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Abstract: Iron plays a critical role in the immune response to inflammation and infection due to its
role in the catalysis of reactive oxygen species (ROS) through the Haber-Weiss and Fenton reactions.
However, ROS overproduction can be harmful and damage healthy cells. Therefore, iron chelation
represents an innovative pharmacological approach to limit excess ROS formation and the related
pro-inflammatory mediator cascades. The present study was designed to investigate the impact
of the iron chelator, DIBI, in an experimental model of LPS-induced acute lung injury (ALI). DIBI
was administered intraperitoneally in the early and later stages of lung inflammation as determined
by histopathological evaluation. We found that lung tissues showed significant injury, as well as
increased NF-κB p65 activation and significantly elevated levels of various inflammatory mediators
(LIX, CXCL2, CCL5, CXCL10, IL-1β, IL-6) 4 h post ALI induction by LPS. Mice treated with DIBI
(80 mg/kg) in the early stages (0 to 2 h) after LPS administration demonstrated a significant reduction
of the histopathological damage score, reduced levels of NF-κB p65 activation, and reduced levels of
inflammatory mediators. Intravital microscopy of the pulmonary microcirculation also showed a
reduced number of adhering leukocytes and improved capillary perfusion with DIBI administration.
Our findings support the conclusion that the iron chelator, DIBI, has beneficial anti-inflammatory
effects in experimental ALI.

Keywords: acute lung injury; ARDS; cytokine storm; ROS; iron chelation; microcirculation

1. Introduction

Although the clinical picture of acute lung injury (ALI) has been well described for
more than 50 years, its medical definition has undergone many changes. Based on the
Berlin definition of Acute Respiratory Distress Syndrome (ARDS), ALI was most recently
reclassified as moderate or mild ARDS [1]. ARDS etiology is separated in two main
categories. Lung injury can be induced directly (locally), as in pneumonia, smoke inhalation,
and aspiration, with mainly epithelial injury, or indirectly (systemically), induced by
blood-borne insults like sepsis and pancreatitis with mainly endothelial injury [2]. ARDS
results in disruption of the lung endothelial and epithelial barriers inducing increased
pulmonary permeability, and impairment of pulmonary gas exchange [3]. Importantly,
ARDS represents a complication of pneumonia caused by the virus SARS-CoV-2, and a
significant number of patients with severe COVID-19 suffer from its consequences [4,5].
A better understanding of the basic mechanisms involved in ARDS pathogenesis could
facilitate the development of potential treatments for ARDS following SARS-CoV-2 and
other infectious or inflammatory conditions of the lungs.
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One of the most common rodent ALI models is through the intranasal administra-
tion of endotoxin (synonym: lipopolysaccharide, LPS). Endotoxin, a pathogen-associated
molecular pattern (PAMP) derived from the outer membrane of Gram-negative bacte-
ria, is an extremely biologically active substance that contributes to the activation and
release of inflammatory mediators and serves as an early warning signal of bacterial in-
fection [6]. The molecular response to LPS is initiated after LPS binds to a specific LPS
Binding Protein (LBP) and forms the LPS:LBP complex. LBP performs as a shuttle molecule
to transfer LPS to CD14, which is usually attached to the cell membrane, to split LPS
into monomeric molecules and in turn presents it to the TLR4–MD-2 complex facilitating
binding of LPS to its main receptor, the Toll Like Receptor 4 (TLR-4), present on monocytes
and macrophages [7]. LPS binding to TLR4 then activates a series of signaling cascades
that also activates the NF-κB signalling pathway [8,9]. Following phosphorylation and
degradation of inhibitory Iκ-B, the activated NF-κB translocates into the nucleus to promote
gene upregulation and the ensuing production of various inflammatory cytokines [10].

