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Explosive or Continuous: 
Incoherent state determines the 
route to synchronization
Can Xu1, Jian Gao1, Yuting Sun1, Xia Huang2 & Zhigang Zheng1

Abrupt and continuous spontaneous emergence of collective synchronization of coupled oscillators 
have attracted much attention. In this paper, we propose a dynamical ensemble order parameter 
equation that enables us to grasp the essential low-dimensional dynamical mechanism of 
synchronization in networks of coupled oscillators. Different solutions of the dynamical ensemble 
order parameter equation build correspondences with diverse collective states, and different 
bifurcations reveal various transitions among these collective states. The structural relationship 
between the incoherent state and the synchronous state leads to different routes of transitions to 
synchronization, either continuous or discontinuous. The explosive synchronization is determined by 
the bistable state where the measure of each state and the critical points are obtained analytically 
by using the dynamical ensemble order parameter equation. Our method and results hold for 
heterogeneous networks with star graph motifs such as scale-free networks, and hence, provide 
an effective approach in understanding the routes to synchronization in more general complex 
networks.

Understanding the intrinsic microscopic mechanism of collective behavior of populations of coupled 
units has become a focus in a variety of fields, such as biological neurons circadian rhythm, chemically 
reacting cells, and even society systems1–7. In particular, the abrupt transition to spontaneous collective 
synchronization in Kuramoto-like networked oscillators has attracted much attention in the last decade. 
For example, it was reported that a particular realization of a uniform natural frequency distribution 
of oscillators with an all-to-all network topology leads to a discontinuous first-order phase transition 
to synchronization8. Furthermore, when the frequencies of nodes are positively correlated to the node’s 
degrees, an abrupt transition from the incoherent state to the synchronization in heterogenous networks 
takes place9. Such a phenomenon of the first-order phase transition was termed as explosive synchroniza-
tion in literature, and this explosive synchronization has been observed in frequency-weighted networks, 
and electronic circuits10,11. Numerous efforts have been made to understand the explosive synchroniza-
tion from different viewpoints such as the topological structures of networks and coupling functions 
among nodes11–16. Some significant analytical works were reported to investigate the mechanism of the 
first-order phase transition to synchronization based on the mean-field theory17,18. The fact that the key 
point in understanding the discontinuous synchronization transition is the analysis of the multi-stability 
of miscellaneous synchronous attractors in phase space, for example the hysteretic behavior at the onset 
of synchronization19. However it is difficult to get an analytical insight in a high-dimensional phase space, 
and a convincing understanding is still lacking.

It is our motivation in this paper to reveal the mechanism of synchronization transition, especially 
the explosive synchronization in networks with a star motif by analyzing in a low-dimensional com-
plex ensemble order parameter space in terms of the Ott-Antonsen method. Different solutions of the 
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dynamical ensemble order parameter equation build correspondences with diverse collective states, and 
different bifurcations reveal various transitions among these collective states. The structural relation-
ship between the incoherent state and the synchronous state leads to different routes of transitions to 
synchronization, either continuous or discontinuous, the explosive synchronization is a touchstone in 
testifying our approach. We reveal that the explosive synchronization is attributed to the coexistence of 
the incoherent state either stable or neutrally stable and the attracting synchronous state. The hysteresis 
is determined by the basin of attraction of bistable state where the measure of each state and the critical 
points are obtained analytically by using the dynamical ensemble order parameter equation. The scenario 
is further applied to discussions of the first-order phase transition in generic scale-free networks.

