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Immune-related processes are important in underpinning the properties of clinical traits
such as prognosis and drug response in cancer. The possibility to extract knowledge
learned by artificial neural networks (ANNs) from omics data to explain cancer clinical traits
is a very attractive subject for novel discovery. Recent studies using a version of ANNs
called autoencoders revealed their capability to store biologically meaningful information
indicating that autoencoders can be utilized as knowledge discovery platforms aside from
their initial assigned use for dimensionality reduction. Here, we devise an innovative weight
engineering approach and ANN platform called artificial neural network encoder (ANNE)
using an autoencoder and apply it to a breast cancer dataset to extract knowledge
learned by the autoencoder model that explains clinical traits. Intriguingly, the extracted
biological knowledge in the form of gene–gene associations from ANNE shows immune-
related components such as chemokines, carbonic anhydrase, and iron metabolism that
modulate immune-related processes and the tumor microenvironment play important
roles in underpinning breast cancer clinical traits. Our work shows that biological
“knowledge” learned by an ANN model is indeed encoded as weights throughout its
neuronal connections, and it is possible to extract learned knowledge via a novel weight
engineering approach to uncover important biological insights.
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1 INTRODUCTION

Immune responses are known to play important roles in broad
disease etiology (1–3) and are often linked to prognosis in cancer
(4). However, immunotherapy remains ineffective for most cancer
patients (4). Thus, our ability to booster the detection of key genes
(i.e., features) and gain knowledge on their relationships (i.e.,
gene–gene interactions) and roles in driving immune-related
processes and clinical traits represents an applicable approach
for the deployment of better immunotherapies. Genes act
collectively through functional associations, and differentially
expressed or mutated genes are not always the key players that
underpin clinical traits. Interactions between genes also are
nuanced by their cellular network ecosystem. An unbiased large-
scale evaluation of genes and their positional functional
associations in disease phenotypes can identify unknown gene
associations that play critical roles in conferring clinical traits in
cancer. Artificial intelligence (AI) approaches coupled with weight
engineering methods can foster such discoveries. Here, our central
tenet is that gene–gene associations that not only predict but also
explain the properties of the clinical outcomes are key players in
disease. We term such gene–gene associations as biological
“knowledge” that is embedded within omics data and can be
accessed through trained AI models.

How the human brain learns and stores knowledge has
fascinated scientists for decades. Years of studies in neuroscience
have revealed that connections between neurons are plastic and
changes such as “pruning” occur during the learning process (5–7)
to ensure efficient brain function and allow for memories to be
reorganized at the systems level (8). In addition, numerous studies
suggest that learned information is sparsely represented and
distributed in the neocortex (9). This sparsely coded information
is encapsulated as weight representations that can be found in
auditory (10), visual (11), and somatosensory areas (12).

The creation of artificial neural networks (ANNs) was
inspired by the neuronal architecture to model how the brain
learns. The area of ANN research was first initiated by Warren
McCulloch and Walter Pitts in 1943 (13). In 1949, Donald Hebb
realized that it is the strength between neurons that forms the
basis of learning (14). Since then, numerous versions of ANN
models have been designed such as perceptron in 1958 (15) and
neocognitron in 1979 (16). These models are based on adjusting
neuronal weights during the learning process. Although there
was a “dark age” of ANNs from the late 1960s to the early 1980s
(17), the rise of ANNs especially deep neural network (18) and
the development of various versions of ANN models since the
late 1980s have revolutionized many learning tasks such as
image, speech, and text recognitions (19); clinical diagnosis
(20); Go game (21); and protein structure prediction (22) with
unprecedented performance, making ANNs become the norm
and mainstream in AI in recent years.