Iron is an essential nutrient for humans and nearly all microbial pathogens. Iron also
plays a critical role in the immune response to infection due to its catalytic role in the
formation of reactive oxygen species (ROS), which mediate bacterial killing. However,
dysregulated overproduction of ROS can be harmful and damage healthy cells. Iron chela-
tors were initially designed to diminish the toxic effects of iron overload. More recently,
iron chelators have been investigated as a potential treatment for dysregulated local and
systemic inflammation through temporary reduction of iron bioavailability. DIBI is a modi-
fied hydroxypyridinone 3-hydroxy-1-(ß-methacrylamidoethyl)-2-methyl-1(1 H)-pyridinone
polymer with a relatively low molecular weight (9 kDa), as shown in Figure 1A, and each
molecule is capable of binding three molecules of iron (Figure 1B). DIBI is water soluble and
has a low toxicity profile in comparison to conventional iron chelators. We hypothesized
that DIBI attenuates pulmonary inflammation in experimental ALI via suppression of the
ROS redox-sensitive NF-κB pathway. Lung tissues were studied ex vivo by histological
and cytokine analyses and in vivo by intravital microscopy.
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Intraperitoneal (i.p.) administration of DIBI significantly reduced the histological 
score of lung injury at the 4 h timepoint if given 0 or 2 h after LPS. 
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Figure 1. Schematic structure (A) of the iron chelator, DIBI (m = 9, n = 62) and its iron binding
capacity (B).

2. Results
2.1. Tissue Damage by LPS

Histopathological changes were evaluated by H&E staining of lung tissue sections
using a previously published scoring system. Intranasal administration of LPS resulted
in significant lung injury represented by edema, alveolar hemorrhage, cellular infiltration,
and thickening of the alveolar wall, with a 4 h post LPS score = 2.51 ± 0.20 and a 6 h
post LPS score = 2.02 ± 0.69 in comparison to their respective control groups (CON4h and
CON6h, Figure 2).
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Figure 2. DIBI attenuated the histological lung injury induced by intranasal LPS in mice. Histopatho-
logical changes were observed using light microscopy of H&E-stained lung tissue sections 4 h (A) and
6 h (B) after LPS instillation with or without DIBI treatment as indicated. (C,D) Lung injury scores
(0–4) were used to semi-quantitatively evaluate the histopathological injury determined on H&E
sections. Data are expressed as means ± SD for 10 separate images per lung (n = 5–9 mice per group),
and p values are indicated on top of each comparison bar. Groups: CON4h—control group observed
after 4 h; LPS(5)4h—LPS 5 mg/kg observed after 4 h; LPS(5)4h + DIBI(@0h)—LPS 5 mg/kg and DIBI
80 mg/kg administration at time 0 h observed at 4 h; LPS(5)4h + DIBI(@2h)—LPS 5 mg/kg and DIBI
80 mg/kg administration at time 2 h observed at 4 h; CON6h—control group observed after 6 h;
LPS(5)6h—LPS 5 mg/kg observed after 6 h group; LPS(5)6h + DIB(@4h)—LPS 5 mg/kg and DIBI
80 mg/kg administration at time 4 h observed at 6 h; DIBI—control animals 4 h after administration
of DIBI at dosage of 80 mg/kg.

Intraperitoneal (i.p.) administration of DIBI significantly reduced the histological score
of lung injury at the 4 h timepoint if given 0 or 2 h after LPS.

At 6 h post LPS, animals with DIBI administration 4 h after LPS challenge did not
show a significant difference to healthy control animals. However, administration of DIBI,
4 h after LPS instillation also did not reach significance in comparison to untreated animals.
DIBI-treated controls that had not received LPS displayed no evidence of tissue injury.

2.2. NF-κB Activation

LPS administration significantly increased NF-κB activation in lung tissue in compar-
ison to control at 4 and 6 h post administration (Figure 3). Early treatment with the iron
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chelator DIBI at 80 mg/kg, 0 or 2 h after LPS, significantly reduced NF-κB activation in
lung tissue in comparison to LPS alone as observed at 4 h post LPS challenge (Figure 2,
p < 0.0001). Late treatment with DIBI administrated at 4 h post LPS also reduced NF-κB
activation significantly as evaluated at 6 h post LPS (p < 0.0001).
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Figure 3. DIBI attenuated NF-kB activation in lung tissue following intranasal LPS challenge in
mice. Phosphorylated NF-kB was detected using Western blotting with a specific anti-p65NFkB
antibody. (A,C) Representative Western blot images. (B,D) Semi-quantification of NF-kB signal.
Data are expressed as means ± SD for each group (n = 5–9 mice per group), p values for significant
differences are indicated on top of each comparison bars. Groups: CON4h—control group observed
after 4 h; LPS(5)4h—LPS 5 mg/kg observed after 4 h; LPS(5)4h + DIBI(@0h)—LPS 5 mg/kg and DIBI
80 mg/kg administration at time 0 h observed at 4 h; LPS(5)4h + DIBI(@2h)—LPS 5 mg/kg and DIBI
80 mg/kg administration at time 2 h observed at 4 h; CON6h—control group observed after 6 h;
LPS(5)6h—LPS 5 mg/kg observed after 6 h group; LPS(5)6h + DIB(@4h)—LPS 5 mg/kg and DIBI
80 mg/kg administration at time 4 h observed at 6 h.