Results
Star network without phase shift. In a heterogeneous network, such as a scale-free network, hubs 
play a dominant role. Hence a star motif with a central hub is a typical topology in grasping the essential 
property of the heterogeneous networks. By keeping oscillators on K leaf nodes with the same frequency 
ω and the hub with ωh, the equations of motion can be written as

( )∑θ ω θ θ= + λ − ,
( )=

 sin
1

h h
j

K

j h
1

( )θ ω θ θ= + λ − , ( ) sin 2j h j

where 1 ≤  j ≤  K, θh, θj are phases of the hub and leaf nodes, respectively, λ  is the coupling strength. By 
introducing the phase difference ϕj =  θh −  θj, Eqs (1) and (2) can be transformed to

∑ϕ ω ϕ ϕ= Δ − λ − λ , = , , ,
( )=

� �j Ksin sin 1
3j

i
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i j
1

where Δ ω =  ωh −  ω is the frequency difference between the hub and leaf nodes.
The synchronous state is defined as ϕi(t) =  ϕj(t) ≡ ϕ(t) and ϕ( ) = t 0, which can be solved from 

Eq. (3) as

ϕ ω= Δ /( + )λ. ( )Ksin 1 4

Since ϕ ≤sin 1, the synchronous state exists when ωλ ≥ λ = Δ /( + )K 1c . The synchronous state is 
found to be stable when λ  ≥  λ c by using linear-stability analysis. Further numerical computations reveal 
that the transition to the synchronous state is abrupt, and there is a hysteretic behavior at the onset of 
synchronization. λc

b and λc
f  are the backward and forward critical coupling strengths respectively, where 

λ = λc
b

c and λc
f  depends on initial states. The upper limit of λc

f  is denoted by λ̂c
f
. As λ > λ̂c

f
, the syn-

chronous state is globally attracting. The region between λc
b and λ̂c

f
 is the coexistence regime for the 

synchronous state and the incoherent state. The dynamic process of the synchronization transition 
depends crucially on the basin of attraction of each state19. However, it is hard to investigate the inter-
mingling structure of these different attractors in the K-dimensional phase space {ϕi, i =  1,2,…,K}, and 
till now only numerical works for not large K have been done. It is significant to find an analytical 
scheme to excavate the coexistence of synchronous and incoherent attractors and quantitatively reveal 
the mechanism of the discontinuous phase transition.

By introducing the order parameter
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it is instructive to rewrite Eq. (3) as

ϕ = + + , = , , , ( )
ϕ ϕ−� �fe g f e j K1 6j

i ij j

where i denotes the imaginary unit and = λf i
2

, ω= Δ − λ (Φ)g Kr sin . In terms of Watanabe-Strogatz’s 
approach, the phase dynamics of K nodes can be constructed from K constants {ξj,1 ≤  j ≤  K} as

= ( ), ( )ϕ ξ( )e M e 7i t
t

ij j

where
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is a Möbius transformation20–22. By applying it to Eq. (6) one obtains

β β β= ( + + ), ( ) i f g f 92

φ β β= + + . ( ) f g f 10

For the situation of thermodynamic limit K →  ∞ and the uniform measure of phases, the evolution of 
β(t) and φ(t) in Eqs (9) and (10) can be separated. We thus get β(t) =  z(t) and the equation of the order 
parameter as23

= ( + + ). ( )z i fz gz f 112

For a finite K, the fluctuation of the order parameter is of size ( )−O K
1
2 . When δ ∼ −

z K 1
1
2 , the order 

parameter z can be approximated by the one with infinite-K limit, i.e, →∞z z K . However, the typical 
size of the star network we are considering here is ∼K 10. The fluctuation of this small system will be 
as large as δ ∼ ≈ .z 0 3161

10
. It is not appropriate to approximate it with the one with infinite-K limit. 

