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Introduction
Gout is the most common form of inflammatory 
arthritis and both the prevalence and incidence 
have significantly increased in the United 
Kingdom (UK) population in recent years.1–3 
However, despite its high prevalence, the diagno-
sis is often delayed resulting in increased morbid-
ity, as early treatment is necessary to maintain 
normal activity and prevent disability. Gout is a 
form of inflammatory arthritis characterized by 
hyperuricemia and the subsequent formation of 
monosodium urate (MSU) crystals, which pre-
cipitate episodes of acute inflammation.

Asymptomatic hyperuricemia is the first stage of 
the disease and is a prerequisite for the precipita-
tion of MSU crystals in soft tissues. This condi-
tion is related to environmental factors such as 
diet, conditions which alter purine metabolism 
and genetics.4,5 This asymptomatic stage of the 
disease precedes episodes of sterile inflammation 
and pain, also known as gout attacks or gout flares 
where MSU may crystalize in a range of tissues 

from synovial fluid, synovium, tendons, bursae, 
cartilage and bone. These inflammatory flares are 
acute and intermittent and are driven by an 
immune mediated response to the MSU crystals 
which trigger a cycle of necroinflamation.6

Periods of spontaneous resolution of inflamma-
tion and symptoms known as the ‘intercritical 
period’ usually follow acute attacks, despite the 
persistence of MSU crystals in the tissues.6 Over 
time and if inadequately treated, recurrent acute 
gout flares may progress and result in chronic, 
persistent rheumatological symptoms secondary 
to articular damage or chronic synovitis.

Gouty tophi result from a second pathophysiolog-
ical mechanism of immune anergy and granuloma 
formation allowing the concurrent development 
of large nodular tophi which cause soft tissue 
remodelling and damage.6 These tophi consist of 
a fibrovascular matrix containing a core of MSU 
crystals, lipids and cellular debris, surrounded by 
a cellular ‘corona’ of granulation tissue.7
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The disease presents as a mono-arthritis with an 
acute attack involving the first metatarsophalan-
geal joint (MTPJ) in approximately half of cases 
and demonstrates a predilection for peripheral 
joints. However, any joint can be involved, includ-
ing large joints and those within the axial skele-
ton. Although the presenting clinical picture may 
be highly suggestive, the gold standard test for the 
diagnosis of gout is the identification of negatively 
birefringent MSU crystals from joint fluid or soft 
tissue however, obtaining a sample may be tech-
nically difficult, painful for the patient and the 
accuracy of the results may be affected by multi-
ple factors.8,9 In cases where MSU crystals have 
not been documented, imaging has been shown 
to play a key role in the diagnosis of gout, either 
as part of a diagnostic algorithm, incorporating 
clinical, laboratory and imaging findings or as a 
standalone test.10 Plain radiographs have histori-
cally been the initial investigation of choice in 
patients presenting with gout like symptoms and 
may be useful both for the diagnosis and monitor-
ing of disease progression. However, more 
recently, new applications for more advanced 
imaging techniques have been developed includ-
ing ultrasound, dual-energy computed tomogra-
phy (DECT), magnetic resonance imaging (MRI) 

and positron emission tomography (PET)/com-
puted tomography (CT) which enable the disease 
process to be studied in much greater detail.11

Plain radiographs
Plain radiographs are often normal at the first 
presentation and the sensitivity of plain radio-
graphs for the detection of gout is only around 
30%.12 In some cases, radiographic abnormalities 
may take up to 15 years from the onset of disease 
to manifest.13 If abnormal, radiographs in the 
acute phase usually demonstrate nonspecific soft 
tissue swelling or a joint effusion. As the disease 
progresses, radiographic abnormalities reflecting 
the disease process become evident with soft tis-
sue and then osseous changes. With recurrent 
bouts of inflammation and synovitis, the plain 
radiographic appearances are that of a nondemin-
eralizing erosive arthropathy characterized by 
well-defined ‘punched out’ juxta-articular or 
intra-articular erosions with overhanging and 
sclerotic margins.14,15 The lack of periarticular 
osteopenia is characteristic and helps to differen-
tiate the appearances of gout from those seen in 
rheumatoid arthritis.16 The erosions are usually 
caused by intraosseous extension of a soft tissue 
tophus and therefore usually affect the joint mar-
gins before they extend into the centre of the 
joint. Joint spaces are relatively well preserved 
until late in the disease when other ancillary fea-
tures such as intraosseous calcifications and sub-
chondral collapse may also be seen (Figure 1).17,18