However, NF-κB levels in DIBI-treated LPS groups at both timepoints (4 and 6 h) were
not reduced to the same levels as controls.
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2.3. Cytokine Levels

There were significant increases in LIX, CXCL2, CCL5, CXCL10, and IL-6 levels in
lung tissues 4 h after LPS administration relative to the control group (Table 1). Animals
with early DIBI treatment at time 0 and 2 h post LPS did not show significant increases in
LIX, CXCL2, CCL5, and CXCL10, IL-1β, and IL-6 levels.

Table 1. Lung cytokine levels (normalized to total protein content, pg/mL, mean (SD), * p < 0.05 vs.
CON4/6h, ** p < 0.05 vs. LPS(5)4/6h).

CON4h LPS(5)4h LPS(5)4h +
DIBI(@0h)

LPS(5)4h +
DIBI(@2h) CON6h LPS(5)6h LPS(5)6h +

DIBI(@4h)

LIX 3.3 (2.7) 43.4 (19.2) * 21.5 (7.1) ** 14.9 (4.7) ** 2.1 (0.8) 25.7 (10.2) * 23.1 (8.7) *

CXCL2 0.6 (0.8) 26.1 (16.6) * 4.5 (1.4) ** 9.1 (1.6) ** 0.6 (0.4) 6.1 (0.6) * 3.4 (0.9) *,**

CCL5 3.2 (1.9) 35.6 (23.2) * 9.4 (1.1) 11.2 (2.4) 2.6 (1.6) 26.4 (11.9) * 14.1 (7.8)

CXCL10 4.9 (7.5) 38.3 (28.1) * 14.9 (5.7) 24.0 (4.6) 0.9 (0.2) 18.9 (13.2) * 22.5 (5.6) *

IL-1β 3.6 (0.4) 12.9 (9.2) 8.7 (1.6) 8.2 (1.8) 4.0 (1.6) 10.3 (2.7) * 8.1 (0.7) *

IL-6 1.4 (0.2) 27.9 (13.7) * 0.8 (0.4) ** 1.6 (0.8) ** 0.5 (0.2) 8.1 (1.1) * 2.4 (2.6) **

Lung levels of LIX, CXCL2, CCL5, and CXCL10, IL-1β, and IL-6 were also significantly
increased 6 h after LPS instillation in comparison to controls (CON6h). DIBI administration
at 4 h post LPS significantly reduced the level of CXCL-2 and IL-6 in lung tissues compared
to untreated LPS animals. LIX, CXCL10, and IL-1β levels were not reduced by DIBI
treatment 4 h after LPS administration compared to controls.

2.4. Intravital Microscopy

Representative images of leukocyte adhesion and capillary perfusion in the pulmonary
microcirculation are presented in Figure 4 andFigure 5, respectively. LPS administration
significantly increased leukocyte rolling in lung arterioles, while DIBI treatment at 0 h
resulted in a significant reduction in LPS induced arteriolar and venular leukocyte rolling
and adhesion when assessed at the 6 h post LPS timepoint (Figure 6A,B).
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Figure 5. Intravital imaging of capillary perfusion in the pulmonary microcirculation. (A) Control
group, (B) LPS group.
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Figure 6. DIBI reduces leukocyte rolling and adhesion and improves capillary perfusion in the
pulmonary microcirculation following intranasal LPS challenge in mice. Leukocyte–endothelial
interactions (rterioles: A, venules: B, capillaries: C left panel) and functional capillary density
(C right panel) were studied by lung intravital microscopy. Data are expressed as means ± SD for
each group (n = 5–9 mice per group), significant differences are indicated on top of each comparison
bars. Groups: CON—control group observed after 6 h; LPS—LPS 5 mg/kg observed after 6 h group;
LPS + DIBI—LPS 5 mg/kg and DIBI 80 mg/kg administration at time 0 h observed at 6 h. * p < 0.05,
** p < 0.01.

