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A B S T R A C T   

Pneumonia is a global disease that causes high children mortality. The situation has even been 
worsening by the outbreak of the new coronavirus named COVID-19, which has killed more than 
983,907 so far. People infected by the virus would show symptoms like fever and coughing as 
well as pneumonia as the infection progresses. Timely detection is a public consensus achieved 
that would benefit possible treatments and therefore contain the spread of COVID-19. X-ray, an 
expedient imaging technique, has been widely used for the detection of pneumonia caused by 
COVID-19 and some other virus. To facilitate the process of diagnosis of pneumonia, we devel-
oped a deep learning framework for a binary classification task that classifies chest X-ray images 
into normal and pneumonia based on our proposed CGNet. In our CGNet, there are three com-
ponents including feature extraction, graph-based feature reconstruction and classification. We 
first use the transfer learning technique to train the state-of-the-art convolutional neural networks 
(CNNs) for binary classification while the trained CNNs are used to produce features for the 
following two components. Then, by deploying graph-based feature reconstruction, we, therefore, 
combine features through the graph to reconstruct features. Finally, a shallow neural network 
named GNet, a one layer graph neural network, which takes the combined features as the input, 
classifies chest X-ray images into normal and pneumonia. Our model achieved the best accuracy 
at 0.9872, sensitivity at 1 and specificity at 0.9795 on a public pneumonia dataset that includes 
5,856 chest X-ray images. To evaluate the performance of our proposed method on detection of 
pneumonia caused by COVID-19, we also tested the proposed method on a public COVID-19 CT 
dataset, where we achieved the highest performance at the accuracy of 0.99, specificity at 1 and 
sensitivity at 0.98, respectively.   

1. Introduction 

Pneumonia is a common yet serious lung disease caused by viruses and bacteria. Though it is treatable under most situations, timely 
detection still plays a key role in making diagnosis and treatment. Since the outbreak of COVID-19, Viral nucleic acid techniques 
(VNATs) and imaging techniques have been widely used to quickly diagnose pneumonia caused by COVID-19. It was reported that the 
sensitivity of VNATs was high (Behzadi, Ranjbar & Alavian, 2014), the false positive rate, however, is relatively high when compared 
to imaging-based detection methods (Fang et al. 2020). As pointed out by authors in Fang et al. (2020), a VNAT using real-time 
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polymerase chain reaction (RT-PCR) achieved a sensitivity at 71% on a 51 cases dataset, however, Chest computed tomography (CT) 
showed sensitivity at 98%. Chest X-ray imaging has also been extensively deployed for the detection of pneumonia caused by 
COVID-19 (Adhikari, 2020; Islam, Wijewickrema, Collins & O’Leary, 2020; Rajpurkar et al., 2017). Compared to VNATs, Chest X-ray 
imaging is more accurate and convenient, which makes Chest X-ray to be the most popular technique for diagnosis of pneumonia 
(Chen et al., 2019). Also, compared to CT, X-ray is more popular because of the low cost and convenience of imaging. However, manual 
interpretation of the digitalized images, a time-consuming task, remains to be a challenging job for the radiologists due to the 
complexity and artificial factors. Therefore, automatic systems that can help radiologists with the understanding of images is 
demanding and would be greatly helpful to slow the spreading of COVID-19. 

Deep learning (DL), a fast-developing branch of Machine Learning (ML), has shown great power over image classification and 
detection. Compared to classical ML methods, which heavily rely on manually crafted features, Deep Convolutional Neural Networks 
(CNNs), the most typical models of DL, have achieved eye-attracting success on considerable image-based tasks such as detection, 
classification and segmentation (He, Zhang, Ren & Sun, 2016; Ronneberger, Fischer & Brox, 2015; Zhao, Zheng, Xu & Wu, 2019). DL 
models, which are usually trained on millions of images, learn more abstract features than traditional ML models that focus on learning 
more straightforward but less representative features. Therefore, DL models have been showing huge advantages over traditional ML 
models on accuracy, flexibility and robustness. In some areas, DL models even outperformed the experts in the area by a large margin 
He Kaiming, Shaoqing and Jian (2016); He, Zhang, Ren and Sun (2015). Given the stated superiority, DL techniques have been 
embedded in many Computer-aided (CAD) systems. For DL systems, how to effectively embed useful information into the systems 
determines the final performance of the systems. There are considerable research works on information embedding (Li, Zhang, Qin, 
Zhang & Shao, 2019; Shen et al., 2021; Wen, Zhang, Zhang, Fei & Wang, 2020; Zhang et al., 2019, 2020; Zhang, Liu, Shen, Shen & 
Shao, 2018). 

In this research, we proposed a new DL model named CGNet framework, which was featured by the proposed feature reconstruction 
method. Based on the proposed framework, a new high-performance pneumonia detection system was developed. In our proposed 
CGNet framework, there are three modules including feature extraction and graph-based feature reconstruction and classification. For 
the feature extraction, we transferred the state-of-the-art networks and trained with pneumonia datasets. High-level features, which 
are coarse features for further classification, can then be acquired through the trained networks. Based on the extracted features, we 
propose to integrate graph representation between individual images to improve the accuracy of the following classifier GNet, which 
has the same architecture as the artificial neural network(ANN) but outperforms ANN by a large margin. Contrary to traditional ANN 
that analyses images individually, our proposed GNet can utilize the underlying relationship between images to contribute to better 
classification performance and therefore analyse multiple images simultaneously. The architecture of GNet is designed to be shallow to 
avoid the overfitting problem and unnecessary over-complexity of the whole system. Features of each image are taken as a node in 
graphs while edges between nodes are assigned to top k neighbours that have the shortest distance to the node. To validate our models 
designed according to the newly proposed framework, we evaluated the performance of models on a public X-ray pneumonia dataset as 
well as a public CT-image COVID-19 dataset. As being shown in the experiment, our developed system showed promising results on a 
public pneumonia dataset with more than 5000 images while the developed system reached an accuracy at 0.99 on the public COVID- 
19 dataset. Like pneumonia caused by other bacteria and viruses will cause inflammation and the air sacs, or alveoli in the lungs, 
COVID-19 caused pneumonia shows similar symptoms (Koo et al., 2018; Li et al., 2020). Therefore, we believe that the developed 
system could be helpful for the diagnosis of pneumonia caused by COVID-19 and other causes in future. 

The paper is arranged as follows: In Section 2, we will briefly review the related work concerning CAD systems for the detection of 
pneumonia. Our proposed framework will be presented in detail in Section 3, followed by experiments in Section 4. Discussion is given 
in Section 5 as we conclude this paper in Section 6. 

2. Related work 

Feature reconstruction has been proved to be effective in improving the performance of feed-forward deep neural network (Chung, 
Park & Jung, 2019). When considering a feature reconstruction problem, the target feature matrix Tt ∈ Rn×mcan be denoted by 
informative components It ∈ Rn×mand trivial components Trt ∈ Rn×m. 