The radiographic appearances of tophi reflect 
their histological composition and they appear as 
round or oval ill-defined mass lesions which dem-
onstrate increased attenuation relative to normal 
soft tissue. They may be radiographically occult if 
less than 5–10 mm (Figure 2). Tophi are normally 
juxta-articular however may also arise within 
bone and result in well-defined ‘geographical’ 
expansile, lytic bone lesions with thin sclerotic 
borders, also known as pseudotumour of gout.19 
Irregular periosteal reaction and chondrocalcino-
sis may also be seen.

Previously developed radiological scoring systems 
based on radiographic findings are no longer 
widely used as the goal of modern imaging is to 
detect osseous, soft tissue and articular sequelae 
of gout earlier in the disease process, before plain 
radiographic findings manifest.20 Despite this, 
understanding of radiographic presentations of 
gout is important as the classic morphological 

Figure 1. Podagra with soft tissue and intra-articular 
tophi. There is a well-defined ‘punched out’ erosion at 
the head of the first metatarsal (black arrow) with a 
paucity of peri-articular osteopenia.
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changes seen are also seen with more advanced 
imaging techniques.

Advanced imaging

Ultrasound
The use of ultrasound in the assessment of rheu-
matologic conditions is increasing due to increas-
ing availability, relative low cost, lack of ionizing 
radiation, dynamic and multiplanar imaging capa-
bility and high soft tissue resolution.21 Repeated 
examinations also facilitate the assessment of 

treatment response.22 Tophaceous deposits can be 
detected within soft tissues and ultrasound may be 
used to guide joint aspiration or soft tissue biopsy 
in order to identify urate crystals in the diagnosis 
of gout. Truly intraosseous tophi are not identifi-
able with ultrasound due to the inability of ultra-
sound to penetrate bone cortex. The use of 
Doppler ultrasound may also yield useful informa-
tion relating to the activity of inflammation in 
patients with known gout.23 Ultrasound is how-
ever limited by both operator and patient factors 
and accuracy of the result is related to operator 
experience although studies have demonstrated 

Figure 2. (a, b). Bilateral hand plain radiographs from the same patient demonstrating extensive high 
attenuation soft tissue foci representing large tophi. There is relative sparing of the joint spaces and articular 
surfaces with no osseous erosion or secondary degenerative articular changes. Apparent bilateral middle 
finger joint space narrowing is projectional.
(c). Three-dimensional DECT reconstruction demonstrating extensive urate deposition depicted by soft tissue lesions which, 
by convention are coloured green (white arrows). Deposits are seen within soft tissue tophus at the dorsum of both wrists, 
the index and little finger metacarpophalangeal joint of the right hand and the proximal interphalangeal joints of the index 
and middle fingers of the left hand.
(d). Axial noncontrast CT image demonstrating extensive hyper-dense soft tissue tophus overlying the distal ulna (white 
arrow).
CT, computed tomography; DECT, dual-energy computed tomography.
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good interobserver reliability for the detection of 
erosions and tophi among rheumatologists.24 
Ultrasound also depends on the availability of a 
suitable acoustic window, which may be limited in 
obese patients or in joints of the axial skeleton.

