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Purpose: To assess the performance of random forest (RF)-based radiomics approaches
based on 3D computed tomography (CT) and clinical features to predict the types of
pelvic and sacral tumors.

Materials and Methods: A total of 795 patients with pathologically confirmed pelvic and
sacral tumors were analyzed, including metastatic tumors (n = 181), chordomas (n = 85),
giant cell tumors (n =120), chondrosarcoma (n = 127), osteosarcoma (n = 106),
neurogenic tumors (n = 95), and Ewing’s sarcoma (n = 81). After semi-automatic
segmentation, 1316 hand-crafted radiomics features of each patient were extracted.
Four radiomics models (RMs) and four clinical-RMs were built to identify these seven types
of tumors. The area under the receiver operating characteristic curve (AUC) and accuracy
(ACC) were used to evaluate different models.

Results: In total, 795 patients (432 males, 363 females; mean age of 42.1 ± 17.8 years)
were consisted of 215 benign tumors and 580 malignant tumors. The sex, age, history of
malignancy and tumor location had significant differences between benign and malignant
tumors (P < 0.05). For the two-class models, clinical-RM2 (AUC = 0.928, ACC = 0.877)
performed better than clinical-RM1 (AUC = 0.899, ACC = 0.854). For the three-class
models, the proposed clinical-RM3 achieved AUCs between 0.923 (for chordoma) and
0.964 (for sarcoma), while the AUCs of the clinical-RM4 ranged from 0.799 (for
osteosarcoma) to 0.869 (for chondrosarcoma) in the validation set.

Conclusions: The RF-based clinical-radiomics models provided high discriminatory
performance in predicting pelvic and sacral tumor types, which could be used for
clinical decision-making.
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INTRODUCTION

Pelvic and sacral tumors have various types, with metastatic
tumors being the most common because of their prominent
hematopoietic function until late in life (1, 2). Primary sacral
tumors are rare and mainly include chordoma, giant cell tumor
(GCT), neurogenic tumor, etc. (3, 4). In addition, a small number
of GCTs and neurogenic tumors can also occur in the pelvis.
Sarcomas, such as chondrosarcoma, osteosarcoma, and Ewing’s
sarcoma, are also the common primary malignant bone tumors of
the pelvis and sacrum (5, 6). Because pelvic and sacral tumors are
usually large and surrounded by complex structures, treatment for
these tumors is often a challenging procedure that can be
accompanied by serious complications, such as massive bleeding
(7–10). In clinical practice, these tumors are treated differently. For
example, preoperative chemotherapy is important for
osteosarcoma, but it is not effective for chondrosarcoma.
Therefore, accurate preoperative identification of these tumors is
essential for the development of individualized treatment (11, 12).

Pelvic and sacral tumors share many similar clinical and
imaging features, they often present heterogeneous masses with
different components. This makes it difficult to identify these
tumors in clinical practice, especially when they occur in unusual
or multiple locations. In addition, the classic semantic
assessments of traditional computed tomography (CT) and
magnetic resonance (MR) images suffer from strong inter- and
intra-reader variations, they do not provide sufficient diagnostic
power to identify these tumors (13). Clinically, a simple and
accurate method is needed to identify pelvic and sacral tumors.

Sophisticated machine learning methods show promise in
complementing human diagnostics (14, 15). In recent years,
radiomics has been successfully applied in the classification of
tumor types. A few previous studies have identified sacral tumors
using radiomics methods, but most of these studies identified
only two types of tumors, and their sample sizes were relatively
small (3, 11, 12). Yin et al. (3) built a random forest (RF)-based
triple-classification radiomics model for the differentiation of
primary chordomas, GCTs, and metastatic tumors of sacrum
based on MR features. They concluded that their model is
feasible to differentiate these tumors and can improve the
precision of preoperative diagnosis in clinical practice. RF
algorithms have a comparably low tendency to overfit and are
well suited for multi-classification discrimination (13). Although
machine learning has been applied to the segmentation, lesion
detection, evaluation of chemotherapy response and prediction
of local recurrence of bone tumors in recent years (16–20), the
ability to identify multiple types of pelvic and sacral tumors
remains unknown.