Nevertheless, we can get the measure and the distribution of phases through an ensemble way. For an 
ensemble consisting of systems with same parameters and random initial conditions confined in an 
interval θ θ,[ ]a b , an ensemble order parameter is defined as

∑= / .
( )

ϕ
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z e K
12j

K
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In the infinite limit of the number of systems in this ensemble, the Watanabe-Strogatz’s method is appli-
cable. The dynamical equation of the ensemble order parameter of system is

λ
ω= − + (Δ − λ Φ) +

λ
. ( )z z i Kr z

2
sin

2 13
2

Eq. (13) describes the collective dynamics of Eqs (1) and (2) in terms of the ensemble order parameter. 
In the phase space of the ensemble order parameter, the synchronous state corresponds to a fixed point 
with r =  1 and a fixed phase Φ . All the other solutions of Eq.  (13) represent various incoherent states. 
Some typical incoherent states include the splay state defined by r <  1 with a fixed phase Φ , the in-phase 
state defined by r =  1 with a periodic phase Φ (t) which means the phase of all the leaves are equal with 
a drifting hub and the neutral state defined by time-periodic r(t) and Φ (t). The transitions from these 
states to synchronization correspond to different scenarios of collective behaviors.

Eq. (13) can be rewritten in cartesian coordinates z =  x +  iy as

λ
ω= λ



 +



 − − Δ +

λ
,

( )
x K y x y1

2 2 2 14
2 2

ω= −λ( + ) + Δ . ( )y K xy x1 15

Eqs  (14) and (15) are invariant under the time-reversal transformation (t,x) →  (− t,− x). This implies 
the quasi-Hamiltonian property of Eqs  (14) and (15)24, where the phase volume in the vicinity of any 
periodic orbits is conserved.

In the phase space of the ensemble order parameter, the natural boundary of the order parameter is 
x2 +  y2 =  1. A fixed point is determined by the intersection of nullclines =x 0 and =y 0 within the 
boundary. When the coupling λ  is small enough, there is only one fixed point, which is neither an attrac-
tor nor a repellor for they should appear in pairs. Hence the incoherent state are neutrally stable periodic 
orbits around the fixed point. This can be verified by using the linear stability analysis.

In the bistable regime, as shown in Fig. 1(a), the nullclines =x 0 and =y 0 have four intersections 
labeled by A-D with A an attractor, C a repellor, B a saddle and D a neutrally stable point. Any orbit 
crossing the nullcline A-B-C will eventually fall to A, and others will hold the property as periodic orbits. 
It is clear that the stable fixed point A corresponds to the synchronous state.

As λ  increases, points D and B close to each other and eventually collide at a critical coupling, as 
shown in Fig. 1(b), and the synchronous state becomes globally attractive. This critical coupling corre-
sponds to the upper limit of λc

f , which can be determined as
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The analytical curve and numerical results are given in Fig.  1(c). An approximation of this result was 
previously estimated as ωλ ≈ . Δ /ˆ K0 6989c

f 19, but this estimation is only the limiting case of Eq. (16) 
for large K where ωλ = Δ / K2c

f . Moreover, the exact critical coupling strength which depends on 
different initial conditions19 could be analytically obtained. When the initial distribution of the phase 
difference between the leaves and the hub are randomly drawn from an interval δ δ− ,[ ], the initial order 
parameter is

∫ δ
ϕ

δ
δ

= = , ( )δ

δ
ϕΦ

−
r e e d1

2
sin

17
i i

1

which means (x0 =  sin ϕ/δ, y0 =  0). From the analysis above, the λ  −  δ relation is

Figure 1. The ensemble order parameter phase plane of Eq. (5) with Δω = 9, K = 10 (a) λ  =  1.5,  
(b) λ  =  1.9. Red lines are =x 0, and black =y 0. The intersections of them are fixed points A-D. Different 
initial values with trajectories are marked by ‘*’. (c)The upper limit of forward critical coupling strength in 
Eq. (16). (d) The forward continuation diagrams for star graphs of different α.
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which is represented in Figs. 2(a).
It is important to compute the measure of the synchronous state in phase space when the synchro-

nous state and the incoherent state coexist. The measure is defined as m(SS) =  Ssyn/S0, where S0 and 
Ssyn are the volume of the whole phase space and the volume of the basion of attraction of the syn-
chronous state respectively. This can be analytically obtained in the ensemble order parameter space 
as Ssyn ≈  π(1 −  (xB −  xD)2) and S0 =  π, where (xB,yB) and (xD,yD) are the coordinates for points B and D 
respectively. Therefore the measure of the synchronous state is