Tt = It + Trt (1) 

Principle Component Analysis (PCA) is a widely deployed technique for feature dimension reduction and reconstruction 
(Malagón-Borja & Fuentes, 2009). Given a group of features Fi (i ∈ RN, Nis the number of features in the group), the mean feature Fican 
then be expressed as: 

Fi =
∑N

j=1
Fi (2) 

The covariance matrix C is then given by 

C =
∑N

j=1

(
Fi − Fii

)(
Fi − Fi

)T
(3) 

After calculating the eigenvalues and eigenvectors, the features Fi can be reconstructed by selecting the first k eigenvectors which 
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correspond to the first biggest k eigenvalues. DL has been experiencing fast development and wide utilization in different areas, 
especially in the past few years. Also, many CAD systems for image analysis have used DL technique due to the excellent performance 
of DL. Therefore, it is heuristic to combine feature reconstruction with DL technique for the exploration of the better-performed image 
analysis system. Since the outbreak of COVID-19, experts in computer science community have been working hard to develop CAD 
systems for the detection of pneumonia caused by COVID-19, which helps to detect COVID-19. 

In many of those works, transfer learning is prevalently used due to its advantages. Usually, training a deep CNN from scratch takes 
a long time while the performance of the trained CNN could be far from satisfaction. Therefore, transfer learning, a technique that 
reuses existing resolutions for new tasks, can then be used to build CNN models more effectively. In transfer learning, base networks 
are networks trained on different datasets, usually on ImageNet. The architectures of base networks are adjusted correspondingly to 
meet the specific image analysis tasks. The adjusted networks can then be trained by the interested datasets. Also, the base networks 
can be used as feature extractors that provide extracted features for classifiers. Given the stated advantages of transfer learning, 
transfer learning has been used in the detection of pneumonia. For example, a deep transfer learning model named ChestNet was 
proposed for the detection of multiple thorax diseases including pneumonia (Wang & Xia, 2018). The authors used ResNet architecture 
as the backbone, which achieved an average area under the curve (AUC) at 0.7810 per-class on X-ray images. The model was 
implemented under CAFFE framework (Jia et al., 2014) while it was trained on a high-performance configuration. Another similar 
transfer-learning-based work can be found at (Rajpurkar et al., 2017). Based on DenseNet, a model named CheXNet was proposed for 
detection of pneumonia based on X-ray images. The performance of the proposed model even surpassed the average performance of 
radiologists. Since the outbreak of COVID-19, there are also considerable works on the detection of pneumonia caused by it. To 
validate the performance of AI on the detection of COVID-19, authors in Chowdhury et al. (2020) explored the performance of the 
state-of-the-art CNNs on the detection task. In their work, they transferred AlexNet, SqueezeNet, ResNet-18 and DenseNet201 (He 
et al., 2016; Huang, Liu, Van Der Maaten & Weinberger, 2017; Iandola et al., 2016; Krizhevsky Alex, 2012), amongst which Squee-
zeNet showed the best performance on an augmented dataset. Before augmentation, there are 190 COVID-19, 1345 viral pneumonia, 
and 1341 normal X-ray images in the original dataset. 130 X-ray images from 190 COVID-19 were randomly selected into the training 
set. To balance the samples in the dataset, each category of images was then augmented to around 2600. Rotation, scaling and 

Fig. 1. The flow chart of the proposed framework.  
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translation were three augmentation methods applied. The reported highest accuracy, sensitivity and specificity in the work were 
98.3%, 96.7%, and 100%. However, only 60 COVID-19 positive X-ray images were analysed in the test set. In another work (Joaquin, 
2020), a so-called Inception CNN was transferred on a dataset that comprises of 1119 Computerized Tomography (CT) scans (Szegedy 
Christian et al., 2015). The proposed model showed promising results on the internal and external dataset with the accuracy of 89.5% 
and 79.3% respectively, which remains to be improved to meet practical requirements. Inception has also been introduced in the work 
(Wang et al., 2020). 453 confirmed COVID-19 images were analysed while 217 images were partitioned into the training set. The 
author claimed that deep learning is of great significance on extracting graphical features for diagnosis of COVID-19 as the proposed 
model showed an overall accuracy at 73.1% on the external dataset. Some other valuable works in the area can be found at (Abbas, 
Abdelsamea & Gaber, 2020; Apostolopoulos & Mpesiana, 2020; Bukhari, Bukhari, Syed & SHAH, 2020). 

One common problem in the detection of pneumonia by CAD systems is the lack of large-scale public datasets. While many works 
reported high performance, the numbers of images in the testing datasets are too few to form convincing results. Also, many of the 
works simply transferred the state-of-the-art CNNs to the classification task without further exploration of structural optimization 
while the reported performance heavily relies on the pre-determined parameters and hardware. To solve the stated issues, we proposed 
our CGNet framework to detect pneumonia based on large scale public X-ray datasets. Evaluation of a public COVID-19-caused 
pneumonia CT dataset also supported the proposed method. In the proposed framework, we first transferred the state-of-the-art 
CNNs for feature extraction instead of direct classification. Graph representations of extracted features are constructed based on 
the similarities of the features, which was measured by Euclidean distance between features. Each feature is then taken as a node in a 
graph while edges between nodes are connected when nodes were found to be neighbours according to Euclidean distance. The 
combined features are used for classification by our GNet, a simple graph neural network. Experiments on a public chest X-ray image 
dataset showed that our system implemented under CGNet framework surpassed the majority of the state-of-the-art methods while the 
sensitivity was extremely high. 

3. Methodology 

In general classification tasks, features of data are first extracted and then be classified by classifiers in traditional ML methods. In 
our proposed CGNet framework, there are mainly three individual components that correspond to feature extraction, feature recon-
struction and final classification respectively. However, unlike traditional ML methods, which heavily rely on manually-crafted fea-
tures, our framework extracts high-level abstract features by transferring the state-of-the-art CNNs in the first step. Graph 
representations are then delved into depth according to features‘ Euclidean distance. Finally, the classifiers are trained with features 
embedded with graph representation. The data flow of the proposed model under CGnet framework can be seen in Fig. 1. 

In Fig. 1, the procedures on obtaining trained CNNs is shown in left. The dark greened layers shown in transferred CNNs and trained 
CNNs are new top layers that replace original top layers in CNNs. The arrows in orange and blue show the flows of the training set and 

Fig. 2. General architecture of CNNs.  
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the test set. When implementing our models for pneumonia detection under CGNet framework, we choose CNNs that performed best 
on the test set as feature extractors. GNet, which takes features combined with graph representations as input, finally classifies images 
into normal and pneumonia. We will have a detailed illustration of each component as follows. 

3.1. Feature extraction by transferred CNNs 

Unlike traditional ML methods that utilize manually-designed algorithms for ad hoc tasks, we use deep- learning-based algorithms 
that have a higher superiority on generalization. Feature extraction plays a key role in the classification task, which directly determines 
the overall performance of the following classifiers. Primarily, we implement feature extraction by deploying transfer learning 
technique. In our feature extraction stage, the state-of-the-art networks are first transferred to the binary classification task by 
replacing top layers with new layers. After training with the training set, CNNs that can provide preliminary results as well as features. 
Generally, CNNs are trained on ImageNet (Deng et al., 2009) that give 1000-categories classification results. The general architecture 
of CNNs is given in Fig. 2. After transferred the state-of-the-art networks, we chose the CNN that gives the best result on the test set as a 
feature extractor for following GNet. 