Functional capillary density in pulmonary microcirculation was also improved follow-
ing DIBI treatment in LPS challenged mice (Figure 6C).
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3. Discussion

We demonstrated that systemic administration of the iron chelator DIBI attenuates ex-
perimental LPS-induced ALI observed by reduced histopathological lung injury, suppresses
production of pro-inflammatory cytokines in lung tissue, and improves lung microcircula-
tion. Attenuation of ALI by DIBI may be a result of suppression of NF-κB phosphorylation.

Although DIBI has been shown to have therapeutic effects in local and systemic
inflammatory models [11–15], the molecular mechanisms involved in these effects have
yet to be fully understood. Therefore, we established an experimental ALI model in mice
by using intranasal endotoxin administration at a dosage of 5 mg/kg LPS and aimed to
study the effects of DIBI at several treatment timepoints post LPS administration. We
chose both early and later time points for the administration of DIBI, i.e., immediately post
LPS administration (T0), 2 h (T2) and 4 h (T4) after LPS. The 2 and 4 h timepoints were
considered to have more clinical relevance.

We observed a significant increase in NF-κB activation in lung tissues 4 h after LPS
administration. DIBI treatment at early stages (0 and 2 h post LPS) significantly reduced
NF-κB activation as compared to animals receiving LPS administration only. The strongest
effect was observed when DIBI was administered immediately after LPS challenge (T = 0 h)
with NF-κB almost at control animal levels when measured 4 h post LPS administration. To
evaluate the effects of DIBI treatment at later stages (4 h after LPS administration), NF-κB
activation in lung tissue was compared to a separate group of LPS-treated animals after 6 h
LPS exposure. Interestingly, DIBI still reduced NF-κB activation, almost to the level of the
6 h control animals. We believe that these effects are related to the ROS suppressing effects
of DIBI through iron chelation since free iron promotes ROS production and it is known
that NF-κB activation is ROS sensitive [16,17].

Our findings are consistent with results from other studies using different iron chela-
tors. Lin et al. reported that treatment of cultured rat hepatic macrophages with the iron
chelator, deferiprone (DFP), prevented LPS-induced NF-κB activation [18]. Another in vitro
study by Aali et al. showed that treatment with high doses of DIBI (100 or 200 µM) did pre-
vent nuclear translocation of NF-κB p65 in CF15 cells challenged with LPS. DIBI possesses
a molecular size (9 kDa) which is presumably too large to normally pass through cell walls
to directly lower intracellular free iron concentrations. However, by binding to extracellular
iron in the immediate environment of cells, DIBI reduces overall iron bioavailability and
thus, indirectly reduces labile intracellular iron concentration and ROS generation and
therefore, in turn, suppresses NF-κB activation [19]. In addition, Li et al., in an experimental
murine model of local inflammation, showed that yet a different chelator, deferoxamine
(DFO), blocked LPS-induced nuclear translocation of the p65 subunit of NF-κB, since DFO
inhibited LPS-induced NADPH oxidase, which mediated oxidative stress through an in-
crease in levels of the catalytic NADPH oxidase subunit, p22phox [20]. In a different study,
Messa et al. evaluated the effect of iron chelators on NF-κB activation in myelodysplastic
cells and in leukemia cell lines (K562 and HL60), these cells being characterized by a high
basal NF-κB activity. They reported that NF-κB inhibition by DFO in these cell lines was
not observed with DFP [21].