ω
λ

δ( ) = +
( + )

−
Δ

( + )
+ , λ ≤ λ ≤ λ ,

( )
λ

ˆm
K K

SS 1 4
1 2

4
1 2 19

c
b

c
f2

2 2

Figure 2. (a) Synchronization boundary line Eq. (18) with the initial distribution of phase are randomly 
drawn from interval [− δ,δ]. (b) The measure of the synchronous state against the coupling strength for 
different K. (c) The ensemble order parameter phase space for 0 <  α ≤  0.5π, the limit cycle corresponding 
to the splay state, and the fixed point corresponding to the synchronous state (SS). (d) The order parameter 
against the corresponding coupling strength with different sizes.
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where δλ is the correction factor

( )δ ω≈ λ − λ /Δ , ( )λ
ˆ2 20c

f 2
2

bounded by 1/K. When λ ≤ λc
b, m(SS) and when λ ≥ λ̂c

f
, m(SS) =  1. In Fig. 2(b), m(SS) vs λ  is shown. 

When K→ ∞, the measure can be approximated by m(SS) ≈  1 −  λ −2. Moreover the competition between 
the incoherent state and the synchronous state is represented in Fig. 2(b), with the increasing of coupling 
strength, the basin of attraction of the synchronous state is increasing while the incoherent state is decreas-
ing. At the upper limit of the forward critical point, the synchronous state is globally attracting and the 
incoherent state will disappear. In addition, an alternative way for obtaining the critical coupling points is 
provided by the mean-field theory18 (we refer the interested reader to the Supplementary Information for 
the details of the derivations). We emphasize that, although the dynamical ensemble order parameter equa-
tion is successful in dealing with the identical leaves on star graph, it may fail for the random natural 
frequency distribution of the leaves. The latter case should refer to the mean-field method in18.

Star network with a phase shift. The above results indicate that the ensemble order parameter 
approach can successfully describe the collective dynamics of coupled oscillators, and the dynamical 
ensemble order parameter equation provides an exact description in revealing the transitions, coexist-
ence and competitions between incoherent and synchronous states. However, the quasi-Hamiltonian 
property of system Eqs  (14) and (15) should be a specific case depending crucially on the coupling 
function. Therefore, it is significant to extend the dynamical ensemble order parameter approach to more 
general cases by adopting the Kuramoto model Eqs (1) and (2) with a phase shift25,26:

( )∑θ ω θ θ α= + λ − − ,
( )=

 sin
21

h h
j

K

j h
1

( )θ ω θ θ α= + λ − − , ( ) sin 22j h j

where − π/2 ≤  α ≤  π/2 is the phase shift, with α =  0 corresponding to the case of Eqs (1) and (2). When 
α =  0,± π/2 the equation is time reversible, and they divide the parameter space α into two dynamical 
regimes (− π/2,0) and (0,π/2).

By introducing ϕj =  θh −  θj, Eqs (21) and (22) are transformed to

∑ϕ ω ϕ α ϕ α= Δ − λ ( + ) − λ ( − ),
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the phase locked state is a fixed point in the phase difference space, which reads

ϕ
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Since cos ϕ is real, the condition for existence of the synchronous state can be obtained similarly as

ω

α
λ ≥ λ =

Δ

( − ) +
.