To transfer CNNs pre-trained on ImageNet, we first removed the top layers of CNNs and then added new layers including one 
dropout layer, one transitional fully-connected layer with 256 channels and the final 2 channel fully-connected layer for classification. 
Dropout layer is added to prevent overfitting problem during the training session. Information of features would suffer from significant 
loss if the dimensions of feature shrink rapidly. Therefore, a transitional fully-connected layer is placed on the top of the dropout layer 
to prohibit heavy information loss. The detailed architecture of transferred CNNs can be seen in Fig. 3, where FC256 and FC2 stand for 
two fully-connected layers with 256 and 2 channels respectively. The connection between the final pooling layer and Softmax layer is 
replaced by the connection between the final pooling layer and newly added dropout layer. After training the transferred networks 
with pneumonia dataset with a limited number of epochs, the parameters within CNNs are fine-tuned towards the desired parameters 
that give better representations of the dataset. The details about the acquisition of features under our framework can be found in 
Algorithm 1, which includes two states that are network transferring and feature extraction, where the extracted features are analysed 

Fig. 3. Architecture of transferred CNNs. FC256 and FC2 stand for fully connected layers with 256 and 2 channels respectively.  

Algorithm 1 
Feature acquisition.  

Stage 1: Network transferring 
Step 1.1: Load pre-trained state-of-the-art networks; (trained on ImageNet;) 
Step 1.2: Remove the Softmax layer and classification layer; 
Step 1.3: Add new layers including dropout, FC256, FC2, new Softmax layers, and new classification layers; 
Step 1.4: Train new networks on the training set of pneumonia dataset with predefined parameters; 
Step 1.5: Save trained networks and parameters; 
Stage 2: Feature extraction 
Step 2.1: Load trained networks; 
Step 2.2: Input the dataset to trained networks for feature extraction; 
Step 2.3: Extract features produced by fully-connected layer FC256.  
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for underlying graph representation. 

3.2. Graph embedded feature reconstruction 

We use graph information extracted from features to reconstruct the features. The reason why we do this is that individual feature 
will be enhanced when reconstructed by neighbour features. Features here refer to features extracted by trained CNNs. To build graphs 
of features, each feature extracted from each image is taken as a node of the graphs. For efficient computation, features are partitioned 
into batches. Given the features F ∈ RD×M, where Dis the number of features in the dataset and M is the dimension of the features. Let 
the batch size to be N, then the number of batches n can be denoted as: 

n = ⌈D /N⌉ (4)  

where ⌈ ⋅ ⌉ is the ceiling operation. Then F can be rewritten as: 

F =
[
F1

T ,⋯,Fi
T ,⋯,Fn

T]T(1 ≤ i ≤ n) (5)  

Fi =
[
f 1,⋯, f j,⋯, f s

]T
(1 ≤ j ≤ s) (6)  

where f j ∈ RM× 1and Fi ∈ RS×M. Specifically, fjis the feature extracted by the previous component. For each Fi, a corresponding graph 
Gi ∈ RMthat represents the underlying relationship between nodes by the paired variables (Vi, Ei) can be built. Vi stands for the nodes 
comprised of each feature fj in the batch, while Ei is the edges between nodes. We believe edges exist between each node and its nearest 
k neighbours when k smallest Euclidean distance found. Ei is represented in a form of the adjacency matrix Ai ∈ RS×S. Given a node 
fjand its neighbour f j+1, the value at the position (j, j + 1) of Ai is set to be a positive number that shows two nodes are related. Hence, 
the key to build Gi is to calculate the adjacency matrix Ai (Liang & Bose, 1996). The procedures of graph generation can be seen in 
Algorithm 2. 

When building graph Gi for each batch of features Fi, we first calculate the distance between each feature to the rest features in the 
batch. By doing so, we can have a distance matrix Distance ∈ RS×S. After sorting each row of the acquired Distancein ascending order, 
the corresponding index matrix Index ∈ RS×Sthat records the index of nearest k features in the batch Fi before sortation can be pro-
duced. For each row of Ai, the value of one position in the row is set to 1 when the neighbour at the position is found to be one of the 
nearest k neighbours. 

Algorithm 3 
Acquisition of adjacency matrix Ai.  

Step 1: Initialization (See Eqs. (7)-10) 
Initialize adjacency matrix Ai; 
Initialize distance between features Distance; 
Initialize variable Sorted_Distance for sorted distance; 
Initialize variable Index; 
Step 2: Distance calculation 
for a = 1:S 
for b = 1:S 
if a!=b 
Distance(a,b) = sum(fa − f b);  
end 
end 
end 
Step 3: Output Ai 

for a = 1:S 
[Sorted Distance(a, :), Index(a, :)] = sort(Distance(a, :));  
for c = 1:k 
Ai(a, Index(a, c)) = 1;  
end 
end 
then output Ai.  

Algorithm 2 
Graph generation.  

Divide features into batches; 
For each batch of features, let each feature in the batch be the node; 
Calculate the Euclidean distance between each node to the rest nodes in the graph; 
Find nearest k neighbours for each node; 
Assign a positive value at positions that correspond to k neighbours.  
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The pseudocode of acquisition of Ai can be found in Algorithm 3. At the initialization stages, the four variables are initialized as: 

Ai = zeros(S, S) (7)  

Distance = Infinity(S, S) (8)  

Sorted Distance = zeros(S, S) (9)  

Index = zeros(S, S) (10) 

Specifically, the Distance is calculated according to: 

Distance(j,m) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑M

h=1

(
fj(h, 1) − fm(h, 1)

)2

√
√
√
√ (11) 

After we calculated Ai, each feature fj in the batch Fi is reconstructed according to: 

f j = Ãj
iFi (12) 

Ãj
iis the jth row of Ãi, which is normalized adjacency matrix Ai. Therefore, the reconstructed feature batch F′

ican be denoted as: 

F′

i = ÃiFi (13)  

When considering normalizing Ai, we first calculate a degree matrix D∈ RS×S, where: 

D(j, j) =
∑S

h=1
Ai(j, h) (14) 

That is to say: 

D(j, h)= {
k, if j = h
0, if j! = h (15) 

We then normalize Ai by: 

Ãi = D− 1
2(Ai + I)D− 1

2 (16) 

I is the identity matrix. After multiplying Ãiwith Fi, we then have reconstructed feature batch F′
i for classification. For pneumonia 

detection task, the reconstructed feature batches are input to the proposed GNet in the developed system. 

Fig. 4. Feature reconstruction and the architecture of GNet.  
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3.3. GNet for classification 

We name our classifier as GNet when implementing our system for the detection of pneumonia because the proposed GNet is a 
single layer graph neural network where inputs are the nodes in the graph and the graph representations of the graph. In more general 
cases, traditional classifiers including ANN (Artificial Neural Network) and SVM (Support Vector Machine) can be used for classifi-
cation based on extracted features. 