Aside from conventional recognition tasks, ANNs have been
used in various discovery tasks such as disease gene and drug
discoveries (23, 24). In addition, attempts to extract knowledge
from biological data using ANNmodels have been conducted (25).
For instance, using a gene expression compendium for the
bacterium Pseudomonas aeruginosa, Tan et al. have recently
Frontiers in Immunology | www.frontiersin.org 2
demonstrated that hidden nodes of a trained denoising
autoencoder were enriched with molecular representations that
explained the biology of P. aeruginosa (26). They also found that
one of the hidden nodes was enriched by genes that were co-
regulated in an operon and another hidden node was enriched
with genes that signified different bacterium strains. Another work
by Tan et al. showed that denoising autoencoders can help to
construct features that contain clinical and molecular information
with respect to normal and tumor including estrogen receptor
status and molecular subtypes of tumors (27). All these studies
indicate that autoencoders act as information encoders aside from
their initial use as dimensionality reduction (28). Autoencoder-
learned knowledge is stored using weight representations that
compromise “weighted connectome patterns”. In other words,
aside from their conventional use in recognition and discovery
tasks, ANNs, in particular autoencoders, can be used as knowledge
discovery platforms.

Our current study attempts to explore the feasibility of
extracting knowledge from an ANN model using a novel weight
engineering approach. Here, “knowledge” refers to the
relationships between features (e.g., gene–gene associations), in
particular associations involving immune-related genes that can
explain properties of a disease system (e.g., a clinical trait in
cancer). This study seeks to decode weight representations of
learned information in an ANNmodel and reconstruct underlying
relationships between input features (i.e., knowledge) that explain
the behavior of a system. We use an autoencoder as a model of
choice and design a weight engineering platform called artificial
neural network encoder (ANNE) to explore how biological
knowledge can be reconstructed from an ANN model. As a
proof-of-concept study, we employ ANNE on a breast cancer
gene expression dataset with known clinical outcomes to extract
the roles of immune-related processes in underpinning clinical
traits from knowledge learned by autoencoder models.
2 MATERIALS AND METHODS

2.1 Data Preparation and Normalization
Gene expression data from a breast cancer cohort conducted from
June 2000 to March 2010 at the MD Anderson Cancer Center and
treated with neoadjuvant taxane–anthracycline chemotherapy
(29) were downloaded from the Gene Expression Omnibus
(Accession ID: GSE25066). Gene expressions were read using an
Affymetrix Human Genome U133A Array platform with a total of
11,840 genes measured across 508 breast cancer patients. The
expression profile of each sample was normalized individually
using the single-channel array normalization (SCAN) method
developed by Piccolo et al. (30) which is implemented in the
SCAN function from R package SCAN.UPC (31). This allows our
models to easily incorporate new samples. SCAN-processed gene
expression data were further normalized into Gaussian
distribution N(0, 1) for each gene.

2.1.1 Chemosensitivity Models
Pathological complete response (pCR) indicating no invasive or
metastatic breast cancer was used to define patients who were
July 2022 | Volume 13 | Article 920669
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sensitive to neoadjuvant chemotherapy. Residual disease (RD)
defined as a surrogate for residue cancer cells in a patient during
treatment was used to classify patients who were resistant to
chemotherapeutics. Expression data from pCR and RD were
used to build models that were sensitive and resistant to
chemotherapy, respectively.

2.1.2 Prognosis Models
We used information for disease relapse-free survival (DRFS)
that indicates the length of time after primary treatment that a
patient survives without any signs of relapse of breast cancer to
define prognostic outcomes. Median DRFS (in days) was used as
a cutoff to separate patients belonging to either good or
poor prognosis.
2.2 Hyperparameter Selection
To select the combination of hyperparameters that can achieve
the best performance, a grid scan was performed for six different
types of activation functions, namely, linear, exponential linear
(ELU), rectified linear (RELU), parameterized rectified linear
(PRELU), sigmoid, and hyperbolic tangent (tanh), in
combination with different numbers of hidden layer nodes of
30, 50, 100, 300, 500, and 1,000. The performance of each
combination of hyperparameters was assessed using a 10-fold
cross-validation procedure with a holdout set. Here, 10% of the
samples were first randomly selected and kept as a holdout set,
and the remaining samples were randomly split into 10 portions.
For each hyperparameter combination, one model was trained
with one portion as the validation set and the rest of the 9
portions as the training set, and this process was repeated 10
times each with a different split as validation. Training is
complete when the loss function stops improving, or training
has reached 10,000 epochs. Validation performance was used to
select hyperparameter combinations, and performance on the
holdout set was reported as model performance. We selected a
linear activation function with 50 hidden layer nodes with
consideration of performance, computation cost, and ease of
interpretation. With selected hyperparameters, samples of each
of the four subsets, pCR, RD, good prognosis, and poor
prognosis, were used to build a full model for subsequent node
annotation and network generation.