( )K K1 4 cos 25
ec 2 2

For local stability analysis of the phase locked state, the Jacobian matrix is calculated,

α ϕ ϕ α ϕ α
ϕ α α ϕ ϕ α

ϕ α ϕ α α ϕ
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with K −  1 equal eigenvalues given by

δ ϕ α= −λ ( − ), ( )cos 271

and one eigenvalue
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δ ϕ α ϕ α= λ( − ) − λ( + ) . ( )K K1 sin sin 1 cos cos 282

Through the analysis of the sign of eigenvalues δ1 and δ2, we get the stability conditions for the synchro-
nous state, as

ω
α

α αλ ≥ λ =
Δ

+
, ∈ ( , ,

( )
− −

K cos 2 1
0] 29sc 0

ω
α

α α πλ ≤ λ =
−Δ

+
, ∈ ( , / ,

( )
+ +

K cos 2 1
2] 30sc 0

where α = ± (− / )/± Karccos 1 20 . When π α α− / ≤ ≤ −2 0  the synchronous state is always unstable, 
and when α α≤ ≤ +0 0  the synchronous state is always stable.

To get more information about the system, the dynamical ensemble order parameter equation for the 
system is constructed as,

ω α= −
λ

+ (Δ − λ (Φ + )) +
λ
. ( )

α α−
z e z i Kr z e

2
sin

2 31
i i2

When λ  is small enough, Eq. (31) always has one fixed point within the boundary in phase space (x,y). 
When α =  0, ± π/2, the fixed point is neutrally stable, when α π∈ ( , / )0 2 , this point is an unstable 
repellor, and all orbits will evolve to the boundary as a limit cycle that physically corresponds to the 
in-phase state defined as

ϕ ϕ( ) = ( ), = , , , ( )t t i K1 32i

shown in Fig. 2(c).
In order to investigate the in-phase state intuitively, as a matter of fact, in the dynamical model given 

by Eqs  (21) and (22) all the leaves are dynamically equivalent, which means that during the evolution 
of the system, if at some time t =  t0 the phase of any two leaves are equal, then the two leaves will never 
separate from each other, hence the leaves can never pass each other. The index transformation invari-
ance of Eqs (21) and (22) enables the leaves to be ordered as follows:

θ θ θ θ π≤ ≤ ≤ ≤ + , ( )−  2 33K K K1 2

which defines a “canonical invariant region” in phase space23, and it should be pointed out that due to the 
particular symmetry of the system, the canonical invariant region simplifies the structures of the original 
phase space which makes it possible to seek a low-dimensional description given by equation Eq. (31). 
On the boundary of the invariant region, the state space has a one-dimensional invariant manifold M 
which corresponds to the in-phase state in the complex ensemble order parameter space, and the invar-
iant manifold M is defined by

ϕ ϕ ϕ= ∈ , = , = . ( ){ }M T 34j
K

K1

Here TK is the K-dimensional torus27. Interestingly, the phase shift α plays the role of a dissipation factor 
for small coupling, and the mean divergence of the phase volume in this invariant manifold is

∑
ϕ

ϕ
α ϕ α=

∂

∂
= − λ = − (λ) ,

( )=



S K f2 cos cos sin 2
35j

K
j

j1

where ϕcos  is a time average in one period (we refer the interested reader to the Supplementary 
Information for the details of the derivations). Hence when α π∈ ( , / )0 2 , this invariant manifold M is 
attracting. In fact, through numerical calculation, in the original phase space Eq. (23), M is a limit cycle 
(only one Lyapunov exponent is zero, and the other K −  1 Lyapunov exponents are negative) and the 
basin of attraction of the limit cycle M is global. The order parameter(with the hub) in M can be analyt-
ically calculated as

ϕ
=

+ +

( + )
, λ < λ .