The ultrasound findings in gout can be divided 
into generic findings associated with inflamma-
tory arthritis and typical gouty ultrasound lesions 
which have been defined by the International 
Consensus for ultrasound lesions in gout.25 The 
generic features include synovitis and effusions. 
Synovial hypertrophy and hyperaemia are com-
mon findings but are nonspecific. The presence 
of microtophi within the synovium increases the 
specificity for gout. Hyperaemia may relate to the 
fibrovascular matrix of tophi or may be secondary 
to active inflammation. Hyperaemia may also be 
seen in asymptomatic hyperuricemia indicating 
subclinical inflammation which may reduce on 
serial ultrasound examinations following appro-
priate therapy.26

Joint effusions appear as a hypoechoic intra-artic-
ular collections which may be differentiated from 
synovial hypertrophy by their compressibility and 
lack of vascularity on Doppler assessment. 
Effusions may be simple and anechoic in early 
disease however, in more advanced disease, may 

contain mobile echogenic MSU crystals produc-
ing a ‘starry sky’ appearance.27 Turbulence within 
the joint fluid caused by gentle compression with 
the ultrasound probe followed by pressure release 
may cause crystals to swirl and produce a ‘snow-
storm’ appearance.

Tophi. The three main constituents of tophi (crys-
tal and debris core, fibrovascular matrix and 
peripheral granulation tissue) can be appreciated 
with ultrasound.28 Bright, echogenic crystals are 
seen centrally interspersed with hypoechoic 
fibrous septa which demonstrate vascularity on 
Doppler assessment (Figure 3). The surrounding 
granulation appears as a hypoechoic halo sur-
rounding the lesion.29 Due to the heterogeneous 
crystal and debris core, sound waves are able to 
pass through the lesion enabling assessment of 
deeper structures. This contrasts with small, 
dense crystal deposits which may be completely 
reflective and cast a posterior acoustic shadow. 
Tophi have a preponderance to form in regions 
subject to mechanical stress such as adjacent to 
the entheses of the medial first MTPJ, distal 
Achilles tendon, proximal patella ligament and 
the olecranon and prepatellar bursae. Ultrasound 
has been shown to be highly specific (92%) and 
moderately sensitive (69%) for the detection of 
intratendinous tophi in patients with gout versus 

Figure 3. Ultrasound images of the first metatarsophalangeal joint in a patient presenting with an acute gout 
attack. Tophus is demonstrated by bright, echogenic crystals interspersed with hypoechoic septa (a) which 
demonstrate increased Doppler signal (b).
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those with degenerative changes of osteoarthri-
tis.30 Clusters of small MSU crystals which appear 
as heterogeneous hyperechoic foci which main-
tain their echogenicity at all scanning angles and 
even when gain is minimized, represent aggre-
gates. These aggregates, which pathophysiologi-
cally represent clusters of microtophi, may occur 
within soft tissues such as tendon, joint capsule or 
synovium as well as within joint fluid where they 
appear as mobile echogenic foci.

Double contour sign. Intra-articular MSU crys-
tals may precipitate on the surface of hyaline car-
tilage and produce a curvilinear echogenic band 
which parallels the underlying subchondral bone 
plate, separated by a hypoechoic band of normal 
articular cartilage (Figure 4). The differential for 
these appearances includes calcific deposits which 
more commonly form within the cartilage, rather 
than on the surface and are more echogenic with 
no acoustic through transmission and posterior 
acoustic shadowing. Calcium pyrophosphate 
crystals may also form a true double contour sign 
however this is less common.31 The double con-
tour sign has been included in the 2015 gout clas-
sification criteria by the American College of 
Rheumatology (ACR) and European League 
Against Rheumatism (EULAR) collaborative ini-
tiative and has been shown to have a high specific-
ity although low sensitivity in studies comparing 
patients with gout or asymptomatic hyperurice-
mia with controls.32–34

Cortical bone erosions. Ultrasound appearances 
of erosions are defined as a cortical breech which 
is visible in at least two perpendicular planes. The 
classic gouty bone erosions, characterized by 
juxta-articular ‘punched out’ lesions with over-
hanging edges are often readily identifiable and 
ultrasound is also able to identify the associated 
soft tissue tophus which causes the erosion.