Feature reconstruction procedures and architecture of GNet are shown in Fig. 4. In feature reconstruction, features mean the 
features extracted by the trained CNNs. In our scenario, GNet, which has the same structure as traditional ANNs, is different from 
traditional ANNs on input, where ANNs usually use features extracted with no postprocessing. The main reason why we don’t 
introduce more hidden layers is that extra hidden layers will introduce an even large number of parameters, which could also trigger 
the overfitting problem. Also, we’ve obtained most representative features by reconstruction, and therefore only one hidden layer is 
introduced. The number of input channel is 256. 

Given the expected output of batch Fi is FEi and the real output of GNet is FOi, then FOi is: 

Foi = δ(Fhi
′W + b) (17)  

Fhi
′

= Fi
′

Wh + bh (18)  

where 

Wh ∈ R256 × 32

W ∈ R32 × 2 (19)  

bh =
[
bh

1
T
,⋯, bh

j
T
,⋯, bh

S
T
]T

bh
1 = bh

j = bh
S ∈ R1 × 32(1 ≤ j ≤ S)

b ∈ RS× 2

(20)  

where δ( ⋅ ) is the Softmax activation function that can be extended as: 

δ(z)j =
ezj

∑2
c=1ezc

(21) 

The errors ▵Ei between FEi and FOi is: 

▵Ei = −
∑

FEiln(Foi) (22) 

The weights W and bias b are updated according to stochastic gradient descent with momentum (SGDM) algorithm: 

W = θW + (1 − θ)
∂▵Ei

∂W
(23)  

b = θb + (1 − θ)
∂▵Ei

∂b
(24)  

where θ is the momentum rate. Wh and bh can be calculated according to the chain-rule. By iteratively updating W, Wh, b, and bh, we 
then have a trained ANN for our binary classification task here. Thereafter, we input each batch feature F′

i for the classification. By 
aggregating all predicted categories of all batches, we then receive classification results for data in the test set. The pseudocode of our 
proposed framework can be found in Algorithm 4. 

Algorithm 4 
Pseudocode of CGNet framework.  

Loading CNNs pre-trained on ImageNet; 
Remove top layers and add new top layers for the classification task; 
Train the modified CNNs on the training dataset; 
Obtain features through a fully-connected layer whose output size is 1000 from the trained CNNs; 
Divide features into batches of same sizes; 
Build graphs in each batch of features; 
Reconstruct features according to graph information; 
Train neural networks with reconstructed features; 
Acquire features for test set by repeat Step 4 to Step 7 on the test set; 
Test the trained neural networks with the reconstructed test features.  
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3.4. Evaluation metrics 

To measure the performance of the proposed model, we use common metrics including Sensitivity, Specificity, Accuracy, Precision 
and F1 score like many other works to measure the performance of our proposed classifier. To calculate the metrics, True Positive (TP), 
True Negative (TN), False Positive (FP) and False Negative (FN) are introduced. 

The higher the TP and TN, the better performance of classifiers that can detect true pneumonia images and normal images; The 
lower the FP and FN, the fewer mistakes of classifiers that misclassify normal images as pneumonia images and vice versa. The 
sensitivity is related to TP by: 

Sensitivity =
TP

TP + FN
(25) 

The specificity, which implies the capability of classifiers on recognition of normal images, can be denoted by TN and FP by: 

Specificity =
TN

TN + FP
(26) 

The overall performance of classifiers is measured by the accuracy: 

Accuracy =
TN + TP

TN + FP + TP + FN
(27) 

The Precision measures the percentage of real pneumonia images out of all predicted pneumonia images: 

Precision =
TP

TP + FP
(28) 

F1 shows the classification ability of the classifiers: 

F1 = 2 ×
Precision× Accuracy
Precision+ Accuracy

(29)  

4. Experiment design 

In this section, we will briefly go through the details about the datasets (Section 4.1) used in this research, followed by experiment 
settings (Section 4.2) that gives the details about the experiment configuration. The performance of the transferred networks (Section 
4.3) is given before we move to the exploration of batch size N and the number of neighbours k for GNet in Section 4.4. The effec-
tiveness of feature reconstruction and comparison of feature reconstruction methods are given in Section 4.5 and Section 4.6 
respectively. We conclude this section by comparing our proposed method with the state-of-the-art methods in Section 4.7. 

Fig. 5. Samples of dataset1.  
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4.1. Datasets 

In this research, we validated our proposed feature reconstruction method on two public datasets from two different modalities. We 
used one cohort that has been confirmed with pneumonia caused by bacteria, which we named it as dataset1. In the dataset1, which is 
publicly available at (Chest X-Ray Images (Pneumonia) 2020), there are in total 5856 normal and pneumonia X-ray images. To provide 
a fair comparison platform for different systems, the training set, validation set and the test set have been partitioned beforehand. 
Examples of normal and pneumonia samples can be seen in Fig. 5. Details about the dataset1 are shown in Table 1. 

We also examined our proposed method on another public CT-based pneumonia dataset in which the pneumonia was caused by 
COVID-19 and we named the dataset as dataset2 (Zhao, Zhang, He & Xie, 2020). Some sample images are shown in Fig. 6. The size of 
three-channel RGB images varies from 720 × 541 × 3 to 725 × 551 × 3. 

Compared to images acquired through X-ray instrument, CT lung images show more advantages on image resolutions and fine- 
grained details. The detailed composition of dataset 2 is shown in Table 2. 

4.2. Experiment settings 

The configuration of this research is a personal laptop with 16 G RAM and GPU GTX1050. As we have to train transferred networks 
and the following ANN and GNet in a sequence, we have two different sets of parameters. Deep learning toolbox provided by 
Mathworks is used as the framework. For transferred networks, they are trained for 20 epochs while the initial learning rate is 10− 4. 
Batch size is 8 to prevent system crash due to the memory. We use the stochastic gradient descent with momentum (SGDM) as the 
optimization method. Also, we have the learning rate halved every 5 epochs to ensure the convergence. When training transferred 
networks with the training set, images in the training set shuffle at every epoch. Detailed settings can be seen in Table 3, which 
remained unchanged during the training process of networks on two datasets. 

When constructing graphs for reconstruction, the size N of each batch and the number of neighbours k within each batch should be 
carefully chosen to make sure best performance of GNet can be achieved. When training ANN with features extracted from the 
transferred networks, we increased the training epochs to be 40 while other parameters have remained unchanged. We use the same 
parameters throughout the experiments if there are no other specifications. Then we vary N and k to explore the relationship between 
N, k and the performance of the ANN. Details will be presented in the following sections. 

4.3. Performance of the transferred networks 

To find out the best-performed state-of-the-art networks that can be transferred to our classification task here, we trained networks 
including AlexNet (Krizhevsky Alex, 2012), GoogLeNet (Szegedy Christian et al., 2015), SqueezeNet (Iandola et al., 2016), VGG16 
(Simonyan Karen, 2014), XceptionNet (Chollet, 2017), ResNet18 (He Kaiming et al., 2016), ResNet101, InceptionV3 (Szegedy, 
Vanhoucke, Ioffe, Shlens & Wojna, 2016), DenseNet201 (Huang et al., 2017). All of those networks are pre-trained on ImageNet for the 
1000-category classification task. To make a fair comparison amongst all of the networks, top layers including FC256, and FC2 are 
inserted between the Softmax layer and the dropout layer. The original Softmax layer and classification layer are, therefore, replaced 
by new Softmax layer and a classification layer. The numbers of learnable parameters of the networks introduced are listed in Table 4. 