( )
r

K K
K

1 2 cos
1 36

ec
2

2

2

Figure 2(c,d) show the transition from the in-phase state to the synchronous state. As shown in Fig. 2(c) 
the in-phase state is a limit cycle and the synchronous state is a fixed point on this limit cycle. The tran-
sition from the in-phase state to the synchronous state takes place continuously through a saddle-node 
bifurcation when the coupling strength is increased, as shown in Fig. 2(d).
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On the other hand, when α π∈ (− / , )2 0 , the manifold M is unstable and the fixed point in Eq. (31) 
is a stable attractor, which is physically a splay state. The splay state is the state where phase differences 
between hub and leaf nodes satisfy

ϕ ϕ( ) =


 +



, ( )

t t i T
K 37i

with T the period of ϕ(t) as shown in Fig. 3(a,b).
In Fig. 3(c,d), we show dynamical manifestations of the discontinuous transition from the splay state 

to the synchronous state. Fig. 3(c) exhibits the coexistence of the splay state and the synchronous state 
as the stable fixed points A and C respectively. The basins of attraction of the splay state and the syn-
chronous state are separated by the repellor B. When λ  increases, as shown in Fig. 3(d), the repellor B 
and the attractor A collide and disappear via an inverse saddle-node bifurcation, and this discontinuous 
transition makes the synchronous state a global attractor.

The abrupt transition implies that there are two critical coupling strengths λc
b and λc

f , where λ = λ−c
b

sc 
and λc

f  depends on the basins of attraction. The upper limit of λc
f  can be determined by analyzing the 

inverse saddle-node bifurcation as Fig. 1(d)

Figure 3. (a)Time evolution of the ensemble order parameter with α =  − 0.1π, λ  =  1.5. (b) The stable phase 
distribution of (a) with the reference of the hub, the green is θh and the red is ϕj, the insert is sinϕi(t). The 
ensemble order parameter phase plane for Δ ω =  9, K =  10, α =  − 0.1π, (c) λ  =  1.8, (d) λ  =  2.17. Red lines 
are =x 0, and black =y 0. The intersections of them are fixed points A-D. Different initial values with 
trajectories are marked by ‘*’.
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ω
α

λ =
Δ

+
.

( )
ˆ

K2 cos 2 1 38c
f

The bistable/coexistence regime corresponding to the above discontinuous transition is given for 
α α∈ ( ,− 0]0  and )λ ∈ 


λ , λ̂sc c

f .
A phase diagram describing various dynamical states and transitions of system Eq.  (6) is given in 

Fig.  4, where regime I is the stable region for the synchronous state and regime II for the splay state, 
regime III for the in-phase state. Three routes from the incoherent state to the synchronous state are 
shown as (1) the neutral state to the synchronous state, (2) the splay state to the synchronous state, and 
(3) the in-phase state to the synchronous state. The structure relationship of the incoherent state and the 
synchronous state determines the feature of the transition.

In addition, the graphical illustration of the linear stability of various steady states with boundaries 
given by Eqs (27–31) and the transitions between these states are provided in Fig. 4. The phase shift α 
is divided into four intervals. When π α α− . < < −0 5 0 , the splay state exists and is always stable for any 
λ . With the increase of the coupling strength λ  unstable synchronous state exists above the threshold 
λ  =  λ ec. When α α< <− 00 , the splay state exists and is stable within < λ < λ̂0 c

f
, and the synchronous 

state exists with λ > λec but is unstable unless λ > λ−sc. Evidently, there is a co-existing region for the 
splay state and the synchronous state within the coupling interval λ < λ < λ− ˆ

sc c
f
. In the third interval 

where α α< < +0 0 , the splay state is always unstable, the stable synchronous state emerges as the cou-
pling strength λ  >  λ ec. For the fourth interval α α π< < .+ 0 50 , the splay state always exists but is only 
stable when λ λ> +

sc , while the synchronous state only exists and is stable in the region λ λ λ< < +
ec sc . 

The neutral state exists as a particular case for the phase shift, α =  0, ± 0.5π, and the in-phase state is 
always stable in the interval 0 <  α <  0.5π, within the coupling range 0 <  λ  <  λ ec.