2.3 Model Training Details
Models were trained using an autoencoder algorithm, which has
the structure of a feedforward neural network, while it is an
unsupervised learning method that takes each of its input vectors
as the training target (28). The autoencoder models were built
and trained using the Python library Keras. All autoencoder
models shared the same network architecture that consists of
three layers: an input layer, a hidden layer, and an output layer.
The numbers of nodes in the input and output layers are the
same as the total number of genes (i.e., the input and output
layers have the same number of nodes). Each node in the hidden
layer is fully connected to all nodes in the input layer, and each
node in the output layer is in turn fully connected to all nodes in
Frontiers in Immunology | www.frontiersin.org 3
the hidden layer. The goal of the training process is to minimize
the difference between the reconstructed output to the input.

The weight and bias terms for each neuron in the hidden layer
and output layer are initialized according to He et al. (32) so that
they conform to a Gaussian distribution N(0,

ffiffiffiffiffiffiffiffiffi
2=nl

p
) where nl is

the number of nodes in layer l. During the feedforward phase, each
sample, in the form of gene expression vectors, is fed into the input
layer. The activations of each node in the hidden and output layer
nodes are calculated as the weighted sum of activations of all nodes
from a previous layer plus a bias term as follows:

ai,l =oj∈ 1,  nl−1½ �wi,j,l−1 ∗ aj,l−1 + bi,l ½1�
where ai,l is the activation value of node i in layer l, nl–1 is the
total number of nodes in layer l − 1, wi,j,l–1 is the weight between
node i in layer l and node j in layer l − 1, and bi,l is the bias term of
node i in layer l.

To train the model, we used mean-squared error (MSE) as the
loss function:

MSE =
1
Kok∈ 1, K½ �oi∈ 1,  I½ � ai,o,  k − gi,  k

� �2 ½2�

where K is the total number of samples, I is the total number of
genes, ai,o,k is the activation value of node i in the output layer for
sample k, and gi,k is the expression value of gene i of sample k.

2.4 Prediction of Clinical Phenotypes
To predict sample phenotypes, i.e., resistance or sensitivity to
chemotherapy, or whether a sample belongs to good or poor
prognosis, all samples were again split into 10 portions and
stratified according to chemotherapy sensitivity or prognosis. By
training models in each fold with the selected hyperparameter
combinations described in previous sections, we can predict and
assign to which group a new sample belongs by comparing the
reconstruction MSE to each trained model. Specifically, a sample
is assigned to a good prognosis group if the model for good
prognosis has better reconstruction accuracy and vice versa.
Misclassification rates of the test samples were calculated at
selected training epochs.

To visualize the separation of the prognosis groups,
information on DRFS was plotted as Kaplan–Meier overall
survival curves, where the x-axis is the time (days) from the
start of the study and the y-axis is the percentage of patients with
DRFS. The prognosis groups were either assigned using median
actual DRFS as cutoff or using predicted prognosis class. P-values
for group separation were determined using the Cox
proportional hazards regression model (33, 34). Kaplan–Meier
plots were generated using the R package survival.