In the current study, we found that i.p. injection of DIBI at a dosage of 80 mg/kg at
0 and 2 h after LPS administration significantly attenuated histological evidence of tissue
damage as induced by LPS when observed after 4 h of LPS exposure and resulted in less
lung injury if administered 4 h post LPS. Our histopathological findings are in general
agreement with those of other experimental models of inflammation. For instance, the
small intestine was examined for mucosal lesions in experimental systemic inflammation
induced by LPS. Thorburn et al. reported that administration of DIBI reduced mucosal
damage compared to untreated LPS animals [11]. Kono et al. indicated that pre-treatment
with i.p. deferasirox (DFX) reduced infiltration of inflammatory cells and exsudate in lung
tissue caused by intratracheal administration of 5 mg/kg LPS. In addition, DFX alleviated
acute lung inflammation by inhibiting neutrophil extracellular trap (NET) formation, which
directly damages alveolar epithelial and endothelial cells [22].
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To further assess the anti-inflammatory effects of DIBI in our ALI model, levels of
inflammatory cytokines and chemokines were measured in lung tissues collected 4 and 6 h
after LPS challenge. LPS administration without DIBI treatment resulted in substantially
elevated levels of both lung cytokines and chemokines. Early treatment with DIBI (i.e., 0 or
2 h post LPS, respectively) significantly reduced lung tissue levels of LIX, CXCL2, CCL5,
and IL-6. Later treatment with DIBI at 4 h post LPS, significantly diminished lung levels
of CXCL2 and IL-6. Our results confirm that early treatment with DIBI is effective in
lowering the release of the major inflammatory mediators. Furthermore, these results
are in agreement with our findings of both the histopathological changes and levels of
NF-κB activation in lung tissue. He et al. evaluated the effect of DFO on ovalbumin-
induced lung inflammation exacerbated by LPS. They found that DFO did not suppress
neutrophil-related responses of IL-1β, IL-6, TNF-α, KC and RANTES in broncho-alveolar
lavage fluid (BALF) [23]. We did not prepare BALF samples for a stricter comparison of
results. Aali et al. reported that higher concentrations of DIBI reduced the apical secretion
of IL-6 in LPS-stimulated CF15 cells [19]. Furthermore, similar findings were reported in
an in vitro study where higher concentrations of DFO inhibited the release of IL-1β from
LPS-stimulated alveolar macrophages from both smokers and non-smokers [24].

Intravital microscopy of various organs and tissues has been performed previously
to study the effects of DIBI on tissue microcirculation regarding leukocyte activation and
capillary perfusion in response to LPS and other agents. Islam et al. observed a significant
reduction in intestinal leukocyte recruitment and an improvement of capillary perfusion
after DIBI administration during polymicrobial sepsis [25]. Lehmann et al. also reported
similar findings in a sterile endotoxemia model [26]. It is known that proinflammatory
signals induce ROS formation which facilitates expression of adhesion molecules, the
latter triggering leukocyte rolling and subsequent adhesion [27]. Hence, reduction in
leukocyte recruitment might be due to the antioxidant effect of DIBI chelating free iron
and suppressing iron-promoted ROS formation [14]. LPS-induced reduction of capillary
perfusion (FCD) is not only caused directly by leukocyte adhesion to endothelial cells and
subsequent obstruction of microvascular blood flow, but also indirectly, e.g., due to increase
of the permeability in the microvasculature (endothelial damage) resulting in the formation
of edema and compression of capillary blood flow from the outside of the microvessels [28].

Some limitations can be identified in our study. First, we only tested one dose of
DIBI (80 mg/kg) based on what was used in previous studies [11]. Future experiments
could test different doses of DIBI to potentially improve its efficacy as well as examining
more frequent administration of DIBI, i.e., to possibly compensate for its expected short
half-life. Additionally, the administration route of DIBI in our study was through i.p.
injection, while the LPS was administered intranasally. Inhalation of aerosolized DIBI
could potentially be a more effective route of administration for this lung model. Another
limitation of our findings is that experiments were performed on healthy mature adult
male mice aged 12–14-week-old [29,30]. Although it has been shown that male mice
demonstrated significantly greater airway responsiveness to LPS relative to females [31],
it would be helpful to investigate the inflammatory lung changes in female mice. In
addition, mature adult mice show cumulative immune responses following LPS exposure
compared to young mice [32]. Therefore, the factors of age and sex should be regarded in
the interpretation of the results.

Recent studies have reported the possible therapeutic effects of iron chelators in
patients with COVID-19 infection through preventing excessive inflammatory responses
and tissue damage by blocking free iron and inhibiting the oxygen radical formation and
lipid peroxidation [33,34]. The results of our study also suggest the potential therapeutic
use of DIBI in systemic inflammation as caused by SARS-CoV-2 through targeting the
release of inflammatory mediators such as ROS and the suppression of the cytokine storm.
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4. Materials and Methods
4.1. Animals

Male C57BL/6 mice were purchased from Charles River Laboratories International
Inc. (Saint-Constant, QC, Canada). All mice were wild type, 12–14 weeks old, 20–30 g
body weight, and were housed in ventilated plastic cage racks in a pathogen free room
of the Carleton Animal Care Facility (CACF), Faculty of Medicine, Dalhousie University,
Halifax, NS, Canada. Animals were kept on a 12-h light/dark cycle at 21 ◦C and were
acclimatized for one week, prior to the experiments. All experimental procedures were
approved by the University Committee on Laboratory Animals at Dalhousie University
under protocol number #19-010 and were performed following the guidelines and standards
of the Canadian Council on Animal Care.

