses and found varying effects based on the virus [17] [30]. Silencing ATL2 resulted in

a significant reduction of DENV, WNV, and ZIKV titers and viral RNA [17]. ATL2 depletion

affected formation of ER-derived DENV-replication organelles, distorting the size and shape

of the vesicles and condensing them into a small perinuclear region (Fig 2D) [17]. The deple-

tion of ATL3 reduced the titers of ZIKV and DENV (but not WNV) and had no effect on

viral-RNA levels [17] [30]. ATL3 depletion did not change the morphology of the DENV-

induced vesicles but resulted in an increased accumulation of intracellular viral particles in the

ER lumen (Fig 2D) [17]. The GTPase function of ATLs is important for DENV and ZIKV rep-

lication [30] [17].

The different ATL proteins exhibit variation in their interaction with flavivirus proteins.

ATL3 relocates to the ZIKV-replication site and directly interacts with nonstructural protein 3
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(NS3; Fig 1B) and NS2B3, that belong to the viral-replication complex (Fig 2B) [30]. Both

ATL2 and ATL3 interact with DENV NS3, NS5, and NS2B proteins, though interactions with

ATL2 are relatively weak (Fig 2B) [17]. DENV NS1 protein and the envelope and capsid pro-

teins also interact with ATL3 (Fig 2B) [17]. ATL3 is recruited to DENV-replication organelles

and is enriched in the membrane-surrounding virions, but it is not necessarily associated with

the site of viral-RNA replication [17]. In DENV-infected cells, ATL3 interacts with ADP-ribo-

sylation factor 4 (ARF4), a protein that is associated with trafficking of proteins and vesicle

processing [17]. Depletion of AFR4 and the related ARF5 protein impairs DENV assembly

and release. The depletion of ATL3 results in the relocalization of Furin from the perinuclear

region to the cell periphery (Fig 2D), suggesting that ATL3 may play a role in providing imma-

ture viral particles access to Furin (Fig 2D) in addition to a potential direct role on assembly

and trafficking of viral particles [17]. Overall, these studies show that ATL3 is associated with

Fig 2. The relationship between ER-shaping proteins and flaviviruses during infection. A simplified schematic showing the interaction between different flavivirus

proteins and ER-shaping proteins: (A) RTN3.1A and (B) ATL2 (left) and ATL3 (right). (C) Depleting RTN3.1 results in elongated RCs in DENV-infected cells and fewer

RCs per VP in WNV-infected and ZIKV-infected cells. (D) Depleting ATL2 (left) results in VPs that are smaller, distorted, and condensed but does not change the overall

number of VPs, whereas ATL3 depletion results in the host-protease Furin relocating from the perinuclear region to the cell periphery and accumulation of immature

virus particles in the ER lumen. Immature virus particles are represented smaller than they would be in relation to VPs. ATL2, Atlastin-2; ATL3, Atlastin-3; DENV,

dengue virus; ENV, envelope; ER, endoplasmic reticulum; NS1, nonstructural protein 1; RC, replication complex; RTN3.1A, Reticulon 3.1A; VP, vesicle packet; WNV,

West Nile virus; ZIKV, Zika virus.

https://doi.org/10.1371/journal.ppat.1008389.g002
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the cytoplasmic transport of vesicles and is intimately involved with flavivirus assembly and

maturation [17].

Happily, ever after: How the future could shape out

ER-shaping proteins impact the life cycle of flaviviruses by interacting with viral proteins,

influencing viral assembly and maturation and promoting the formation of ER-derived facto-

ries. Future investigations could examine the role of other ER-shaping proteins including Spas-

tin, Lunapark, and other REEP proteins that are involved in the regulation of ER shape

through microtubule dynamics, stabilization of three-way ER tubular junctions, and formation

and stabilization of the ER curvature, respectively. It will be worth investigating if ER-shaping

proteins are involved in ZIKV-induced cytoskeleton modifications [12] and the formation of

vacuoles to understand if these proteins are related to ER stress, innate sensing of infection,

and viral replication [30] [8] [29]. The interplay between different ER-shaping proteins [31]

within the context of viral infection is also of potential interest. Finally, since mutations in sev-

eral of the ER-shaping proteins are associated with inherited neurological complications, it

would be interesting to determine if they are implicated in the pathology induced by neuro-

tropic flaviviruses in relevant cell and animal models [32].
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