The aim of our study was to determine the performance of
RF-based radiomics approaches based on CT features and
clinical characteristics to predict the multiple types of pelvic
and sacral tumors.
Abbreviations: GCT, giant cell tumor; CT, computed tomography; RF, random
forest; ICC, intra- and interclass correlation coefficients; RM, radiomics model;
AUC, area under the receiver operating characteristic curve; ACC, accuracy.
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MATERIALS AND METHODS

Patients and Data Acquisition
After the approval of our local ethics committee, we conducted
this single-center retrospective study and waived written informed
consent. A total of 1000 patients with pathologically confirmed
pelvic and sacral tumors in our institution from April 2006 to
December 2019 were retrospectively analyzed. All patients had a
single pelvic and sacral tumor that was detected on CT within 1
month before the initial surgery. Patients that had pelvic and sacral
tumor types with a sample size less than 30 (n = 111), without
preoperative CT images (n = 84), or with obvious artifacts (n = 10)
were excluded. Finally, a total of 795 patients with pelvic and sacral
tumor types of metastatic tumors (n = 181), chordomas (n = 85),
GCTs (n =120), chondrosarcomas (n = 127), osteosarcomas
(n = 106), neurogenic tumors (n = 95), or Ewing’s sarcomas
(n = 81) were included in the study. Sex, age, maximal tumor size,
history of malignancy and tumor location (Zone I–IV) (21) of
patients were also analyzed. Zone I includes the iliac crest, Zone II
includes the acetabulum and its surroundings, Zone III includes
the pubis and ischium regions, and Zone IV refers to the sacrum
region. A “multi-zone” is a tumor that involves more than one
area simultaneously.

All CT images were acquired on each patient using multi-
detector row CT systems (Philips iCT 256, Philips Medical
System; GE Lightspeed VCT 64, GE Medical System). The
acquisition parameters were as follows: 120 kV, 100-370 mAs,
slice thickness = 5 mm, matrix = 512 × 512 mm, field of view =
350 × 350 mm. The CT images were reconstructed with soft-
tissue and bone kernel.

Tumor Segmentation
MITK software version 2018.04.2 (www.mitk.org) was used for
the semi-automatic segmentation of all tumors (22). First, the
two authors (PY and XL) manually delineated the edge of the
lesion at the axial, sagittal, and coronal sites, respectively. Then, a
three-dimensional lesion was automatically formed and
manually corrected by a musculoskeletal radiologist with 5
years of experience and a senior musculoskeletal radiologist
with 20 years of experience who were blinded to the assessment.

Feature Extraction and Selection
A total of 1316 radiomics features of each patient were extracted
from the CT images using the Artificial Intelligence Kit software
version 3.3.0 (GE Healthcare, China), including 18 first-order
histogram features, 14 shape features, 24 gray-level co-
occurrence matrix features, 14 gray-level dependence matrix
features, 16 gray-level run-length matrix features, 16 gray-level
size-zone matrix features, 5 neighboring gray-tone difference
matrix features, 744 wavelet features, 186 Laplacian of Gaussian
(LoGsigma=2.0/3.0) features, and 279 local binary pattern features.

We preprocessed the data and normalized the extracted
features. When the data value exceeded the range of mean
value and standard deviation, the median of specific variance
vector was used to replace the outliers. In addition, we
standardized the data in a specific interval. The standardized
formula is as follows: (fi−u)/std, where fi represents a single
September 2021 | Volume 11 | Article 709659
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characteristic data, u is the average value of the data column, and
std pertains to the standard deviation of the data column.

To reduce overfitting or selection bias in our radiomics
model, we used two methods to select the features: Spearman
correlation as representative of filter models and gradient
boosting decision tree (GBDT) as representative of embedded
models (23, 24). The features with Spearman correlation > 0.7
were excluded to avoid overfitting. After the number of features
was determined, the most predictive radiomics features were
chosen to construct the final model.

Model Building and Validation
First, we divided the patients into the benign tumors group
(n=215) and malignant tumors group (n=580), and built the first
radiomics model (RM1) by using RF. After differentiating benign
and malignant tumors, the specific types of benign and
malignant tumors were then divided respectively. RM2, a two-
class RF-based radiomics model, was built to identify GCTs and
neurogenic tumors. After that, we constructed two triple-
classification models, namely, RM3 and RM4. RM3 was used
to identify metastatic tumors, chordomas, and sarcomas. RM4
was used to identify osteosarcomas, chondrosarcomas, and
Ewing’s sarcomas.

