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Abstract

oneidensis.

communities.

Background: Although solid surface-associated biofilm development of S. oneidensis has been extensively studied
in recent years, pellicles formed at the air-liquid interface are largely overlooked. The goal of this work was to
understand basic requirements and mechanism of pellicle formation in S. oneidensis.

Results: We demonstrated that pellicle formation can be completed when oxygen and certain cations were
present. Ca(ll), Mn(ll), Cu(ll), and Zn(ll) were essential for the process evidenced by fully rescuing pellicle formation
of S. oneidensis from the EDTA treatment while Mg (Il), Fe(ll), and Fe(lll) were much less effective. Proteins rather
than DNA were crucial in pellicle formation and the major exopolysaccharides may be rich in mannose. Mutational
analysis revealed that flagella were not required for pellicle formation but flagellum-less mutants delayed pellicle
development substantially, likely due to reduced growth in static media. The analysis also demonstrated that AggA
type | secretion system was essential in formation of pellicles but not of solid surface-associated biofilms in S.

Conclusion: This systematic characterization of pellicle formation shed lights on our understanding of biofilm
formation in S. oneidensis and indicated that the pellicle may serve as a good research model for studying bacterial

Background
Most microbes in natural ecosystems exist in highly
organized and functional interactive communities, which
are composed of cells attached to surfaces and/or to
each other either from a single species or multiple spe-
cies [1-7]. Microbial communities confer a number of
advantages for survival, such as nutrient availability with
metabolic cooperation, acquisition of new genetic traits,
and protection from the environment [4,8]. The most
common microbial communities are biofilms, which
refer to assemblages of cell on solid biotic or abiotic
surfaces. In recent years, the subject of microbial bio-
films has drawn a lot of attention and numerous studies
have provided important insights into the genetic basis
of biofilm development [5,7].

Pellicles, arising from the interface between air and
liquid and therefore frequently called air-liquid (A-L)
biofilms [9], have been well studied in an array of
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bacteria, such as Bacillus subtilis, Pseudomonas aerugi-
nosa, and Vibrio parahaemolyticus [7,10-12]. Pellicle
formation consists of at least three distinctive steps: (i)
initial attachment of bacteria to the solid surface (wall
of culture device) at the interface between air and liquid,
(ii) development of the monolayer pellicle initiated from
the attached cells, and (iii) maturation of pellicles with
characteristic three-dimensional architecture [1,11]. In
addition to cells, a variety of components, mainly extra-
cellular polymeric substances (EPS), are needed for
developing and maintaining the pellicle matrix. The
most extensively studied EPS include exopolysacchar-
ides, proteins, and extracellular DNA although contribu-
tions of these agents to the integrity of the pellicle
matrix may vary [11]. While the pellicle is generally
taken into account as a special form of biofilms [5,7,13],
its distinguishing characteristics justify that this type of
biofilm may serve as an independent research model
[12-14].

Many factors, including extracellular organelles such
as flagella and type IV pili, secreted proteins, and chemi-
cal agents supplemented in media such as iron and
phosphate, have been shown to play important roles in
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biofilm formation [5]. However, effects of these factors
on the biofilm formation process depend on the bacter-
ium under study. For example, flagella facilitate surface
adhesion for many species but it has been also observed
in other species that mutations resulting in aflagellate
and paralyzed nonmotile cells promote formation of a
multilayer biofilm [7]. In the case of iron, results are
even more inconsistent. In P. aeruginosa and Vibrio cho-
lerae, iron limitation hinders biofilm formation whereas
it facilitates the process in Actinomyces naeslundii and
Staphylococcus epidermidis [15,16]. It has been sug-
gested that variation in effects of these factors on bio-
film formation by particular species of bacteria may be
reflection of the different environmental niches where
they live [14,17-19].

Shewanella oneidensis MR-1, a facultative Gram-nega-
tive anaerobe with a remarkable respiratory versatility,
has been extensively studied for its biofilm development
[20-26]. However, little progress has been made to
understand biological mechanisms of pellicle formation.
This work represents the initial steps in characterizing
the process in S. oneidensis. We showed that successful
pellicle formation required the availability of oxygen and
the presence of certain metal cations. A further analysis
on metal cations revealed that Fe(II) and Fe(III) were
not as essential as Ca(II), Cu(II), Mn(II), and Zn(II) for
pellicle formation. In addition, results presented demon-
strated that a type I secretion pathway of S. oneidensis is
required for the pellicle development but not for attach-
ment to abiotic surface.