2.5 Gene Set Enrichment Analysis on
Hidden Nodes
For each hidden node input, genes were ranked by their weights
and the gene set enrichment analysis (GSEA) algorithm was
performed on these ranked gene lists according to Subramanian
et al. (35) and Mootha et al. (36) using gene sets from MSigDB
version 3.0 (37).
July 2022 | Volume 13 | Article 920669
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2.3 Weight Engineering Function to Extract
Encoded Gene–Gene Associations Within
an Autoencoder Model
We designed a novel weight engineering approach with an
association scoring scheme to decode meaningful information
(in this case, gene–gene associations) encoded in a learned
autoencoder model. We used the sum of cumulative weights
from every input node to every output node as a score to access
the association strength of every gene as input to every gene as
output. Our devised association score Si,o of gene I at input layer I
to gene o at output layer O is given in the equation below:

Si,o =oo∈Ooh∈Hwo,  hwh,  i ½3�
where O and H denote the output layer and the hidden layer,
respectively. wh,i denotes the trained weight from node i in the
input layer to node h in the hidden layer, and similarly, wo,h

denotes the trained weight from node o in the output layer to
node h in the hidden layer. The association scores of all gene
pairs connect the genes into a network where the vertices are
genes, and each edge has the direction of the association score of
the gene pair which the edge connects. The magnitude of the
association score (or edge weight) for a gene pair is represented
for visualization purposes by the thickness of its edge. In the
current study, subsets of the top 200 gene pairs with the largest
absolute edge weight are considered. The decoded networks for
all the proposed models can be explored at www.anne.
hulilab.org.
3 SOURCE CODE

The source code for ANNE, along with sample datasets and
installation instructions, can be downloaded at www.anne.
hulilab.org and on GitHub at https://github.com/HuLiLab/ANNE.
4 RESULTS

4.1 Basic Concepts on Weight Engineering
to Extract ANN Weight-Encoded
Biological Knowledge
The key idea of weight engineering to extract encoded knowledge
from ANN models is based on findings in neuroscience showing
that the brain learns via adjusting synaptic strengths between
neurons. In other words, the learned knowledge is stored in the
form of “weight representations” between synapses across distinct
regions in the brain (Figure 1A). Under this context, “knowledge”
is defined as relationships between attributes (i.e., events or objects
of learning) that explain the property of systems learned. In
principle, it is possible to reconstruct learned knowledge to a
certain extent in an individual if we can map the full connectome
of the brain and know their synaptic strengths. This task can be
accomplished via “weight engineering”, a mathematical approach
tomanipulate these weights to extract stored knowledge. Although
extracting stored knowledge in the brain is still infeasible, it might
Frontiers in Immunology | www.frontiersin.org 4
be possible on simpler ANN models such as autoencoders
(Figure 1B). Just as in the brain, ANNs store learned knowledge
in the form of weight representations throughout the models.
Hence, it is possible to employ a weight engineering approach to
decode stored knowledge in ANNs.

4.2 The Design of the Artificial Neural
Network Encoder Platform
We designed a computational platform called ANNE to decode
learned knowledge using a novel weight engineering method.
Among ANNs, we chose an autoencoder as a model of choice as
it has previously been demonstrated to possess the power to store
known knowledge (25–27). In addition, the architectures of
autoencoders are symmetric in “bowtie-shape” form with
similar dimensionality of input and output layers. Such
symmetric architectures enable us to design a weight
engineering function (see Materials and Methods) to access the
association strength of each input to output gene. Next, we used
gene expression data from a breast cancer cohort conducted
from June 2000 to March 2010 at the MD Anderson Cancer
Center for patients subjected to neoadjuvant (preoperative)
taxane–anthracycline chemotherapy with known clinical
phenotypes (29) as study cases.