The sensitivity of ultrasound for detecting MSU 
deposition has been shown to be equivalent to 
that of DECT and evidence of crystal deposition 
may be seen in cases of asymptomatic hyperurice-
mia although ultrasound may be suboptimal in 
acute gout attacks.35–37

Dual-energy computed tomography
DECT is a technique which utilizes the effect of a 
material’s atomic number on its X-ray absorption 
characteristics at different energy levels. High 
atomic number materials such as calcium have a 
greater difference in attenuation when exposed to 
X-rays of two different energy levels. This is in 
contrast to materials of lower atomic number 
such as MSU which have a smaller difference in 
attenuation at different X-ray energy levels.38 By 
scanning tissue with X-ray beams at 80 kV and 
140 kV a post-processing algorithm can be applied 
to the data to differentiate calcium from MSU 
and thus reveal sites of urate deposition. Urate 
deposition can be measured through the use of a 
region of interest and display of a histogram of the 
effective z value of the voxels. A characteristic 
peak at the effective z value of urate confirms 
urate deposition. Alternatively, image reconstruc-
tions can automatically display voxels containing 
urate, which by convention, are coloured green 
on two and three-dimensional images (Figure 5). 
In practice, this can be achieved through the use 
of a dual-source CT scanner to allow simultane-
ous acquisition of two data sets, by using a single-
source CT scanner and scanning the patient twice 
or through the use of rapid voltage switching. The 
former enables faster scanning times and eradi-
cated the potential for misregistration. Urate can-
not simply be identified by its attenuation at a 
single X-ray energy level due to the variability in 
absolute Hounsfield units between different CT 
scanners.39 In addition, the algorithm used to 

Figure 4. Ultrasound images of the first metatarsophalangeal joint in a patient presenting with an acute gout 
attack. The double contour sign is demonstrated by an echogenic line paralleling the subcortical bone plate of 
the head of the first metatarsal (white arrow).
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identify urate from dual-energy data sets also 
requires fine calibration, tailored to the individual 
scanner, in order to minimize the rate of false 
positive or false negative results.40

A recent meta-analysis involving seven studies 
with a relatively heterogeneous population of 413 
patients including those with acute, intercritical 
and chronic tophaceous gout found the pooled 
sensitivity of DECT for the detection of gout was 
84% (95% confidence interval 78–88%) and the 
specificity was 84% (95% confidence interval 77–
89%). The heterogeneity of the sample was 
thought to reflect clinical practice and therefore 
provide a realistic representation of the diagnostic 
accuracy of DECT.41 The largest study within 

this meta-analysis included 90 patients with sus-
pected gout, evaluated the diagnostic accuracy of 
DECT with a ‘composite gold standard’ test 
comprised of a combination of both joint aspira-
tion or ACR clinico-radiographic criteria.42 
Diagnostic accuracy of DECT was also compared 
with conventional radiography and noncontrast 
CT, which were both significantly inferior with 
sensitivities of 15% and 26% respectively. The 
sensitivity of DECT was higher when aspiration 
alone was the reference criteria (100% versus 
82%) but specificity was lower (48% versus 97%). 
This reduction in specificity was due to an 
increase in the false positive rate, where urate was 
suggested on DECT in patients with a negative 
aspirate. This may be explained by the flawed 

Figure 5. Two and three-dimensional DECT reconstructed images of the knee in a patient with gout affecting 
the extensor mechanism. (a). Red histogram displaying the effective z value of the material within the region 
of interest displayed on two-dimensional CT (black star). The characteristic urate peak (white arrow) is 
demonstrated indicating the presence of urate crystals in this region. A second region of interest has been 
placed in the quadriceps tendon (black arrow) and the associated yellow histogram reveals higher effective z 
values with no urate peak.
(b). Three-dimensional reconstructed images, which urate is displayed within the extensor mechanism and at the lateral 
joint margin.
CT, computed tomography; DECT, dual-energy computed tomography.
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nature of joint aspiration itself, as it is limited by 
sampling error and by the fact that up to 25% of 
cases may show an absence of crystals in acute 
gout.43,44 When the composite gold standard was 
used as a reference 44 of 54 cases were positively 
identified by DECT. The 10 false negative cases 
were in the acute or intercritical stages of the dis-
ease, when low volumes of crystalline MSU result 
in DECT missing some cases.35,45,46 This is not 
surprising as DECT requires MSU crystals to be 
present in concentrations of at least 12.5% in in 
vitro testing using CT phantom models.47 In 

clinical use, the threshold for detection requires 
tophus to be composed of at least 15% to 20% 
MSU by volume and for the tophus to be at least 
2 mm in size for positive identification.45,47,48 This 
is reflected in results of other studies showing a 
reduction in the detection of MSU in acute and 
nontophaceous disease.49,50 There were 4 false 
positives, of which, all had ACR scores of 4 or 5 
out of 12 (6/12 or more was considered positive) 
and 3 were treated clinically as gout, improving 
on urate lowering therapy.