After training with the dataset1, the results of different networks are organized in Table 5 while ROC curves are shown in Fig. 7. 
On the dataset1, strangely, XceptionNet performed best in all the transferred networks though it was not the deepest one nor newest 

one. The reasons why XceptionNet performed best could be two folds. One is the architectural novel of XceptionNet. In XceptionNet, 
shortcut connection technique, which was also being deployed in ResNet and DenseNet, is used besides depthwise separable convo-
lution, which greatly lowers the number of training parameters in the networks. Another possible reason is the size of the input. Note 
that the input size of XceptionNet is 299 × 299 × 3 while the input size of other networks is no greater than 227 × 227 × 3. However, 
the original size of the images is greater than 1000 × 1000 × 3. Therefore, XceptionNet experienced much less information loss, which 
allows more representative features to be extracted. Interestingly, the performance of the networks can be even worse when the depth 
of networks going deeper, which also requires a longer time for training. Given this, we choose XceptionNet as our feature extractor in 
this classification task though the performance is still far away from satisfaction. 

Similarly, we adapted and trained the same state-of-the-art networks on dataset2. The results on the validation set and the test set 
are shown in Tables 6 and 7 respectively. The ROC curves are shown in Fig. 8. 

Both on the validation set and the test set, DenseNet201 showed the best performance amongst all the state-of-the-art networks. As 
can be seen from Table 4, the number of learnable parameters in DenseNet201 is not the biggest one, however, the number of layers of 
DenseNet201 is much greater than that of the rest of the network compared to that of the other state-of-the-art networks. Therefore, 

Table 1 
Details of the dataset1.  

Set Normal Pneumonia Total Number 

Training 1341 3875 5216 
Validation 8 8 16 
Testing 234 390 624 
Overall 1583 4273 5856  
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DenseNet201 could be benefited from the high density of connections between the layers, which allows more representative features to 
be learnt. Due to the imaging modality difference between X-ray and CT, XceptionNet, which performed best on the dataset1, turned 
out to have poor performance on dataset2. Therefore, we used DenseNet201 as the feature extractor when implementing GNet on 
dataset2. 

Fig. 6. Sample images from the dataset2.  
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4.4. The influence of batch size N and number of neighbours k 

For dataset1, after extracting features by XceptionNet, we then reconstruct features according to generated graphs. However, the 
batch size N of features and the number k of neighbours being considered are two parameters that are related to the performance of the 
proposed GNet. Therefore, we explored different sets of N and k to optimize the performance of GNet. In Table 8, we show a result of 
GNet when N is 32 while k varies from 4 to 28. In Fig. 9, the ROC curves of GNet with different configurations are shown. As can be 
seen, all of the GNets showed an AUC over 0.96 with high AUC at 0.99 achieved. Interestingly, the performance of GNet when k equals 
to 24 seems to be saturated to that of GNet when k equals to 28 

From Table 8, we can conclude that the performance of GNet increases along with the increment of neighbours considered. To 
explore the influence of batch size N to the performance of GNet, we examined the performance when N is 64, 96, 128 and 156 while k 
keeps varying. From Tables 9, Table 10, Table 11, and 12, we showed the performance of GNet when N is 64, 96, 128 and 156 
respectively. The corresponding ROC curves are shown in Figs. 10–13 respectively. 

A graph that showed the relationship between batch size N and the number of neighbours k on dataset1 is given in Fig. 14. As can be 
seen from Fig. 14, the accuracy increases along with the k when N is small. However, the accuracy seems to be saturated when N is 
relatively large though k increases. However, it is noticeable that the accuracy imrpoves along with the increament of k/N rate. 

Following a similar pattern, we choose the trained networks that showed the best performance on the dataset2, which was 

Table 4 
Numbers of learnable training parameter in the state-of-the-art networks.  

Model name Number of parameters(Millions) Number of Layers 

AlexNet 6.10 25 
GoogLeNet 0.70 144 
SqueezeNet 0.12 68 
VGG16 13.84 41 
XceptionNet 2.29 170 
ResNet18 1.17 71 
ResNet101 4.45 347 
DenseNet201 1.98 708  

Table 5 
Performance of state-of-the-art networks on the dataset1.  

Model name Specificity Sensitivity F1 Precision AUC Accuracy 

AlexNet 0.9974 0.5000 0.6648 0.9915 0.9747 0.8109 
GoogLeNet 0.9949 0.4744 0.6398 0.9823 0.9680 0..7997 
SqueezeNet 0.9974 0.4402 0.6095 0.9904 0.9730 0.7885 
VGG16 1.0000 0.3462 0.5143 1.0000 0.9627 0.7548 
XceptionNet 0.9872 0.6453 0.7744 0.9679 0.9539 0.8590 
ResNet18 0.9974 0.5598 0.7158 0.9924 0.9788 0.8333 
ResNet101 1.0000 0.5385 0.7000 1.0000 0.9674 0.8269 
DenseNet201 1.0000 0.4487 0.6195 1.0000 0.9705 0.7933  

Table 3 
Training parameters for transferred CNNs.  

Parameters Value 

Maximum training epoch 20 
Initial learning rate 10− 4 

Batch size 8 
Learning rate drop period 5 
Learning rate drop rate 0.5 
Optimization method SGDM 
Shuffle of the train set Each epoch  

Table 2 
Details of the dataset2.  

Set Normal Pneumonia Total Number 

Training 234 191 425 
Validation 58 60 118 
Testing 105 98 203 
Overall 397 349 746  
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Fig. 7. ROC curves of the state-of-the-art networks on the test set of dataset1.  

Table 6 
Performance of the state-of-the-art networks on the validation set of dataset2.  

Model name Specificity Sensitivity F1 Precision AUC Accuracy 

AlexNet 0.7586 0.7333 0.7458 0.7586 0.7957 0.7458 
GoogLeNet 0.6552 0.4667 0.5185 0.5833 0.6293 0.5593 
SqueezeNet 0.5517 0.7167 0.6667 0.6232 0.6293 0.6356 
VGG16 0.6724 0.7500 0.7258 0.7031 0.7888 0.7119 
XceptionNet 0.6897 0.6333 0.6552 0.6786 0.6718 0.6610 
ResNet18 0.7069 0.7333 0.7273 0.7213 0.8491 0.7203 
ResNet101 0.7759 0.6167 0.6727 0.7400 0.7787 0.6949 
DenseNet201 0.8276 0.7000 0.7500 0.8077 0.8678 0.7627  

Table 7 
Performance of the state-of-the-art networks on the test set of dataset2.  