Scale-free network. In the heterogenous network such as the scale-free network, the star graph is 
a typical topology and is significant for the dynamical process to synchronization9,19,28. Furthermore, in 
order to reveal the role of the star graphs in the phase transition to synchronization on complex net-
works, let us consider the dynamical behavior of the networked Kuramomo-like oscillators, the phase of 
every unit θi evolves according to the equation

( )∑
θ

ω θ θ α= + λ − − , = , …, ,
( )=

d
dt

A i Nsin 1
39

i
i

j

N

ij j i
1

where λ  symbols the coupling strength, ωi the intrinsic natural frequency of the i-th oscillator, α is the 
phase shift, Aij is the elements of of the adjacency matrix A, where the elements Aij =  1 if two nodes 
i and j are connected, whereas, Aij =  0 when nodes i and j don’t have physical connections. Using 
Barabasi-Albert model with m0 =  129 as an example, we generate a scale-free network with N =  500 nodes 
and K =  26 nodes in the largest star motif. In addition, considering the character of frequency degree 

Figure 4. The phase diagram of system Eq. (31). Regime I is the stable synchronous state (SS). Regimes 
II and III are the asynchronous region with different incoherent states, the splay state (SPS) and the in-
phase state (IPS) respectively. The coexistence region of the incoherent state and the splay state is plotted by 
shadow. Three routes to synchronization are shown as the splay state to the synchronous state, the in-phase 
state to the synchronous state, and the neutral state to the synchronous state.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:12039 | DOi: 10.1038/srep12039

correlation, the intrinsic natural frequency of the node i is assigned to be equal to its node degree ki, i.e., 
ωI =  ki. The above analysis could be applied straightly to studies of the first-order phase transition in the 
scale-free network qualitatively.

In Fig. 5(a,c), the order parameters of the scale-free network r and the largest star motif rL for three differ-
ent routes to synchronous state are given. The abrupt transition from the neutral state to the synchronous state 
and the splay state to the synchronous state are shown in Fig. 5(a,b) respectively, and the continuous transition 
from the in-phase state to the synchronous state is shown in Fig.  5(c). It is clear that the largest star motif 
and the scale-free network share the same properties of synchronous behaviors, such as the type of transition, 
either abrupt or continuous, and the same critical coupling strengthes. Therefore the synchronization tran-
sition of the scale-free networks can be well understood in terms of the above discussions on star networks. 
The original explosive synchronization of the scale-free network9 corresponds to the path from the neutral 
state to the synchronous state, and the property of the neutral state is checked for the largest star motif in the 
scale-free network in Fig. 5(d), where the order parameters depend on initial conditions.

Discussion
To summarize, in this paper we proposed the dynamical ensemble order parameter equation in terms of 
the Ott-Antonsen approach to study the synchronization of coupled oscillators on a star graph. By reducing 
from a high-dimensional phase space to a much lower-dimensional ensemble order parameter space without 
additional approximation, one is able to grasp analytically the essential dynamical mechanism of different 
scenarios of synchronization. Different solutions of the dynamical ensemble order parameter equation such 
as fixed points and limit cycle build correspondences with different collective states of coupled oscillators, and 
different bifurcations reveal various transitions among collective states. In the bistable regime, the measure of 
the synchronous and incoherent states can be analytically obtained by using the dynamical ensemble order 

Figure 5. (a–c): The order parameters of the scale-free network r and the largest star motif rL varies with 
the coupling strength for different α. (d) rL with different initial states randomly chosen from [− δ,δ] with 
different α, and λ  =  0.3, the black solid line is theoretical initial order parameter r =  sinδ/δ. The size of 
network is N =  500.
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parameter equation, which is a very sophisticated and analytically inaccessible procedure in the phase space 
of coupled oscillators. The analysis and results in the present work can be naturally applicable to scale-free 
networks, where the star topology plays a dominant role in governing collective dynamics. The properties of 
three routes to synchronization proposed in star networks are also shown in scale-free networks, which pave 
the way for analyzing the relation between the star motif and the scale-free network and help us understand 
the transition to synchronization in more general heterogenous networks.
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