Results

Characteristics of S. oneidensis growth in still media under
aerobic conditions

The S. oneidensis MR-1 cells grew rapidly in LB in a
flask when aeration of the media was provided by vigor-
ously shaking, with a doubling time of approximately 40
min at the room temperature (Figure 1A). Such growth
eventually led to formation of the solid surface-asso-
ciated (SSA) biofilms on the flask wall, especially around
the A-L interface. Cells in static media accessible to
ambient air, however, displayed a different growth pat-
tern. Before pellicles were formed, cells lived in the
planktonic form with a much longer doubling time,
approximately 2.6 h (Figure 1A). Once pellicle formation
initiated, some of the planktonic cells started to form
pellicles while the rest remained in the planktonic form.
During the development of pellicles, the planktonic cells
grew at a much lower rate with a doubling time of
approximately 6 h (Figure 1A). In this study, initiation
of pellicle formation was determined by the time point
where the growth rate of the planktonic cells changed
although pellicles visible to naked eyes appeared much
later, about 12 hours after inoculation at the room
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temperature. Both complex and defined media sup-
ported pellicle formation of S. oneidensis. However, pel-
licles from LB were thick and fairly uniform compared
to thin and porous ones from the defined medium, indi-
cating an impact of nutrition on pellicle formation
(Figure 1B). We therefore chose LB through the rest of
this study unless otherwise noted.

Oxygen is required for pellicle formation in S. oneidensis
As demonstrated above, S. oneidensis initiated the pelli-
cle formation process under aerobic conditions. We
then asked whether oxygen is an essential factor for pel-
licle formation of this microorganism. The pellicle for-
mation assay was carried out under anaerobic
conditions with lactate as the electron donor and one of
following agents as the electron acceptors: fumarate
(20 mM), nitrate (5 mM), DMSO (20 mM), TMAO (20
mM), or ferrous citrate (10 mM). In all cases, the capa-
city of S. oneidensis cells to form pellicles was abolished
(data not shown), indicating that oxygen is required for
the process. This is in agreement with the findings that
the lack of oxygen also resulted in a defect in SSA bio-
film formation and a sudden decrease in oxygen concen-
tration led to rapid detachment of SSA biofilms [25,27].

To further elucidate the role of oxygen in pellicle for-
mation, dissolved oxygen concentrations (DOC) at four
different depths below the surface in the unshaken cul-
tures were measured in a time-course manner. Results
revealed that DOC at 0.5, 1, and 2 cm below the surface
in the unshaken cultures displayed a similar declining
pattern with time, decreased rapidly from approximately
8 to 0.04 mg/L during the first two and half hours, and
then remained stable at 0.04 mg/L (Figure 1C). However,
DOC at the depth immediately below the surface (0.1 cm
but the detector immersed in the liquid) reduced in a
much slower rate and reached the lowest level of 0.04
mg/L only after the pellicle formed. These data indicate
that the majority of dissolved oxygen is likely consumed
by the cells close to the surface and the cells below the
surface were grown under microaerobic/anaerobic condi-
tions even before the pellicle was formed.

Proteins are essential in pellicle formation of S. oneidensis
Since EPS, including proteins, polysaccharides, extracel-
lular DNA, humic acid, and sugar, are important in SSA
biofilm and pellicle formation of various bacteria, we
speculated that these biopolymers may play a role in
pellicle formation of S. oneidensis. To this end, effects of
proteinase K and DNase I on pellicle formation and
developed pellicles were assessed. The pellicles were
prevented from formation in the presence of 100 pg/ml
proteinase K (Figure 2A). Consistently, 100 pg/ml of the
proteinase K was able to degrade the developed pellicles
in 24 h, resulting in the semi-transparent membrane-
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Figure 1 Pellicle formation of S. oneidensis in LB under aerobic conditions. (A) Growth of S. oneidensis in static liquid LB under aerobic
conditions. Cell density of all cells (planktonic and pellicle cells combined) (brown square), pellicle cells (yellow triangle), planktonic cells (blue
circle), and the AflgA mutant (green cross) was shown. Growth of agitated cultures (black diamond) is included for comparison. Presented are
averages of four replicates with the standard deviation indicated by error bars. (B) Pellicle formation of MR-1 in static liquid LB under aerobic
conditions. The pellicles started to form about 12 h after inoculation based on the altered growth rate of planktonic cells at the room
temperature. (C) Dissolved oxygen concentrations at 1 cm below the surface in the static MR-1 cultures.