The high sensitivity of DECT is also useful for 
detecting subclinical urate burden in asympto-
matic patients with hyperuricemia. In a study by 
Dalbeth and colleagues, DECT detected MSU 
deposition in 24% of asymptomatic hyperuri-
caemic patients, although the volume of MSU 
was significantly lower than was seen in patients 
with early and late gout.51 MSU deposition in 
these asymptomatic hyperuricaemic patients 
was more often found in tendons and joints and 
in the absence of tophi, indicating concentra-
tion and extent of soft tissue precipitation of 
MSU can exceed the threshold for detection 
with DECT, before symptoms arise. DECT is 
also able to detect MSU crystals in normouri-
caemic patients with no palpable tophi taking 
long term allopurinol.52 Due to this high sensi-
tivity and the three-dimensional nature of 
DECT data, this imaging modality can reliably 
be used to volumetrically quantify disease.53 As 
a result, DECT can be used for serial assess-
ment of treatment response and has been found 
to outperform ultrasound in the assessment of 
disease burden following treatment, although 
ultrasound is able to better delineate nonurate, 
inflammatory disease components.54–56

DECT is subject to limitations and false positive 
results may be caused by artefacts. MSU may 
falsely be displayed up to 90% of investigations 
although is often easy to identify by its location in 
joints with significant osteoarthritis, on the sur-
face of arthroplasties and in the skin and nail beds 
(Figure 6).57 MSU deposits have also been shown 
in the costal cartilages and intervertebral discs in 
healthy, normouricaemic middle-aged and elderly 
patients, but not in younger control patients, sug-
gesting urate deposition in these locations may be 
physiological in older age.58

DECT is also associated with increased radiation 
exposure in comparison with conventional radi-
ography, ultrasound or MRI and may therefore 

Figure 6. (a). Artefactual urate image appearances at 
the skin/air interface over the heels and at the head 
of the 5th metatarsals bilaterally (white arrows).
(b). Artefactual urate deposition at the nail beds of the 
bilateral great toes (white arrows). The location of this 
apparent urate indicates that it is artefactual and should be 
distinguished from true soft tissue urate deposition.
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become a concern if used repeatedly. However, 
the majority of patients with gout are middle aged 
or elderly and radiation doses are equivalent to 
those seen with conventional noncontrast CT, 
with a typical effective dose of less than 1 mSv.42

DECT differs from ultrasound and MRI in its 
quantification of gouty deposits as the latter demon-
strate the noncrystalline tophus components with 
greater resolution.59 Despite this, DECT and ultra-
sound have similar sensitivities for the detection of 
tophus and DECT has the advantage of improved 
visualization of anatomical regions with poor acous-
tic windows, such as the popliteal fossa of the knee.60 
Additionally, DECT is able to distinguish urate 
from other crystal arthropathies, such as Calcium 
Pyrophosphate Deposition Disease (CPPD).60

MRI
MRI is has become an important imaging inves-
tigation in the work up of rheumatology patients 
due to its superior soft tissue contrast resolution 
and its ability to demonstrate soft tissue inflam-
mation, chondral damage, bone erosions, mar-
row oedema and deformity, without exposing 
the patient to ionizing radiation.61 Deeper struc-
tures can be visualized, unlike with ultrasound, 
and multiplanar imaging can be tailored to indi-
vidual joints in order to best demonstrate pathol-
ogy. With the administration of intravenous 
MRI contrast media and the use of post-contrast 
T1-weighted sequences, it is possible to differ-
entiate active synovitis from synovial hypertro-
phy.41 Due to scarce MRI resources however, 
imaging is usually limited to symptomatic joints 
and thus subclinical evidence of gout in other 
joints may be missed.