Clinical features were also compared and variables with P
value < 0.05 were included in the clinical model. When combined
RM with clinical data, we also constructed four clinical-RMs. In
addition, we also constructed a seven-classification model,
namely, clinica-RM5, to identify these seven types of tumors.
In each model, all patients were randomly divided the patients
into the training and validation sets by a ratio of 7:3. Models were
trained with the training set by using the repeated 5-fold cross-
validation method, and estimation performance was evaluated
with the validation set.

The performance of different models was assessed using the
area under the receiver operating characteristic curve (AUC) and
accuracy (ACC). Figure 1 shows the workflow of this study.

Statistical Analysis
All statistical analyses were performed with R (version 3.5.1) and
Python (version 3.5.6). Mann-Whitney U test or Kruskal-Wallis
H test was performed to compare continuous variables, while
chi-squared test or Fisher’s exact was used for categorical
variables between groups. All statistical tests were two-sided,
and Bonferroni-corrected P value were used to identify the
feature significance of multiple comparisons.
RESULTS

Patient Characteristics
A total of 795 patients (432 males, 363 females; mean age of 42.1 ±
17.8 years, range 4–82 years; mean tumor size of 9.6 ± 4.0 cm)
were included in this study (Table 1). In the clinical-RM1, sex, age,
history of malignancy and tumor location had significant
differences between groups (c2 = 9.111, Z = -3.962, c2 = 62.277,
c2 = 149.379, P < 0.01). No significant difference was found in
Frontiers in Oncology | www.frontiersin.org 3
terms of tumor size between groups (Z = 0.534, P > 0.05). For the
clinical-RM3, age, tumor size, history of malignancy and tumor
location had significant differences between groups (Z = 248.6, Z =
55.167, c2 = 272.494, c2 = 181.17, P < 0.001). However, for the
clinical-RM2 and clinical-RM4, significant differences were found
in terms of age, tumor size and tumor location (P < 0.01), no
significant difference was found in terms of sex and history of
malignancy between groups (P > 0.05). There was no significant
statistical difference between the training and validation sets in
terms of age, sex, tumor location, tumor size, history of
malignancy and histology (P > 0.05). The 95 neurogenic tumors
were composed of 45 neurofibromas and 50 schwannomas. In the
case of metastatic tumor, 43 metastases from lung, 27 from breast,
26 from liver, 25 from kidney, 15 from gastrointestinal, 13 from
thyroid, 12 from prostate, 9 from uterus, 4 from bladder, 2
from melanoma, 2 from osteosarcoma, 2 from brain, and 1
from nasopharynx, respectively.

Performance of Different Models
For the two-class models, RM1 achieved an AUC of 0.949 and
an ACC of 0.894, while RM2 reached an AUC of 0.974 and an
ACC of 0.913 in the training set (Figure 2 and Table 2). In the
validating set, we found: RM2 (AUC = 0.863, ACC = 0.800)
had a slightly higher performance than RM1 (AUC = 0.834,
ACC = 0.782).

For the three-class models, the proposed radiomics classifiers
achieved AUCs between 0.742 (for osteosarcoma, RM4) and
0.849 (for chordoma and sarcoma, RM3) in the validation set
(Figure 3 and Table 3). The ACCs of RM3 and RM4 were 0.665
and 0.667 in the validation set, respectively.

The AUC of the clinical models ranged from 0.645 to 0.951,
and the ACC ranged from 0.583 to 0.833 in the validation set.
When combined with clinical features, clinical-RMs performed
better than individual RMs and clinical models. The clinical-
RM1 exhibited an AUC of 0.899 and an ACC of 0.854 in the
validation set. Similarly, the clinical-RM2 (AUC = 0.928, ACC =
0.877) performed better than individual RM2 in the validation
set. The clinical-RM3 achieved AUCs between 0.923 (for
chordoma) and 0.964 (for sarcoma), and ACC of 0.841 in the
validation set. The AUCs of the clinical-RM4 ranged from 0.799
(for osteosarcoma) to 0.869 (for chondrosarcoma) in the
validation set.