like complexes (Figure 2A). In the control experiment,
proteinase K at concentrations up to 300 pg/ml did not
show a noticeable inhibitory influence on growth of
S. oneidensis under agitated conditions. On the contrary,
DNase I (up to 1000 U/ml) was not effective to inhibit
pellicle formation or to degrade of the developed

pellicles (data not shown), suggesting that DNA plays a
negligible role in the process. Since proteinase K unspe-
cifically removes polypeptides in the extracellular space
and in the outer-membrane exposed to environments,
the results could not conclude whether specific extracel-
lular proteins are required for the process.

A
0 100 pg/ml

Figure 2 EPS analysis. (A) Effects of proteinase K on pellicle formation and developed pellicles. Upper-panel, pellicle formation of the WT in
static LB, in which the proteinase K was added at inoculation to 100 mg/ml (final concentration). Lower panel, developed pellicles of the WT
(48 h after inoculation) were treated with 100 mg/ml (final concentration). (B) TLC analysis of monosaccharide in pellicles and supernatants.

P and S represent pellicle and supernatant, respectively. Man, gal, and glu represent mannose, galactose, and glucose, respectively. Supernatants

of the aggA mutant culture were included in the analysis.

B
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Attempts were made to solve the major polysaccharide
components of S. oneidensis pellicles by the thin layer
chromatography (TLC) analysis. Culture supernatants
and pellicles were collected independently after 36 h of
growth and pellicles were then treated with 100 pg/ml
proteinase K to removed cells. Polysaccharides were
extracted and subjected to TLC analysis as described in
Methods. A preliminary experiment was performed with
six monosaccharides as standards, including ribose,
mannose, glucose, galactose, rhamnose, and N-acetyl-
glucosamine. The monosaccharides visualized on the
TLC plates were close to mannose, glucose, and galac-
tose (data not shown). To further confirm the observa-
tion, the experiment was conducted again with these
three monosaccharide standards only. As shown in Fig-
ure 2B the major monosaccharides identified were most
likely to be mannose in both supernatants and pellicles.
To validate this result, the aggA mutant, a pellicle-less
strain was included in the analysis and the same result
was obtained. These data suggest that the mannose-rich
polysaccharides identified in pellicles are not pellicle
specific.

Certain metal cations are required for pellicle formation
in S. oneidensis

On the basis that metal cations are of general impor-
tance in biofilm formation, we examined the effects of
certain metal cations on pellicle formation of S. oneiden-
sis. The metal chelator ethylenediaminetetraacetate
(EDTA) has been shown to have an activity against bio-
films of various bacteria by removing metal cations
[28,29]. As shown in Figure 3A, 0.3 mM EDTA comple-
tely blocked pellicle formation of S. oneidensis. A severe
inhibitory effect was also observed in the presence of 0.1
and 0.2 mM of EDTA, reducing the pellicles to approxi-
mately 50 and 70% (by ODggo readings), respectively
(Figure 3B). In addition, the pellicle development was
much slower than the non-EDTA control. To rule out
that the observation was due to toxicity of EDTA to S.
oneidensis, the same experiment was conducted again
under agitated conditions. No noticeable difference in
growth between samples containing 0.3 mM EDTA and
the non-EDTA control. All these results indicate that
EDTA at the tested concentration has a detrimental
effect on pellicle formation of S. oneidensis.