Figure 2 provides an overview of the ANNE platform using a
breast cancer prognosis model as an illustrative example. The
basic architecture of the autoencoder contains one visible input
layer, one hidden layer, and an output layer. As illustrated in
Figure 2, when gene expression profiles for patients with known
prognostic outcomes are used, the training goal for an
autoencoder is to minimize the reconstruction error between
the input vector (i.e., original vector data of gene expression
values from patients) and output (i.e., reconstructed input) for
example for good and poor prognosis models. The training
process is repeated until no further improvement for data
reconstruction is achieved as reflected and measured by MSE
or reaching 10,000 training epochs (Figure 3A). Weight
engineering functions are expressed by an association scoring
scheme where cumulative products of weights of all possible
paths connecting nodes of a gene pair i–j from input to output
layers via hidden nodes are then computed. The resulting
cumulative association score matrix contains the information
on the extent (i.e., strength) and directionality (i.e., positive or
negative) of gene–gene associations. Gene pairs that exhibit
strong informational associations can be extracted, and genes
recurrent in multiple gene pairs will serve as “anchors” to allow
us to agglomerate gene pairs into a network. The resulting
network represents the reconstructed “knowledge” where
gene–gene associations can help explain the prognostic
behavior in breast cancer (the full reconstructed networks are
given at www.anne.hulilab.org).

4.3 Model Construction and Training
We build two sets of models in this study based on chemosensitivity
(chemosensitive and chemoresistant) and prognosis (good and
poor). In total, we constructed four autoencoder-based models
(chemosensitive, chemoresistant, good prognosis, and poor
July 2022 | Volume 13 | Article 920669
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prognosis), and the training procedure was conducted as outlined in
Figure 2 for each model.

Next, we explored how hyperparameters, i.e., the number of
hidden layer nodes (30, 50, 100, 300, 500, and 1,000) and six
types of activation functions (linear, ELU, PRELU, RELU,
sigmoid, and tanh), affected the performance of these
autoencoder models. We found that the activation function
ELU with 1,000 hidden layer nodes showed the best validation
performance (i.e., the least mean-squared errors) with 10-fold
cross-validations (Figure 4A) and holdout dataset (Figure 4B).
Furthermore, the performance on the holdout dataset (27) also
improves while the training performance improves, showing that
no overfitting occurs during model training (Figure 5A).
Interestingly, we observed that models trained via a linear
activation (Equation 1) showed comparable performance with
the ELU-derived models (Figure 4). In addition, the models
trained with linear and ELU activation functions have robust and
comparable performance using MSE as loss function during
training, validation, and holdout test (Figures 3A, 5A). Also,
the sample sizes that increased the training set led to better
holdout performance (Figures 3B, 5B) as well as performance of
class prediction for pCR–RD (Figures 3C, 5C) and prognosis
(Figures 3D, 5D). We next tested the models trained with ELU
and a linear activation function for their capability to separate
prognosis groups. Here, we found that the linear models separate
the prognosis groups well (Figure 3E) but not the ELU models
(Figure 5E). We therefore selected models trained with a linear
activation function for the subsequent analyses. To reduce the
computation cost and enhance the interpretability of the trained
models such that pathway enrichment analyses can be performed
Frontiers in Immunology | www.frontiersin.org 5
and analyzed on each of the hidden nodes, we choose models
with 50 hidden nodes that possess comparable performance
instead of the best performing models with 1,000 hidden nodes.

Based on the above criteria, all four sets of models
(chemosensitive, chemoresistant, good prognosis, and poor
prognosis) shared a similar neural network architecture, with
11,840 nodes at the input layer (corresponding to 11,840 genes in
the input vector), 50 nodes at the hidden layer, and 11,840 nodes
at the output layer (corresponding to 11,840 genes of the
reconstructed output vector), and were trained using the linear
activation function.

4.4 Hidden Nodes Encoded Insightful
Biological Information
Earlier studies have demonstrated that nodes within the hidden
layer of an autoencoder are capable to learn appropriate
compressed representations that describe a dataset (25–27). As
such, we reason that hidden nodes in our trained models are also
capable to capture meaningful molecular representations (genes
and their associations) that signify different molecular aspects of
breast cancer biology.