In addition, the AUC and ACC of clinical-RM5 in the training
set were 0.771 and 0.580, and those in the validation set were 0.722
and 0.533, respectively. The Bar chart reflecting the predictive
values of RM5 was shown in Supplemental Figure 1.
DISCUSSION

In this study, we found significant differences in terms of age, sex,
history of malignancy and tumor location for differentiating
benign and malignant pelvic and sacral tumors. Both two-class
and three-class RMs had good performance in predicting pelvic
and sacral tumor types. When combined with clinical data, the
clinical-RMs performed better than individual RMs.
September 2021 | Volume 11 | Article 709659
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Pelvic and sacral tumors have a tendency to be silent till
reaching extreme volumes and involving the adjacent nerve
roots, blood vessels and organs (7). They often present as large
heterogeneous masses, which are often difficult to identify on
conventional imaging. Although metastatic tumors occur
frequently in the pelvis and sacrum, a diagnostic dilemma can
Frontiers in Oncology | www.frontiersin.org 4
present when there is a single tumor with no history or evidence of
malignancy elsewhere in the body (1). In our study, age, sex,
history of malignancy and tumor location were considered to be
important clinical features to differentiate benign and malignant
pelvic and sacral tumors. The proportion of males in patients with
malignant tumors was higher than that in patients with benign
FIGURE 1 | The workflow of this study.
September 2021 | Volume 11 | Article 709659
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tumors, which is consistent with previous study (12). For the
clinical-RM3, age, tumor size, history of malignancy and tumor
location had significant differences between groups. For the
clinical-RM2 and clinical-RM4, however, significant differences
were found in terms of age, tumor size and tumor location.
Chordomas of the pelvis and sacrum occur almost exclusively in
the sacrum, but can also involve the pelvis when the tumor is large,
increasing the difficulty of identification. Neurogenic tumors and
GCTs of bone also occur more frequently in the sacrum than in
the pelvis. In this study, 4 neurogenic tumors and 25 GCTs
occurred in the pelvis. Nevertheless, more sarcomas occur in the
Frontiers in Oncology | www.frontiersin.org 5
pelvis than in the sacrum. Chondrosarcoma is the most common
primary malignant bone tumor in the pelvis, followed by
osteosarcoma and Ewing’s sarcoma (5, 6). Osteosarcomas and
Ewing’s sarcomas tend to occur between the ages of 10 and 30,
while chondrosarcoma mostly affects people in their 40s to 70s (6).
In our study, we found that the mean age of Ewing’s sarcoma was
the lowest among these tumors, which is consistent with previous
study (25). Park et al. (2) reported that osteosarcoma of the pelvic
bones was more frequent in older patients, which may be due to
their limited sample size. GCTs of bone typically affect younger
patients between 20 and 30 years, and neurogenic tumors tend to
TABLE 1 | Clinical characteristic of patients.

Variable Class 1 Class 2 Class 3 Statistics P value

Clinical-RM1
Age (years) 36.00 (27.20, 48.00) 47.00 (27.00, 59.00) – -3.962 <0.001
Size (cm) 8.90 (7.02, 11.80) 9.00 (6.50, 12.10) – 0.534 0.593
Female 117 (54.42%) 246 (42.41%) – 9.111 0.003
Male 98 (45.58%) 334 (57.59%) –

Location I 10 (4.65%) 123 (21.21%) – 149.379 <0.001
Location II 3 (1.40%) 49 (8.45%) –

Location III 3 (1.40%) 47 (8.10%) –

Location IV 186 (86.51%) 219 (37.76%) –

Multi-location 13 (6.05%) 142 (24.48%) –

No history of malignancy 211 (98.14%) 422 (72.76%) 62.277 <0.001
A history of malignancy 4 (1.86%) 158 (27.24%)
Clinical-RM2
Age (years) 44.00 (32.00, 53.80) 33.00 (25.00, 43.00) – 4.726 <0.001
Size (cm) 8.50 (6.40, 11.66) 9.20 (7.80, 12.10) – -2.129 0.033
Female 51 (53.68%) 66 (55.00%) – 0.037 0.847
Male 44 (46.32%) 54 (45.00%) –