We reasoned that the inhibitory effect of EDTA on
pellicle formation of S. oneidensis was due to the
absence of free metal cations in the cultures. Therefore,
the role of a specific cation in the process can be
assessed by the addition of this cation to the cultures
containing EDTA. Given that 0.3 mM EDTA appears to
be close to the minimal EDTA concentration for com-
plete inhibition of pellicle formation, we chose the con-
centration for this analysis to determine the importance
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of a variety of metal cations in pellicle formation. An
array of metal cations with different stability constants
[log(K*)] were tested, including Cu(Il) [K® = 5.77], Mg
(II) [K° = 8.83], Ca(Il) [K® = 10.61], Mn(II) [K° = 15.6],
Zn(Il) [K® = 17.5], Fe(Il) [K® = 25.0], and Fe(III) [K° =
27.2]. To saturate 0.3 mM EDTA, the concentration for
each metal cation used was 0.3 mM as well.

The addition of Ca(II), Mn(II), Cu(lI), or Zn(II) fully
rescued the initiation of pellicle formation at the cell
density threshold and subsequent development (Figure
3A (only Ca(II) was shown), 3C). On the contrary, the
inhibitory effect of EDTA was noticeably lessened but
not fully removed when Mg(Il) was added (Figure 3A).
In the case of Fe(II) and Fe(III), the addition of either
agent partially rescued (~40%) the pellicle formation
defect caused by EDTA (Figure 3A). In addition, unlike
pellicles formed in the non-EDTA control or in the pre-
sence of Ca(II), Mn(II), Cu(II), or Zn(II), the Fe-enabled
pellicles were weakly attached to the container wall and
fragile. As a result, the pellicles can be detached from
the wall and broken into pieces with a slight shake. The
same results were observed with even higher levels of Fe
(II) or Fe(III) (up to 0.9 mM). In solution, the addition
of an extra amount of certain metal cation may release
other cations with lower stability constants from EDTA.
However, this is unlikely to be the underlying reason for
the observed results because the inhibitory effects of
these tested cations on pellicle formation are not corre-
lated to the stability constants of the tested metal
cations.

Progression of pellicle formation was delayed but not
prevented in flagella-less S. oneidensis

Flagella-less and paralyzed flagellar mutants of many
motile bacteria are defective in SSA biofilm and pellicle
formation because initial surface attachment depends on
flagella-mediated motility [30,31]. However, reports that
biofilm and pellicle formation is not affected or even
promoted by mutation resulting in impaired flagella in
some other bacteria are not scarce [1,32,33]. To assess
the role of flagella in pellicle formation of S. oneidensis,
we tested a flagellum-less strain derived from MR-1 in
which flgA(s03253) was knocked out. FlgA is a molecu-
lar chaperone required for P ring assembly in the peri-
plasmic space [34]. The mutant was unable to swarm or
swim, indicating that the mutation resulted in function-
ally impaired flagella (Figure 4A). In addition, the fla-
gella were not found on the mutant under an electron
microscope (Figure 4A). To confirm this observation,
the intact fIgA was cloned into plasmid pBBRMCS-5 for
complementation. The ability of the mutant to swarm
and swim was restored by the corresponding DNA frag-
ment, indicating that the nonmotile phenotype was due
to mutation in the gene (Figure 4A).
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Figure 3 Treatment of S. oneidensis pellicles with EDTA and divalent cations. (A) Pellicle formation of the WT after 48 h in static LB in the
presence of 0.3 mM EDTA and certain divalent cation (0.3 mM) under aerobic conditions. (B) Cells in pellicles formed in the presence of 0 (light
blue), 0.1 (dark red), 0.2 (light yellow), and 0.3 mM (dark blue) EDTA at the different time points. Presented are averages of four replicates with
the standard deviation indicated by error bars. (C) Effects of divalent cations on the inhibition of pellicle formation by EDTA. Pellicle formation of
the WT after 48 h in static LB in the presence of 0.3 mM EDTA and one of indicated divalent cations (0.3 mM) under aerobic conditions was
shown. The WT in static LB without EDTA was used as the control. The relative pellicle formation ((EDTA and indicated cation)/EDTA-absence
control) was presented in the figure. EDTA only (No cation’ was used as the negative control. Presented are averages of four replicates with the
standard deviation indicated by error bars.