To investigate what information has been learned and decoded
in our trained models, we performed GSEA for each hidden node
(a total of 50 hidden nodes) for gene sets in the MSigDB database
(Figure 6). Since all four models (chemosensitive, chemoresistant,
good prognosis, poor prognosis) share the same neural network
architecture and training parameters, we can directly overlay the
enrichment results, node-by-node in the hidden layer. Enrichment
results provided in Figure 6 not only revealed the intimate
functional similarity between chemosensitivity and prognosis but
B

A

FIGURE 1 | Conceptual illustration of learned knowledge. Weight engineering is utilized to extract meaningful learned knowledge by a learner such as (A) the human
brain and (B) an artificial neural network (ANN) model including an autoencoder. During the learning process, the learner (brain or ANN) translates the learned
associations between attributes or features that explain the property of a system, that we call “knowledge”, into weight representations that are stored as synaptic
strengths in the brain or interneuronal weights in an ANN model. Weight engineering, a mathematical approach that manipulates learned weights stored from a
learner, reconstructs the learned knowledge by decoding associations between features (i.e., gene-gene interactions) that can explain the properties of a desired
system. Figure generated with BioRender.com.
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also highlighted the differential functional connections between the
two clinical setups. For instance, REACTOME Extracellular Matrix
Organization, REACTOME Interferon Alpha Beta Signaling, and
REACTOME Nonsense-mediated Decay Enhanced by the Exon
Junction Complex (Figure 6) encapsulate the protein interactions
that exhibit the most differential functional profiles between the
good and poor prognosis models in their hidden nodes. As
described below, the extracellular matrix (ECM) and collagen are
reported to play a role in determining chemosensitivity and
prognosis in breast cancers, indicating that our learned
autoencoder models indeed encode meaningful information
enriched with relevant biological functions that explain the
clinical-relevant properties in breast cancer.

Next, we assessed the impact of different sets of initialization
parameters on trained weights and converged modes. We used
10 different random seeds to train the models (linear activation
function with 50 hidden nodes) and investigated whether
meaningful information still can be encoded for the models
trained. Thus, we built 50 GSEA models (with respect to each
Frontiers in Immunology | www.frontiersin.org 6
hidden node) for pCR, RD, good prognosis, and poor prognosis
states. We found that the models trained with different
initialization parameters gave rise to different GSEA results
compared to our “reference” models (Supplementary Data 1).
Nonetheless, all these enriched pathways are indeed pertinent to
cancer etiology (e.g., telomere maintenance and respiratory
electron transport) with processes related to protein synthesis
(e.g., 3′-UTR-mediated translation regulation and peptide chain
elongation) being the most commonly shared enriched
processes. Such observations further support that our models
indeed encode biologically meaningful information, but each
model explores and encodes the weight space into knowledge of a
system in a slightly different “perspective”.