Location I 1 (1.05%) 9 (7.50%) – – 0.005
Location II 0 (0.00%) 3 (2.50%) –

Location III 0 (0.00%) 3 (2.50%) –

Location IV 91 (95.79%) 95 (79.17%) –

Multi-location 3 (3.16%) 10 (8.33%) –

No history of malignancy 93 (97.89%) 118 (98.33%) 0.074 0.786
A history of malignancy 2 (2.11%) 2 (1.67%)
Clinical-RM3
Age (years) 29.00 (19.00, 45.05) 58.00 (50.00, 65.00) 59.00 (49.70, 68.30) 248.6 <0.001
Size (cm) 10.20 (7.39, 13.11) 7.60 (5.50, 9.80) 8.10 (6.20, 11.06) 55.167 <0.001
Female 133 (42.36%) 85 (46.96%) 28 (32.94%) 4.656 0.098
Male 181 (57.64%) 96 (53.04%) 57 (67.06%)
Location I 81 (25.80%) 42 (23.20%) 0 (0.00%) 181.17 <0.001
Location II 29 (9.24%) 20 (11.05%) 0 (0.00%)
Location III 35 (11.15%) 12 (6.63%) 0 (0.00%)
Location IV 64 (20.38%) 71 (39.23%) 84 (98.82%)
Multi-location 105 (33.44%) 36 (19.89%) 1 (1.18%)
No history of malignancy 298 (94.90%) 50 (27.62%) 74 (87.06%) 272.494 <0.001
A history of malignancy 16 (5.10%) 131 (72.38%) 11 (12.94%)
Clinical-RM4
Age (years) 17.00 (13.00, 25.30) 26.00 (19.00, 34.05) 44.00 (33.00, 52.00) 127.47 <0.001
Size (cm) 8.00 (5.41, 10.26) 11.75 (8.00, 14.41) 11.00 (8.62, 13.58) 31.792 <0.001
Female 26 (32.10%) 47 (44.34%) 60 (47.24%) 4.904 0.086
Male 55 (67.90%) 59 (55.66%) 67 (52.76%)
Zone I 23 (28.40%) 28 (26.42%) 30 (23.62%) 24.453 0.002
Zone II 5 (6.17%) 8 (7.55%) 16 (12.60%)
Zone III 10 (12.35%) 8 (7.55%) 17 (13.39%)
Zone IV 28 (34.57%) 16 (15.09%) 20 (15.75%)
Multi-zone 15 (18.52%) 46 (43.40%) 44 (34.65%)
No history of malignancy 76 (93.83%) 99 (93.40%) 123 (96.85%) 1.687 0.43
A history of malignancy 5 (6.17%) 7 (6.60%) 4 (3.15%)
September 2021
 | Volume 11 | Article
Clinical-RM1: class 1 = benign tumor, class 2 =malignant tumor; Clinical-RM2: class 1 = neurogenic tumor, class 2 = giant cell tumor; Clinical-RM3: class 1 = sarcoma, class 2 =metastatic
tumor, class 3 = chordoma; Clinical-RM4: class 1 = Ewing’s sarcoma, class 2 = osteosarcoma, class 3 = chondrosarcoma.
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occur between 20 and 50 years old without significant age
predominance (4). In line with previous studies (1, 26, 27), we
found that metastatic tumors and chordomas were more common
in older populations. Furthermore, the size of the GCTs was
significantly larger than that of the neurogenic tumor. The size of
the sarcoma was significantly larger than that of the metastatic
tumor and chordoma. For sarcomas, the size of the Ewing’s
sarcoma was significantly smaller than that of the osteosarcoma
and chondrosarcoma. As expected, the proportion of patients with
metastatic tumors who had a history of malignancy was
significantly higher than that of other tumor types.

Until now, there are few studies on the differentiation of
pelvic and sacral tumors using machine learning methods (3, 11,
12). Yin et al. (12) compared the performance of radiomics
model based on CT and MR features to identify sacral tumors.
They found that clinical-radiomics nomogram performed better
than radiomics nomogram. Most of previous studies investigated
two-class problems, which intrinsically achieve higher AUCs
compared with multiclass problems (13). In this study, we built
four radiomics classifiers to identify seven types of pelvic and
sacral tumors using RF. RF was widely used in multi-class
Frontiers in Oncology | www.frontiersin.org 6
machine learning due to its high accuracy and low overfitting
(28, 29). It is a relatively efficient model-free method both in
variable selection and classification (3). Kniep et al. (13) built a
RF-based five-class radiomics model to predict the metastatic
tumor type of brain and found it is superior to the radiologist’s
readings. In our study, we first proposed a four-step models
framework to improve the identification efficiency of models.
Using this multi-model framework, we identified seven types of
pelvic and sacral tumors, beginning with benign and malignant
tumors and their subgroups. We found that both two-class and
three-class RF-based RMs had good performance in predicting
pelvic and sacral tumor types. Although the RMs performed
worse than the clinical models alone, except for the RM2. This
may be related to the fact that the clinical features included in
this study are important features for differentiating these tumors
and that they differ significantly. When combined with clinical
data, the clinical-RMs performed better than individual RMs,
which is consistent with previous studies (6, 12). Furthermore,
the AUC of the seven-classification model was lower than that of
other models, which may be related to the performance of RF
decreases as the number of categories increases.