Compared to MR-1, mutation in flgA failed to elicit
any significant difference in growth under agitated con-
ditions and SSA biofilm formation (data not shown).
However, the mutant displayed a growth defect in the
still media and the pellicle formation was drastically
delayed. As presented in (Figure 4B), mutation in fIgA
resulted in slow growth with a doubling time of ~7 h,
approximately 3 times longer than that of the wild type
before pellicles were formed (Figure 1A). Once pellicle
formation initiated, that did not occur until 30 h after
inoculation, the mutant grew at the rate comparable to
the wild type. Interestingly, the development of pellicles
in mutants appeared to be normal. As a result, the
mutants managed to catch up the wild-type in pellicle
production (10 days) (Figure 4B). All of these results
suggest that the delayed initiation of pellicle formation
of the flgA mutant was possibly due to the slow growth
of the mutant cells in the unshaken media and flagella
were unlikely to play a significant role in the attachment
of S. oneidensis cells to the wall or pellicle maturation.

AggA type | secretion pathway is essential in pellicle
formation of S. oneidensis

Previously, a type I secretion system (TISS) consisting of
an ATP-binding protein in the inner membrane RtxB
(SO4318), an HlyD-family membrane-fusion protein

SO4319, and an agglutination protein AggA (SO4320)
was suggested to be important in SSA biofilm formation
of S. oneidensis [21,22,35]. A following mutational analy-
sis revealed that AggA was critical to hyper-aggregation
of the COAG strain, a spontaneous mutant from MR-1
[22]. In the case of SSA biofilm formation, the impact of
mutation in aggA was rather mild, reducing the robust
biofilm-forming capacity of the COAG strain to the
level of the wild-type.

Given the importance of AggA in biofilm formation
suggested by above-mentioned studies, it is necessary to
assess its role in biofilm formation of S. oneidensis with
a wild-type genetic background. To this end, we con-
structed an aggA in-frame deletion mutant with MR-1
as the parental strain. The physiological characterization
revealed that the mutant grew at the rate comparable to
that of the parental strain either in the shaking or static
conditions. However, the aggA mutant was unable to
formed pellicles in 5 days (Figure 5A). Introduction of
aggA on plasmid pBBR-AGGA into the mutant restored
its ability to form pellicles, verifying that the phenotype
of the aggA mutant was specific to the mutation in the
aggA gene (Figure 5A). As a result, the aggA strain dis-
played a growth pattern different from the wild type
strain in the static media by the lack of the growth rate
change which signaled the initiation of pellicle
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Figure 4 The AflgA mutant displayed slow pellicle formation. (A) Swimming and swarming motility assays of the AflgA mutant. In both
panels, the AflgA mutant (Upper) was compared to the WT (Lower). The AflgA* strain refers to the AflgA mutant containing pBBR-FLGA. (B)
Electron micrographs of WT and the AflgA mutant. No flagellum was observed on the mutant. (C) Left panel, pellicle formation of the AfigA
mutant. Right panel, the cell densities of cells in pellicles of the WT and the AflgA mutant. The WT, dark red; the AflgA mutant, light blue. E
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formation (Figure 1A). However, the mutant was able to
attach to the glass wall at the air-liquid interface, sug-
gesting that AggA is not essential for this step of biofilm
formation (Figure 5A). This proposal gained support
from the SSA biofilm formation of the mutant, which
differed from that of the wild type strain insignificantly
(Figure 5B). All these data implicate that AggA TISS is
required for pellicle formation, most likely at the mono-
layer pellicle formation stage, which appears to be differ-
ent from that in SSA biofilm formation.

Discussion and Conclusions

In the microbial world, existence within surface-asso-
ciated structured multicellular communities is the pre-
vailing lifestyle [36,37]. The pellicles of facultative