4.5 Knowledge Extraction From ANNE-
Encoded Networks
In our work, we defined learned “knowledge” as ANNE-decoded
gene–gene associations that explain the clinical properties of
breast cancer. This is because these gene–gene associations not
FIGURE 2 | Overview of Artificial Neural Network Encoder (ANNE). The ANNE algorithm uses gene expression profiles from breast cancer patients with known prognostic
outcomes to simultaneously decode gene-gene associations, networks and derive clinical risk models. Patient samples are assigned to either good or poor prognosis
according to disease relapse-free survival (DRFS). Next, an autoencoder algorithm is used to train the models, with an input vector that represents all genes (features) present
in transcriptomics data and each gene corresponds to a node in the input layer. The dimensionality of the output layer (i.e., number of nodes) is the same as the input layer.
The autoencoder has an architecture of one input layer, one hidden layer and one output layer. During the training phase the autoencoder reconstruct values from input layer
into an output layer and the output vector is compared with input vector to compute the reconstruction error. The training process is repeated by updating weights connecting
nodes (or neurons) from input layer to hidden layer and from hidden layer to output layer via a backpropagation algorithm. The training process is repeated by feeding input
through the neural network to the output layer to calculate the training loss, and updating the weights connecting nodes from the output layer to hidden layer and to the input
layer via a backpropagation algorithm. Training process is deemed complete when no further improvements on the reconstruction error is achieved, or training has reached
certain number epochs. Next, the learned weights connecting all nodes from input to output layers in a trained autoencoder model are used to decode meaningful gene-gene
associations using an association scoring scheme. Computed association scores for all gene pairs are aggregated to an association score matrix and the top gene pairs
(n=200) with highest absolute scores are selected to build ANNE-decoded networks. Genes that occur multiple times will serve as “anchors” to agglomerate gene pairs into a
network. Figure generated with BioRender.com.
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only indicate which genes play more important roles in model
prediction but also provide mechanistic insights that help
characterize the property of a system. We reasoned that
weights of all possible paths connecting gene i at the input
layer to gene j at the output layer (where i ≠ j) via nodes at the
hidden layer of an ANN model encode information that
indicates the importance of the functional association between
genes i and j. We developed an association score scheme by
computing the collective sum of products of weights connecting
all possible paths from gene i at the input layer to gene j at the
output layer to encode their functional associations (Equation 3).
The magnitude of association scores provides an estimate of
predictability of expression outcome for gene j given the
expression of gene i (denoted as i ! j). In some scenarios,
both genes i and j show mutual predictability of expression
outcome to one another (denoted as i ↔ j). Furthermore, the
cumulative association score for gene pair i–j can be either
positive or negative, indicative of a positive or negative
predictive effect of gene i to gene j, respectively. Gene pairs of
Frontiers in Immunology | www.frontiersin.org 7
the top 200 absolute association scores were used to decode
chemosensitive (pCR), chemoresistant (RD), good prognosis,
and poor prognosis networks, as depicted in Supplementary
Figures S1-S4.

Overlay of the functional annotations from Gene Ontology
(GO) indicates that extracellular space, immune system process,
homeostatic process, cell death, mitochondrion, and locomotion
are the major biological processes where most genes are found to be
residing in these encoded networks (Supplementary Figures S1-
S4). These processes, especially extracellular space and immune
system process, are pertinent to determine chemosensitivity and
prognosis in breast cancers, as discussed below. Key genes that
connect these major biological processes are given in Figure 7.
Calcium-binding proteins S100A8 and S100A9 are hub genes that
connect to all major biological processes except the mitochondrion
in all four encoded networks, suggesting that these genes might be
important in mediating chemosensitivity and prognosis, since
dysregulated expression of the members of the S100 family is a
common feature of human cancers (38).
B

C D

E

A

FIGURE 3 | ANNE model training and evaluation for models trained with a linear activation function. (A) Training curve showing the loss function of mean-squared-error (MSE)
with epochs during training, validation (10-fold cross-validation), and holdout (excluded 10% of the data) sets with a linear activation function. (B) Change of performance for
training and holdout sets with 10000 training epochs and by varying batch size. During model validation MSE improves as more samples are used for training, indicating that
the model is learning from its input gaining information which can be extended to unknown samples. (C, D) Performance class prediction (misclassification rates) for chemo-
sensitive and resistant (pCR and RD) and prognosis (good and poor) models improves with epochs trained. (E) Kaplan-Meier overall survival plots for poor and good breast
cancer prognosis groups at different epochs trained. (100, 500, 1000, 5000,
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BA

FIGURE 4 | Model selection using grid scan for combination of hyper-parameters. Different activation functions and number of hidden nodes using 10-
fold cross-validation with holdout set. Hyper-parameter combinations were evaluated with validation MSE (A), and model performance reported in
holdout MSE (B).
B