Tophi demonstrate variable imaging appearances 
on MRI, reflecting their heterogeneous compo-
nents and MSU crystals cannot be specifically 
identified (Figure 7). In a study of 40 patients 
with known gout, MRI had a sensitivity of 63% 
and a specificity of 98% for the detection of tophi 
when compared with DECT.62 Tophi are typi-
cally intermediate to low signal on T1-weighted 
sequences and highly variable in appearance on 
T2-weighted sequences, ranging from high signal 
to heterogeneously low signal, reflecting the het-
erogeneity of tophus composition and variation in 
the volume of calcium deposition.63 Fibrovascular 
septa within the tophus exhibit heterogeneous 
enhancement on post-contrast imaging.64 The 

typical location of a tophus, such as within the 
distal quadriceps tendon, may increase the suspi-
cion of gout however further evaluation to dem-
onstrate the presence of MSU, such as DECT or 
aspiration is often performed to confirm the 
diagnosis.

Bone erosions demonstrate their classic morphol-
ogy with overhanging edges and are also charac-
terized on MRI by a paucity of surrounding 
marrow oedema, except in the late stages of dis-
ease or in the context of concurrent osteomyeli-
tis.65 Chondral surfaces are also relatively spared 
until the disease is advanced.66 These features 
help differentiate gout from rheumatoid arthritis, 
where erosions are usually accompanied by florid 
bone marrow oedema and articular cartilage 
damage.

The diagnostic performance of MRI in gout 
remains uncertain due to a lack of data and the 
relative lack of specific imaging findings and MRI 
findings are not included in the diagnostic criteria 
published by the ACR or EULAR.32 However, 
MRI is sensitive to the presence of the nonspecific 
findings of inflammation and erosions. Carter 
and colleagues demonstrated that in patients with 
known gout but normal radiographs, erosions 
were identified in 56% of patients with MRI but 
only 4% with ultrasound.67 In addition, MRI has 
been shown to be superior to a combination of 
clinical examination and plain radiographs in 
assessing disease extent in patients with topha-
ceous gout.68 As a result, and because of the lack 
of associated ionizing radiation, MRI is a useful 
tool to monitor both extent and progression of 
disease.69

Nuclear medicine
There are limited data demonstrating the utility 
of functional imaging in gout and radioisotope 
studies are not included in current diagnostic or 
imaging guidelines.32,69 Increased uptake of 
fluorodeoxyglucose (FDG) on PET/CT studies 
may be seen within tophi and in adjacent joints 
and soft tissues. Bone scans may show increase 
osteoblastic activity at sites of erosion however 
these findings are nonspecific and functional 
imaging is currently limited by the poor intrinsic 
image resolution.70 Rarely, these findings may 
add to the diagnostic picture in cases of uncer-
tainty, particularly when tophi develop in unusual 
locations such as with the axial skeleton.71
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Summary
The observation of MSU crystals is still required to pro-
vide an unequivocal diagnosis of gout however this is 
often not possible. Plain radiographs remain the initial 
imaging investigation of choice and the radiographic 
appearances of gout are well documented. Recent 
developments of advanced imaging techniques are ena-
bling the disease to be diagnosed earlier, often without 
the need for invasive tissue sampling, thus facilitating 
earlier treatment. In addition, there are ongoing devel-
opments investigating the role these new imaging 
modalities can play in assessing disease burden and in 
monitoring response to therapy. This will become 

increasingly important as the incidence of gout contin-
ues to rise in order to minimize the morbidity and mor-
tality associated with this chronic disease.

Funding
The author(s) received no financial support for 
the research, authorship, and/or publication of 
this article.

Conflict of interest statement
The author(s) declared no potential conflicts of 
interest with respect to the research, authorship, 
and/or publication of this article.

Figure 7. Images of the knee in a patient with extensive tophus within the patella tendon. (a). Sagittal T2-
weighted image with fat saturation. (b). Axial T2-weighted image with fat saturation. (c). Sagittal proton 
density-weighted image. (d). Sagittal noncontrast CT image. Tophus demonstrates heterogeneous signal 
characteristics however the location and presence of well-defined bone erosion (best seen on CT) are highly 
suggestive of the diagnosis of gout.
CT, computed tomography.
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