Model name Specificity Sensitivity F1 Precision AUC Accuracy 

AlexNet 0.7429 0.6735 0.6911 0.7097 0.7920 0.7094 
GoogLeNet 0.7619 0.6837 0.7053 0.7283 0.7913 0.7241 
SqueezeNet 0.7143 0.6531 0.6667 0.6809 0.6909 0.6847 
VGG16 0.8095 0.6939 0.7312 0.7727 0.8331 0.7537 
XceptionNet 0.6381 0.7041 0.6732 0.6449 0.7030 0.6700 
ResNet18 0.7619 0.6837 0.7053 0.7283 0.7883 0.7241 
ResNet101 0.7714 0.6429 0.6811 0.7241 0.7749 0.7094 
DenseNet201 0.8571 0.6735 0.7374 0.8148 0.8597 0.7685  
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DenseNet201 in this scenario, as the feature extractor. We then vary k and N to specify the best configuration of the proposed GNet, 
where N ∈ [32, 64, 96], k increases from one-quarter of N to the number close to N by an integer multiple of 4. Table 13 and Table 14 
showed the results of GNet on the validation set and the test set of dataset2 when N = 32 respectively. The ROC curves are shown in 
Fig. 15. 

We also evaluated the performance of GNet when N is 64 while k varies from 8 to 56 by integer multiples of 4. Details about the 
results on the validation set and the test set of dataset2 can be seen in Tables 15 and 16 while ROC curves are shown in Fig. 16. 

Due to the limited number of images in the validation set on dataset2, the maximum N is chosen to be 96 instead of 128 on dataset1. 
The detailed results of GNet on the validation set and the test set when N = 96 are shown in Tables 17 and 18 while the corresponding 
ROC curves are shown in Fig. 17. 

Similarly, we drew graphs that represent the relationship between the performance and k/N rate on the validation set and the test 
set of dataset2 as can be seen in Fig. 18. 

As can be seen, the best configuration of GNet on the validation set and the test set are quite different. The performance of GNet 
fluctuates when k and N are not optimal. Also, due to the limited number of images, a greater number of N doesn’t guarantee high 
performance. However, a rough conclusion can be drawn from Fig. 18 is that when k/N is greater than or close to 0.8 an overall higher 
performance can be found. A similar conclusion can be found in Fig. 14. 

4.5. Effectiveness of feature reconstruction 

To evaluate the performance of the proposed method on the detection of pneumonia, we then directly trained XceptionNet with the 
dataset1 and used the trained XceptionNet as the feature extractor. ANN with the same structure as our GNet is used as the classifier. To 
validate the effectiveness of feature reconstruction on dataset1, we also examined the performance of ANN when the input is originally 
extracted features by XceptionNet. Besides, SVM and Decision Tree, two classical supervised classifiers, have been introduced to make 
comparisons with our proposed model. To avoid confusion, we name ANN trained by original features as ANNraw. Two networks are 
trained with the same training parameters. The classification results of the two trained networks are given in Table 19. 

Parameters in the parenthesis mean the given parameters are used to train GNet. As can be seen, the networks GNet trained with 
reconstructed features performed much better than the network trained with original features extracted by XceptionNet. Though batch 
size N and k varies, the accuracy showed a consistent gain compared to the results given by ANNraw. When it comes to computational 

Fig. 8. ROC curves on dataset2.  

Table 8 
Performance of GNet on the dataset1 when N = 32 and k = 4, 8, 12, 16, 24, 28.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

4 1.0000 0.4701 0.6395 1.0000 0.9602 0.8013 
8 1.0000 0.7650 0.8668 1.0000 0.9892 0.9119 
12 1.0000 0.5812 0.7351 1.0000 0.9925 0.8429 
16 0.9949 0.9231 0.9558 0.9908 0.9977 0.9679 
24 1.0000 0.9103 0.9530 1.0000 0.9999 0.9663 
28 1.0000 0.9103 0.9530 1.0000 0.9999 0.9663  

X. Yu et al.                                                                                                                                                                                                              



Information Processing and Management 58 (2021) 102411

15

Fig. 9. ROC curves of GNet on the test set of dataset1 when N = 32.  

Table 9 
Performance of GNet on the test set of dataset1 when N = 64 and k = 8, 16, 24, 28, 32, 48, 56.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

8 1.0000 0.6325 0.7749 1.0000 0.9837 0.8622 
16 1.0000 0.4487 0.6195 1.0000 0.9872 0.7933 
24 0.9923 0.8205 0.8951 0.9846 0.9978 0.9279 
28 0.9974 0.7735 0.8702 0.9945 0.9979 0.9135 
32 0.9974 0.7735 0.8702 0.9945 0.9979 0.9135 
48 0.9872 0.9744 0.9764 0.9785 0.9985 0.9824 
56 0.9436 1.0000 0.9551 0.9141 0.9998 0.9647  

Table 10 
Performance of GNet on the test set of dataset1 when N = 96 and k = 12, 24, 36, 48, 60, 72, 84.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

12 0.9974 0.6795 0.8071 0.9938 0.9842 0.8782 
24 1.0000 0.4615 0.6316 1.0000 0.9793 0.7981 
36 0.9974 0.7094 0.8279 0.9940 0.9932 0.8894 
48 0.9846 0.8462 0.9041 0.9706 0.9936 0.9327 
60 1.0000 0.6923 0.8182 1.0000 0.9964 0.8846 
72 1.0000 0.7179 0.8358 1.0000 0.9974 0.8942 
84 0.9487 1.0000 0.9590 0.9213 0.9985 0.9679  

X. Yu et al.                                                                                                                                                                                                              



Information Processing and Management 58 (2021) 102411

16

Fig. 10. ROC curves of GNet on the test set of dataset1 when N = 64.  

Table 12 
Performance of GNet on the test set of dataset1 when N = 156 and k = 16, 32, 48, 64, 80, 96, 112, 128, 144.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

16 0.9974 0.6325 0.7728 0.9933 0.9795 0.8606 
32 0.9949 0.7179 0.8317 0.9882 0.9892 0.8910 
48 0.9974 0.5256 0.6872 0.9919 0.9910 0.8205 
64 0.9923 0.8034 0.8847 0.9843 0.9915 0.9215 
80 0.9692 0.9402 0.9442 0.9483 0.9924 0.9583 
96 0.9462 0.9915 0.9631 0.9170 0.9939 0.9631 
112 0.9282 1.0000 0.9435 0.8931 0.9969 0.9551 
128 0.8974 1.0000 0.9213 0.8540 0.9971 0.9359 
144 0.9256 1.0000 0.9416 0.8897 0.9969 0.9535  

Table 11 
Performance of GNet on the test set of dataset1 when N = 128 and k = 16, 32, 48, 64, 80, 96, 112.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

16 1.0000 0.5385 0.7000 1.0000 0.9911 0.8269 
32 1.0000 0.4573 0.6276 1.0000 0.9898 0.7965 
48 0.9949 0.8376 0.9074 0.9899 0.9976 0.9359 
64 0.9897 0.9487 0.9652 0.9823 0.9987 0.9744 
80 0.9846 0.9872 0.9809 0.9747 0.9987 0.9856 
96 0.9795 1.0000 0.9872 0.9669 0.9989 0.9872 
112 0.9436 1.0000 0.9551 0.9141 0.9989 0.9647  
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costs on training two networks, our GNet takes a longer time because of graph construction and graph-feature combination process 
during feature reconstruction. However, our proposed GNet becomes more advantageous in the prediction phase as the network allows 
simultaneous classification for multiple images. Considering the computational capability of our laptop, the cost is still expedient. 
Therefore, we believe the proposed feature reconstruction method will be transplantable to other machines as well. Therefore, we 
believe our reconstruction method is effective to improve the performance of ANN. 