bacteria formed at the liquid-air interface can be selec-
tively advantageous given that respiration with oxygen
as the terminal electron acceptor is the most productive.
In S. oneidensis, the growth rate was promoted by better
access to oxygen evidenced by that the cells grew much
faster in shaking than in static cultures. Along with the
observation that SSA biofilm formation of S. oneidensis
was inhibited under anaerobic conditions, the require-
ment of oxygen for pellicle formation may mainly come
from its facilitation of aggregation and attachment of
cells to the solid surfaces. This is consistent with pre-
vious findings that oxygen promotes autoaggregation of
and sudden depletion of molecular oxygen was shown
to act as the predominant trigger for initiating detach-
ment of individual cells from biofilms [26,38]. We
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Figure 5 Biofilm assay of MR-1 and aggA mutant. (A) Pellicle formation of MR-1, AaggA, AaggA* (aggA in-frame deletion mutant containing
pBBR-AGGA). (B) SSA Biofilm was assessed for the strains indicated after 16 and 24 h, respectively. Cultures were prepared as described in
Methods. The averaged OD readings of four independent culture tubes were given with images of representative CV-stained tubes.
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therefore propose that an oxygen gradient established in
static cultures with the highest oxygen concentration at
the surface resulted in a larger number of cells at the A-
L interface to form pellicles, which eventually induce
attachment of individual cells to the abiotic surface.

To form pellicles, S. oneidensis cultures require certain
divalent ions. Involvement of metals in biofilm forma-
tion either as a facilitator or an inhibitor has been well
documented. In recent years, many elegant studies
about the susceptibility of biofilms to metals (as an inhi-
bitor) have been published [39-41]. Although metals as
a biofilm formation facilitator have been studied for

more than two decades, only a few metals (Ba(II), Mg
(II), Ca(II), Fe(IlI), and Fe(IIl)) have been investigated
[34,42,43]. In P. aeruginosa, all these metals but Ba(II)
are able to protect P. aeruginosa biofilms against EDTA
treatment, presumably by stabilizing the biofilm matrix.
In addition, it has been shown that there is a positive
correlation between calcium concentration and amount
of biofilm accumulation [44]. While our data support
previous conclusions that calcium plays an important
role in stabilizing biofilms of bacteria [34,43,44], most of
other findings are either new or surprising. Among
tested metal cations, Cu(II), Ca(II), Mn(II), and Zn(II)
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belong to the same class, which are capable of restoring
the ability of S. oneidensis to form pellicles in the pre-
sence of EDTA completely. In contrast, Mg(II) shows
mild effects on relieving EDTA inhibition whereas Fe(II)
and Fe(III) counteracted EDTA in a way different from
other tested cations evidenced by the fragile pellicles. In
combination, these data suggest that the relative stability
constants of metal cations (Cu(Il) [5.77], Mg(II) [8.83],
Ca(1l) [10.61], Mn(II) [15.6], Zn(II) [17.5], Ee(II) [25.0],
and Fe(IIl) [27.2]) and their affect on EDTA inhibition
are not correlated.

It is particularly worth discussing roles of Fe(II) and Fe
(III) in pellicle formation of S. oneidensis. In recent years,
many reports have demonstrated that the iron cations
are important, if not essential, in bacterial biofilm forma-
tion [34,45-47]. In P. aeruginosa, influence of Fe(II) and
Fe(III) on the process was equivalent to that of Ca(II)
[34]. In S. oneidensis, irons in forms of Fe(II) and Fe(III)
were not only unable to neutralize the inhibitory effect of
EDTA on pellicle formation completely but also resulted
in structurally impaired pellicles although these agents
indeed play a role in pellicle formation. This observation
indicates that irons are not so crucial as Cu(II), Ca(II),
Mn(II), and Zn(II) in pellicle formation of S. oneidensis.
In fact, this may not be surprising. In Acinetobacter bau-
mannii and Staphylococcus aureus, iron limitation
improved biofilm formation [48,49]. Therefore, it is pos-
sible that different bacteria respond to irons in a different
way with respect to biofilm formation.

Like SSA biofilms, pellicles require EPS to form a
matrix to support embedded cells. Although EPS are
now widely recognized as the essential components for
biofilm formation and development in all biofilm-form-
ing microorganisms studied so far, diversity in their
individual composition and relative abundance of certain
elements is substantial [50]. For example, extracellular
nucleic acids, which are not important in most biofilm-
forming microorganisms, are required for SSA biofilm
formation in a variety of bacteria [11,36,37,51,52]. In S.
oneidensis, proteins not extracellular DNAs are required
to pellicle formation. While essential extracellular pro-
teins for S. oneidensis pellicle formation are largely
unknown, results from this study demonstrated that the
AggA TISS is crucial in the process, likely at the devel-
opment of the monolayer. One of substrates of this
transporter is predicted to be SO4317, a large ‘putative
RTX toxin’ [35], implicating that the protein may be
involved in pellicle formation. In the case of polysac-
charides, mannose dominates not only in pellicles but
also in supernatants, implicating that mannose-based
polysaccharides may have a more general role in the
bacterial physiology.