4.2. Experimental Model

Animals were weighed prior to anesthesia. Induction of anesthesia was accomplished
by i.p. injection of sodium pentobarbital (90 mg/kg, dilution: 27 mg/mL in normal saline,
Ceva Sainte Animale, Montreal, QC, Canada) using a 25-G needle (BD PrecisionGlideTM).
After injection, the mouse was returned to its cage on a heating pad until fully anesthetized.
The pedal withdrawal reflex (response to toe pinch) was used every 15 min throughout
the procedure to assess the depth of anesthesia. As needed, additional doses of sodium
pentobarbital (9 mg/kg; 5.4 mg/mL) were administered.

LPS from Pseudomonas aeruginosa (Sigma-Aldrich, Oakville, ON, Canada, L8643, source
#12180104, purified by gel-filtration chromatography) was diluted in sterile normal saline
(10 mg/mL stock) and stored at 4 ◦C. LPS was administered at a dose of 5 mg/kg. Anes-
thetized mice were placed in the palm of the handler’s hand and using a pipette tip, the
tongue was gently moved out and pinned down with the thumb. Small droplets of the LPS
or saline solution were slowly added into the left nostril of the mouse with a pipette tip
until the full volume had been instilled. After LPS instillation, the animal was placed back
into the cage on the heating pad and monitored for the duration of the experiment.

Experimental Groups

Treatment groups (n = 5–9 mice/group, see Figure 7) received 80 mg/kg DIBI i.p. at 0,
2, or 4 h. DIBI (Denying Iron from Bacterial Infection, as supplied by Fe Pharmaceuticals
(Canada) Inc. formerly Chelation Partners Inc., Halifax, NS, Canada) is a 9 kDa MW, highly
selective synthetic iron chelator, with a poly-vinylpyrrolidone backbone and containing
nine 3-hydroxy-1-(β-methacrylamidoethyl)-2-methyl-4(1H) pyridinone (MAHMP) residues.
One molecule of DIBI binds to 3 molecules of iron (Fe3+) in a fully stable hexadentate
configuration. Control sham-treated animals received normal sterile saline.
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4.3. Histology

Right lungs were fixed in 10% phosphate-buffered formalin for 3 days. Samples were
then cleaned to remove all connective and muscle tissues and stored in 70% ethanol prior
to embedding in paraffin blocs. Embedded tissues were sliced into 5 µm sections and



Molecules 2022, 27, 4036 10 of 13

mounts were dried for at least two days in an oven (56–76 ◦C) and then stored at room
temperature before Hematoxylin and Eosin (H&E) staining. Finally, stained tissue sections
were examined by light microscopy (Olympus, BH-2) and images were collected from all
areas of the stained tissues. The degree of inflammation was then assessed and scored
based on the presence of edema, hemorrhage, immune cells infiltration, cell wall thickening
and the presence of aggregates. Scoring scale: 0, minimum damage; 1, mild damage; 2,
moderate damage; 3, severe damage; and 4, intense damage [3].

4.4. Western Blotting

Lung samples were homogenized in cell lysis buffer of radioimmunoprecipitation
assay (RIPA) buffer supplemented with protease and phosphatase inhibitor cocktail using a
homogenizer (985370) on ice. The Bradford protein assay (Bio-Rad) was used to determine
protein concentration in lung tissue lysates and equal amounts of protein (30 µg) were
loaded, separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis on
10% pre-cast gels, and transferred onto nitrocellulose membranes 0.45 µm membranes
0.45 µm (Bio-Rad, cat#1620115). Following transfer, the membranes were blocked with
5% fat-free milk for 1 h at room temperature and then incubated with specific primary
antibody (1:500 NF-kB p65 (F-6): sc-8008 conjugated with HRP, Lot#B0520) allowing binding
overnight at 4 ◦C with gentle shaking. This antibody detects both phosphorylated and
non-phosphorylated P65. After washing three times with T-TBS, and then time with TBS,
the protein of interest was detected by chemiluminescence with a scanner (Chemidoc,
Bio-Rad, Hercules, CA, USA). The intensity of each band was analyzed using ImageJ (NIH,
Bethesda, MD, USA). Normalization of the protein of interest was performed using total
protein in each sample by densitometry of scanned membrane stained with Amido black.