Our study has certain limitations. First, all images were
collected from one center over the past decade or so, and from
two different machines. Although we included large sample data
for the study, a multicenter prospective study is beneficial to
future research. Second, only plain CT image data were available
in this study. Multimodal data may be required, such as
enhanced CT and MR, which may provide more useful
information for the differentiation of lesions. Third, we did not
compare the performance of our model with that of the
radiologists, and we will conduct further research in the
following study. Last, we cannot include all types of pelvic and
sacral tumors because some types are extremely rare. Our models
A B
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C

FIGURE 2 | The ROC curve of two-class models in the validation set. (A), clinics1. (B), RM1. (C), clinical-RM1. (D), clinics2. (E), RM2. (F), clinical-RM2.
TABLE 2 | Performance of two-class models in the validation set.

AUC ACC Sensitivity Specificity PPV NPV

RM1 0.834 0.782 0.891 0.492 0.824 0.627
RM2 0.863 0.800 0.917 0.655 0.767 0.864
Clinics1 0.871 0.833 0.874 0.723 0.894 0.681
Clinics2 0.746 0.646 0.833 0.414 0.638 0.667
Clinical-RM1 0.899 0.854 0.948 0.600 0.864 0.812
Clinical-RM2 0.928 0.877 0.889 0.862 0.889 0.862
AUC, area under curve; ACC, accuracy; PPV, positive predictive value; NPV, negative
predictive value.
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include seven types of the most common pelvic and sacral
tumors, and we continue to believe that our models can be of
great clinical benefit.

In conclusion, the RF-based clinical-RMs provided high
discriminatory performance in predicting pelvic and sacral
tumor types. Our models can provide a simple, non-invasive
Frontiers in Oncology | www.frontiersin.org 7
and accurate auxiliary diagnostic tool for the differentiation of
pelvic and sacral tumors, improving the diagnostic efficiency
of clinicians.
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FIGURE 3 | The ROC curve of three-class models in the validation set. (A), clinics3. (B), RM3. (C), clinical-RM3. (D), clinics4. (E), RM4. (F), clinical-RM4. For
clinics3, RM3 and clinical-RM3: class 0 = sarcoma, class 1 = metastatic tumor, class 2 = chordoma. For clinics4, RM4 and clinical-RM4: class 0 = Ewing’s sarcoma,
class 1 = osteosarcoma, class 2 = chondrosarcoma.
TABLE 3 | Performance of three-class models in the validation set.

AUC ACC Precision Recall F1-score

RM3
metastatic tumor 0.805 0.665 0.645 0.364 0.465
chordoma 0.849 0.665 0.818 0.346 0.486
sarcoma 0.846 0.665 0.657 0.926 0.769

RM4
chondrosarcoma 0.812 0.667 0.682 0.769 0.723
osteosarcoma 0.742 0.667 0.636 0.656 0.646
Ewing’s sarcoma 0.811 0.667 0.684 0.520 0.591

Clinics3
metastatic tumor 0.950 0.824 0.836 0.836 0.836
chordoma 0.915 0.824 0.609 0.538 0.571
sarcoma 0.951 0.824 0.867 0.895 0.881

Clinics4
chondrosarcoma 0.852 0.583 0.743 0.667 0.703
osteosarcoma 0.645 0.583 0.448 0.406 0.426
Ewing’s sarcoma 0.846 0.583 0.531 0.680 0.596

Clinical-RM3
metastatic tumor 0.947 0.841 0.780 0.836 0.807
chordoma 0.923 0.841 0.737 0.538 0.622
sarcoma 0.964 0.841 0.898 0.926 0.912

Clinical-RM4
chondrosarcoma 0.869 0.667 0.756 0.795 0.775
osteosarcoma 0.799 0.667 0.625 0.625 0.625
Ewing’s sarcoma 0.847 0.667 0.565 0.520 0.542
AUC, area under curve; ACC, accuracy.
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