On dataset2, DenseNet201 showed the best performance amongst all of the state-of-the-art networks. Hence, the input of ANN and 
GNet thereby are the features extracted by DenseNet201.The same architecture of ANN and GNet is employed when making the 
comparison. As can be seen in Table 20, the performance of GNet is significantly higher than ANN and SVM. 

4.6. Comparison of feature reconstruction methods 

In this section, we compared our proposed feature reconstruction method with PCA-based feature reconstruction method. The 
eigenvalues and eigenvectors are calculated and selected in an descending order. For two datasets, we ensure that the selected 
components are able to explain more than 98% of all variability. Therefore, the dimensions of features from two datasets have been 
reduced from 256 to 152 and 131 respectively. We then trained classifiers including ANN, SVM and decision tree based on the features 
reconstructed by PCA. Also, we recontructed the features from two datasets based on our graph-knowledge reconstruction method. For 
simplicity, we choose N to be 32 while k remains to be 16. 

As can be seen from Tables 19 and 21, the performance of ANN decreased slightly while the performance of SVM and decision tree 
increases. A contradictory conclusion can be drawn from Table 22 that SVM and decision tree performed even worse while the per-
formance of ANN has been improved significantly. Therefore, we may roughly conclude that both PCA-based reconstruction method 
and our method failed to significantly improve the performance of SVM and decision tree but our method indeed improves the 
specificity to 1. 

On dataset2, we just repeated the same procedures and presented the results in Tables 23 and 24 respectively. Note that the size of 
the input of ANN has been adjusted to 131 correspondingly. As can be seen, the performance of SVM remains unchanged when PCA is 
used while our method harmed the performance of SVM. For the decision tree, both methods improved the performance of the decision 

Fig. 11. ROC curves of GNet on the test set of dataset1 when N = 96.  
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tree. Based on the results from two datasets, we are convinced that our feature reconstruction method shows great advantage on the 
improving the performance of ANN while how to improve the performance of SVM and decision tree by our method remains to be 
explored. 

4.7. Comparison of state-of-the-art methods 

Considerable works are focusing on designing high accuracy systems for the detection of pneumonia. To provide a fair comparison, 
we compared our method to methods that have been validated on the same datasets. For pneumonia caused by common bacteria and 
virus, the performance of different methods is shown in Table 25. 

Sensitivity measures the ability of proposed methods on making correct diagnostic results on sick people as patients. Compared to 
high specificity, high sensitivity is of even greater significance, because healthy people misdiagnosed as the sick suffers much lower 
risk than patients misdiagnosed as healthy people. As can be seen, our method surpassed the majority of the state-of-the-art methods 
while our method achieved the highest sensitivity, which means our method shows the stronger capability of detecting pneumonia 
images. 

(The higher the sensitivity the better performance of the proposed methods on detecting real pneumonia images) 
To provide a fair comparison with methods based on chest CT images, we also compared our method with the state-of-the-art 

methods. Detailed results can be seen in Table 26. 
(The higher the sensitivity the better performance of the proposed methods on detecting real pneumonia images) 

5. Discussion 

In this paper, we proposed a novel classifier for the detection of pneumonia based on X-ray and CT images. The proposed feature 
reconstruction method greatly improved the performance of the neural network with simple architectures. Before inputting images to 
all models, preprocessing methods are applied to adapt the images for the models. As the sizes of images in the dataset may vary, 
images are resized for different networks to meet the size requirement of input. Also, the images are not squared while the original 
height and width of images are greater than 1000 pixels. Therefore, distortion may be introduced due to image resizing. Though 
XceptionNet performed best amongst all CNNs when dataset1 was concerned, it is, however, could be the larger input images that 

Fig. 12. ROC curves of GNet on the test set of dataset1 when N = 128.  
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allow more features to be extracted. In datatset1, images are one-channel grey-scale images. Consequently, images in datasets are 
converted to three-channel RGB images. For CT-based images in dataset2, DenseNet201, which could be benefited from the rich 
connections between layers, showed the best performance amongst all of the networks. Except for the procedures mentioned above, no 
other data augmentation methods are involved. As for similarity measurement in the graph generation process, many other methods 
can be applied. However, Euclidean distance is the most straightforward way to quantify the difference between features. When 
reconstructing features, the feature to be reconstructed can be reconstructed by the top k nearest neighbours found. However, the 

Fig. 13. ROC curves of GNet on the test set of dataset1 when N = 156.  

Fig. 14. The relationship between k/N and accuracy on dataset1. (k/N means the ratio between the number of neighbours and batch size N.).  
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performance of reconstruction could be significantly affected by the distribution of features in the same batch. Therefore, we choose to 
include the original feature as one of the top k nearest neighbours and therefore mitigate the influence brought by distributions of 
features. Graph construction and graph-feature combination are the two most important procedures during the process of feature 
reconstruction. However, these two procedures bring no significant computational costs both in training and prediction period. In 
general, the validation set is used to validate the performance of the proposed classifiers. However, the validation set in the dataset 
involved is too small to act as a useful validation set. Therefore, the dataset is suggested to repartition to form real useful validation set. 

6. Conclusion 

In this paper, we proposed a novel deep learning model for the detection of pneumonia by integrating graph knowledge for feature 
reconstruction. We hypothesise that features will be more representative if they are reconstructed by neighbours. Based on this, we 
proposed a graph-based reconstruction method, which turns out to be simple yet effective. If we consider the reconstruction as a 
component in the following GNet, then the proposed GNet turns into a simple graph neural network with only one layer. Experiments 
on a large dataset showed the high performance of the proposed feature reconstruction method and the proposed model, whose 
performance surpassed the state-of-the-art methods. The conclusion is also supported by the results on a public COVID-19 CT-image 
dataset, where we achieved 99% accuracy. 

However, some limitations of this research remain and will be listed as our future work. The sizes of datasets are still very small to 

Fig. 15. Performance of GNet on dataset2 when N = 32.  

Table 13 
Performance of GNet on the validation set of dataset2 when N = 32 and k = 4, 8, 16, 20, 24, 28.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

4 0.6724 0.8833 0.8030 0.7361 0.8744 0.7797 
8 0.8966 0.7833 0.8319 0.8868 0.9080 0.8390 
16 0.8793 1.0000 0.9449 0.8955 0.9980 0.9407 
20 1.0000 0.75000 0.8571 1.0000 0.9862 0.8729 
24 0.6724 1.0000 0.8633 0.7595 0.9971 0.8390 
28 0.5862 1.0000 0.8333 0.7143 0.9980 0.7966  

Table 14 
Performance of GNet on the test set of dataset2 when N = 32 and k = 4, 8, 16, 20, 24, 28.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

4 0.8190 0.8980 0.8585 0.8224 0.9115 0.8571 
8 0.9810 0.8367 0.9011 0.9762 0.9709 0.9113 
16 0.9810 0.9286 0.9529 0.9785 0.9805 0.9557 
20 1.0000 0.8776 0.9348 1.0000 0.9862 0.9409 
24 0.7905 0.9796 0.8889 0.8136 0.9853 0.8818 
28 0.9810 0.9796 0.9796 0.9796 0.9850 0.9803  
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Fig. 16. Performance of GNet on dataset2 when N = 64.  