4.5. Lung Tissue Inflammatory Mediators

Lung levels of selected inflammatory mediators (CCL5, CXCL2, LIX, IL-6, IL-1β,
CXCL10) were analyzed using a custom-made mouse magnetic bead-based multiplex assay
obtained from R&D (L#139804). Samples were run in duplicate, and the sample dilution
was 1:5 (40 µL of tissue lysates mixed with 160 µL of diluent) using the Bio-Plex sample
diluent. Bio-Plex instruments and Bio-Plex software (Bio-Rad, Mississauga, ON, Canada)
were used according to protocols provided by the manufacturer. Finally, the plate was
read using the Bio-Rad 200 luminometer with Bio-Plex manager software. Analysis with
the Bio-Rad machine uses two lasers: one to excite the dyes inside each magnetic bead
and identify the bead region; another one to excite the Phycoerythrin (PE) to measure the
amount of analyte bound to the beads. A 488 nm laser light was used to excite PE to induce
a maximum light emission of 575 nm.

Protein extraction by homogenization with 10 mL T-PER buffer and BCA assay was
performed prior to the multiplex experiment to measure the amount of protein inside the
tissue in each tissue sample. Additionally, normalization of each inflammatory mediators
was performed after multiplex assay using the total protein content of each tissue sample.

4.6. IVM

The pulmonary microcirculation was imaged in vivo at 6 h post-induction. Anesthesia
was provided for the duration of the procedure via isoflurane (1–5%; Fresenius Kabi, Bad
Homburg, Germany). Following orotracheal intubation, animals were oriented in a right
lateral decubitus position and positive-pressure mechanical ventilation was applied with
a target pressure of 20 cm H2O and positive-end expiratory pressure of 5 cm H2O. Body
temperature was maintained at 37.0 ± 0.5 ◦C and a paw pulse oximeter was applied
to provide real-time assessment of blood oxygenation and heart rate. A homogeneous
mixture of Rhodamine-6G (0.75 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) and bovine
FITC-albumin (50 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) in saline was injected
intravenously to visualize leukocytes and blood flow, respectively. A thoracotomy was
performed to expose the left lung, at which point a vacuum-stabilized imaging window
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(Luxidea, Calgary, AB, Canada) was applied to stabilize the lung for imaging. Imaging
was performed using a widefield fluorescent microscope (Leica, Wetzlar, Germany) fitted
with 530–550 nm and 460–490 nm bandpass excitation filters. Five fields of view each of the
pulmonary venules, arterioles, and capillary regions of interest (ROI) were recorded for
30 s using a black/white CCD camera. All analyses were performed in a blinded fashion
as follows: leukocyte adhesion was quantified in venules, arterioles, and capillary ROI,
while leukocyte rolling was quantified only in venules and arterioles. Functional capillary
density (FCD) was quantified in capillary ROI.

4.7. Statistical Analysis

All data were analyzed using the software Prism 9 (GraphPad Software, La Jolla, CA,
USA). To confirm normal distribution of data, the Kolmogorov–Smirnov Test was used.
Pairwise comparisons were performed using Student’s t-test. One-way ANOVA followed
by Tukey’s multiple comparison test was used to analyze normally distributed data for 3 or
more groups. Data was expressed as mean ± standard deviation (SD). Significance was
assumed at p values less than 0.05 (p < 0.05).

5. Conclusions

The present study investigated the anti-inflammatory effects of the iron chelator, DIBI,
in an experimental model of ALI in mice. We found that DIBI administration reduced LPS-
induced NF-κB activation, attenuated lung histological injury, diminished inflammatory
mediator release and improved microcirculation in lung tissues. These results suggest that
DIBI has potential as anti-inflammatory treatment for clinical conditions associated with
acute lung inflammation including ARDS.
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