Like in B. subtilis, mutations in S. oneidensis flagellar
genes resulting in the nonmotile phenotype significantly
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delayed the initiation and development of pellicle forma-
tion [17]. Here we further illustrated that neither SSA
biofilm formation nor the maturization of pellicle was
impaired by the mutations. In agreement with findings
on biofilm formation of Bacillus cereus [13], this obser-
vation suggests that motility not only promotes cells to
move to surfaces where the pellicle forms but also facili-
tate planktonic cells entrance into the pellicle.

Overall, the results presented here provided the first
insights into pellicle formation of S. oneidensis, making
pellicle formation of S. oneidensis a simple research
model for biofilm formation in general. The study high-
lights parallels and significant differences between this
process and well-documented paradigms, raising some
key questions demanding immediate investigations.
These include what the major polysaccharides in S. onei-
densis pellicles are, why irons result in fragile pellicles in
the presence of EDTA, and which proteins and their
secretion pathway(s) are directly related to pellicle
formation.

Methods

Bacterial strains, plasmids, and culture conditions
Bacterial strains and plasmids used in this study are
listed in Table 1 [53]. Escherichia coli and S. oneidensis
strains were routinely grown in LB broth or on LB
plates at 37°C and the room temperature for genetic
manipulation, respectively. When needed, antibiotics
were used at the following concentrations: ampicillin at
50 pg/ml and gentamycin at 15 pg/ml.

Pellicle formation, measurement of growth, and
quantification of pellicles

A fresh colony grown overnight on a LB plate was used
to inoculate 50 ml LB and incubated in a shaker (200
rpm) to an ODgg of 0.8 at the room temperature. This
culture was then diluted 500-fold with fresh LB, result-
ing in the starting cultures. Throughout the study, all
starting cultures of S. oneidensis strains were prepared
this way. Aliquots of 30 ml starting cultures were trans-
ferred to 50 ml Pyrex beakers. The beakers were kept
still for pellicle formation at the room temperature and
dissolved oxygen (DO) of the cultures was recorded
every hour with an Accumet X140 meter (Fisher Scien-
tific). M1 defined medium containing 0.02% (w/v) of
vitamin-free Casamino Acids and 15 mM lactate with
one of electron acceptors including fumarate (20 mM),
nitrate (5 mM), trimethylamine N-oxide (TMAO) (20
mM), dimethyl sulfoxide (DMSO) (20 mM) and ferrous
citrate (10 mM), was used to test pellicle formation in
the defined medium [54]. To separate cells in pellicle
and underneath, cultures were withdrawn carefully for
collecting planktonic cells and the left pellicles. For
growth measurement, 27 parallel starting cultures were
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Strain or plasmid Relevant genotype

Reference or source

E. coli
WM3064 Donor strain for conjugation; AdapA [53]

S. oneidensis
MR-1 Wild-type ATCC 700550
J73253 flgA deletion mutant derived from MR-1; A figA This study
174320 aggA deletion mutant derived from MR-1; AaggA This study

Plasmid
pDS3.0 Ap', Gm', derivative from suicide vector pCVD442 Lab stock
pPBBRTMCS-5 Gm' vector used for complementation Lab Stock
pDS-AGGA aggA deletion construct in pDS3.0 This study
pDS-FLGA flgA deletion construct in pDS3.0 This study
PBBR-AGGA PBBRTMCS-5 containing aggA of S. oneidensis This study
pBBR-FLGA pBBRTMCS-5 containing flgA of S. oneidensis This study

used and 3 were collected at each time point and the
rest remained undisturbed. The cell density (ODggg) of
cultures containing planktonic cells was measured first
as the planktonic cell density and measured again as the
overall cell density after cells from pellicles were added
and extensively vortexed. To quantify the pellicles
formed by the S. oneidensis wild-type and mutant
strains, cells from pellicles were collected, suspended in
30 ml fresh LB, violently vortexed, and applied to the
spectrometer at 600 nm.