Table 15 
Performance of GNet on the validation set of dataset2 when N = 64 and k = 8, 16, 24, 28, 32, 48, 56.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

8 0.9138 0.5833 0.7000 0.8750 0.8805 0.7458 
16 0.7759 0.8833 0.8413 0.8030 0.8914 0.8305 
24 0.9655 0.5667 0.7083 0.9444 0.8874 0.7627 
28 0.7759 0.8333 0.8130 0.7937 0.9190 0.8051 
32 0.6897 0.9667 0.8529 0.7632 0.9287 0.8305 
48 0.9310 1.0000 0.9677 0.9375 0.9994 0.9661 
56 0.9828 0.9000 0.9391 0.9818 0.9966 0.9407  

Table 16 
Performance of GNet on the test set of dataset2 when N = 64 and k = 8, 16, 24, 28, 32, 48, 56.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

8 0.9905 0.6122 0.7547 0.9836 0.9560 0.8079 
16 0.9619 0.8571 0.9032 0.9545 0.9365 0.9113 
24 0.9905 0.6633 0.7927 0.9848 0.9218 0.8325 
28 0.9905 0.8776 0.9297 0.9885 0.9325 0.9360 
32 0.9810 0.8878 0.9305 0.9775 0.9457 0.9360 
48 0.9905 0.8367 0.9061 0.9880 0.9565 0.9163 
56 1.0000 0.6531 0.7901 1.0000 0.9565 0.8325  

Table 17 
Performance of GNet on the validation set of dataset2 when N = 96 and k = 12, 16, 24, 32, 48, 64, 80.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

12 0.8276 0.7000 0.7500 0.8077 0.8236 0.7627 
16 0.7414 0.6667 0.6957 0.7273 0.8336 0.7934 
24 0.7586 0.5500 0.6168 0.7021 0.7667 0.6525 
32 0.7586 0.6833 0.7130 0.7455 0.8034 0.7203 
48 0.7241 0.6822 0.7009 0.7193 0.8167 0.7034 
64 0.4138 0.9667 0.7632 0.6304 0.8037 0.6949 
80 0.8621 0.6167 0.7048 0.8222 0.8609 0.7373  
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produce more convincing results. The construction of the graph and the reconstruction of features are vital parts of our methods. 
However, there are also more details remain to be explored. For example, we chose a batch size N that is smaller than the dimensions of 
the input of ANN throughout all the experiments. What if we choose an even larger N that is greater than the dimension of the input? 
Also, the design of transitional fully connected layers and optimization of the ANN architecture remains to be further explored. 
However, ANN showed higher priority to other classifiers such as SVM and decision tree. Nevertheless, these details will be imple-
mented in our future work. 

Fig. 17. Performance of GNet on dataset2 when N = 96.  

Fig. 18. The relationship between k/N rate and Accuracy on dataset2.  

Table 18 
Performance of GNet on the test set of dataset2 when N = 96 and k = 12, 16, 24, 28, 32, 48, 64, 80.  

k Specificity Sensitivity F1 Precision AUC Accuracy 

12 0.9810 0.8469 0.9071 0.9765 0.9680 0.9163 
16 0.9524 0.7347 0.8229 0.9351 0.9352 0.8473 
24 0.9810 0.7653 0.8571 0.9740 0.9736 0.8768 
32 0.9810 0.9184 0.9474 0.9783 0.9857 0.9507 
48 1.0000 0.8878 0.9405 1.0000 0.9979 0.9458 
64 0.9333 0.9898 0.9604 0.9327 0.9935 0.9606 
80 1.0000 0.9796 0.9897 1.0000 0.9948 0.9901  
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Table 19 
Performance of networks feed with different features on dataset1.  

Model name Specificity Sensitivity F1 Precision Accuracy 

ANNraw 0.9385 0.7949 0.8378 0.8857 0.8846 
SVM 0.9821 0.5897 0.7282 0.9517 0.8349 
Decision Tree 0.9769 0.5470 0.6900 0.9343 0.8157 
GNet (N = 32, k = 16) 0.9949 0.9231 0.9558 0.9908 0.9679 
GNet (N = 64, k = 48) 0.9872 0.9744 0.9764 0.9785 0.9824 
GNet (N = 96, k = 84) 0.9487 1.0000 0.9590 0.9213 0.9679 
GNet (N = 128, k = 96) 0.9846 0.9915 0.9831 0.9748 0.9872 
GNet (N = 156, k = 96) 0.9462 0.9915 0.9631 0.9170 0.9631  

Table 20 
Performance of networks feed with different features on the test set of dataset2.  

Model name Specificity Sensitivity F1 Precision Accuracy 

ANNraw 0.7810 0.6633 0.6989 0.7386 0.7241 
SVM 0.8857 0.7347 0.7912 0.8571 0.8128 
Decision Tree 0.8286 0.6224 0.6893 0.7722 0.7291 
GNet (N = 32, k = 28) 0.9810 0.9796 0.9796 0.9796 0.9803 
GNet (N = 64, k = 28) 0.9905 0.8776 0.9297 0.9885 0.9360 
GNet (N = 96, k = 80) 1.0000 0.9796 0.9897 1.0000 0.9901  

Table 21 
Performance of classifiers when input is reconstructed by PCA on the test set of dataset1.  

Model name Specificity Sensitivity F1 Precision Accuracy 

ANN 0.9385 0.7778 0.8273 0.8835 0.8782 
SVM 0.9821 0.5940 0.7316 0.9521 0.8365 
Decision Tree 0.9846 0.6026 0.7402 0.9592 0.8413  

Table 22 
Performance of classifiers when input is reconstructed by our method on the test set of dataset1.  

Model name Specificity Sensitivity F1 Precision Accuracy 

ANN 0.9949 0.9231 0.9558 0.9908 0.9679 
SVM 1.0000 0.5427 0.7036 1.0000 0.8285 
Decision Tree 1.0000 0.4701 0.6395 1.0000 0.8013  

Table 23 
Performance of classifiers when input is reconstructed by PCA on the test set of dataset2.  

Model name Specificity Sensitivity F1 Precision Accuracy 

ANN 0.8095 0.5510 0.6279 0.7297 0.6847 
SVM 0.8857 0.7347 0.7912 0.8571 0.8128 
Decision Tree 0.9333 0.5816 0.7037 0.8906 0.7635  

Table 24 
Performance of classifiers when input is reconstructed by our method on the test set of dataset2.  

Model name Specificity Sensitivity F1 Precision Accuracy 

ANN 0.9810 0.9286 0.9529 0.9785 0.9557 
SVM 1.0000 0.2347 0.3802 1.0000 0.6305 
Decision Tree 0.9429 0.6122 0.7317 0.9091 0.7833  
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