Proteinase K and DNase | treatment of S. oneidensis
pellicles

S. oneidensis was statically cultured in LB broth with the
addition of proteinase K (0 pg/mL, 100 pg/mL, and 500
pug/mL) or DNase I (Qiagen, OU/mL, 100U/mL, 500U/
mL and 1000U/mL) for 3 days [55]. We also investi-
gated whether these 3 enzymes could dissolve estab-
lished pellicles. 2-day old pellicles were rinsed with 20
mM Tris-HCI (pH = 8.0) and incubated in the same
buffer supplemented with proteinase K at 37°C for 2
days. Similarly, 2-day old pellicles were incubated with
DNase I to examine the DNA content at room tempera-
ture for 2 days.

Mutagenesis, physiological characterization and
complementation of the resulting mutants

Deletion mutation strains were constructed using the
fusion PCR method illustrated previously [56]. Primers
used for mutagenesis were listed in Additional file 1. In
brief, two DNA fragments flanking the target gene were
generated from S. oneidensis genomic DNA by PCR
with primers 5F/5R and 3F/3R, respectively. Fusion PCR
was then performed to join these two DNA fragments
with primers 5F/3R. The resulting single fragment was
digested with Sacl and ligated into the Sacl-digested

and phosphatase-treated suicide vector pDS3.0. The
resultant vectors were electroporated into the donor
strain, E. coli WM3064 and then moved to S. oneidensis
by conjugation. Integration of the mutagenesis construct
into the chromosome and resolution were performed to
generate the final deletion strains. The deletion was ver-
ified by PCR and DNA sequencing.

For complementation, DNA fragments containing
aggA or flgA were generated by PCR amplification with
MR-1 genomic DNA as the template using primers
S04320-COM-F/SO3988-COM-R and SO3253-COM-F/
S0O3253-COM-R, respectively as listed in Additional file
1. These fragments were digested with Sacl and ligated
to Sacl-digested pPBBR1IMCS-5 to form pBBR-AGGA
and pBBR-FLGA, which was electroporated into
WM3064. Introduction of pPBBR-AGGA or pBBR-FLGA
into the corresponding mutant was done by conjugation,
and gentamycin-resistant colonies were selected. The
presence of pBBR-AGGA or pBBR-FLGA in the corre-
sponding mutant was confirmed by plasmid purification
and restriction enzyme digestion.

Swarm and swimming motility assay

A fresh colony of tested strains was grown to an ODggq
of 0.8 in LB media. The cultures (1 ml) were spotted
onto a swarm LB plate (0.5% agar) or stabbed into a
swimming LB plate (0.2% agar). All plates were incu-
bated at the room temperature for 48 h. Images were
acquired using Alpha Innotech’s Fluorchem imaging
system.

SSA biofilm assay

The SSA biofilm formation assay used is based on the
method previously reported [57]. In brief, 3 ml of fresh
LB in 15 ml glass tubes were inoculated with S. oneiden-
sis strains from an overnight culture in LB at 200 rpm.
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After 16, 24, 32, or 40 h of incubation at 200 rpm at
room temperature, 500 pl of 1% (wt/vol) crystal violet
(CV) solution was added to each tube and incubated for
15 min. Tubes were rinsed three times with 5 ml of dis-
tilled H,O and air dried. Biofilm formation was quanti-
fied by measuring the absorbance at 575 nm. Each assay
was performed four times.

Thin layer chromatography (TLC) analysis

Supernatants and pellicles were collected after 36 h of
growth in static LB media. Pellicles were treated with
100 pg/mL proteinase K for removal of cells. Cell-less
pellicles and supernatants were subjected to exopolysac-
charide extraction and hydrolysis with trifluoroacetic
acid as described previously [58]. The resulting mono-
saccharides were dissolved in ddH,O in the concentra-
tion of 10 mg/ml, and 2 pul of the sample was spotted
onto TLC plates (silica gel 60 F,s54; Merck). After devel-
opment in butan-1-ol-acetone-water (4:5:1), the TLC
plates were dipped in the reagent aniline-diphenylamine
in acetone and incubated for 2 to 5 min at 100°C.

Additional material

Additional file 1: Primers used in this study. File contains all primers
used in this study
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