C D

E

A

FIGURE 5 | Training and evaluation for models trained with nonlinear ELU activation function. (A) Training curve showing that the mean-squared-error (MSE) of
training, and holdout sets improves with training. (B) Change of training and holdout set performance with different training sample sizes, at 10000 epochs.
(C, D) Performance of class prediction in misclassification rates for chemo-sensitive and resistant (pCR and RD) and prognosis (good and poor) improves within
training. (E) Kaplan-Meier overall survival plots for poor and good breast cancer prognosis groups with varying number of trained epochs:100, 500, 1000, 5000,
and 10000.
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FIGURE 6 | Hidden nodes store biologically meaningful information. GSEA enrichment analyses for protein-protein interactions using the REACTOME
database for top hidden nodes in ANNE trained model. Enriched interactions with normalized enrichment scores with absolute values greater than 1.5 and
false discovery rate (FDR) < 0.05 are indicated. pCR, chemosensitive model; RD, chemoresistant model. The order of the 50 hidden nodes is indicated at top
of the figure.
B

C D

A

FIGURE 7 | Major gene ontology (GO) terms for ANNE decoded networks. (A) Good prognosis. (B) Poor prognosis. (C) Chemosensitive (pCR). (D) Chemoresistant
(RD). Octagonal nodes (pink) represent GO processes. Circular nodes (green) are genes detected in encoded networks derived from top 200 gene pairs with the
largest absolute association score.
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To better understand the biological and clinical implications of
ANNE-encoded networks, modules were assigned based on
network connectivity to hub genes. Supplementary Figures S5,
S6 provide common key modules for chemosensitivity and
prognosis networks, respectively. The results highlighted in these
figures indicate integrated yet marked functional associations
between genes that play similar biological roles. Furthermore,
distinct functional associations were also detected. For instance,
both KRT14 and S100A8 modules are found in chemosensitive
and chemoresistant networks (Supplementary Figure S5) but
show distinct gene–gene associations. These differential gene–gene
associations provide important clues that warrant further
investigations to understand molecular mechanisms leading to
variations in clinical response.

Next, we analyze the expression of hub genes and their
associated genes to investigate to what extent these genes show
differential expression profiles between different clinical
phenotypes. Supplementary Figure S7 shows that many hub
genes and their associated genes in all four encoded networks
are not differentially expressed. This indicates that it is the product
of weights connecting gene i and j rather than a differential
expression of these genes that determines the importance of
their associations. Association score implemented in ANNE is
therefore capable to decode knowledge of meaningful gene–gene
associations encoded by learned autoencoder models that capture
the property of a given clinical phenotype (e.g., prognosis).
4.6 Decoded Gene–Gene Associations
From ANNE-Encoded Networks Revealed
the Importance of Immune-Related
Processes in Cancer Clinical Traits
To illustrate the trained autoencoder models encode meaningful
information from breast cancer expression data with known
clinical outcomes, we next investigated whether the decoded
gene–gene associations especially those that correspond to
immune-related processes from ANNE-encoded networks can
explain the biology of chemosensitivity and prognosis for breast
cancers. Indeed, we found numerous reported studies supporting
the clinical roles of these genes in chemosensitivity and prognosis,
and more importantly, all this supporting evidence pointed to
different molecular aspects found in the encoded network modules
(Supplementary Figures S5, S6) as outlined below.

4.6.1 Chemokine Responses
The immune surveillance theory asserts that tumors rise due to
failure of anticancer immune responses (39). Both innate and
adaptive immune responses are known to have a crucial
contribution to outcomes of conventional chemotherapy-based
anticancer treatments (40). Meta-analyses of transcriptomic data
revealed that chemokine (C-X-C module) ligand 13 (CXCL13)
within the CXCL9 module of the chemosensitive (pCR) model
(Supplementary Figure S5) is one of the most robust predictors
of favorable disease outcome for breast cancer patients treated
with neoadjuvant chemotherapy (41). In the context of
neoadjuvant chemotherapy, the expression levels of multiple
immune-related genes including CXCL13 constitute positive
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prognostic factors for pCR (42), and it has been demonstrated
to be associated with improved disease-free and overall survival
after tumor resection (43). Also, CXCL9, the hub gene in this
module (Supplementary Figure S5) within the chemosensitive
network, was found to be significantly differentially expressed in
the recurrence versus the non-recurrence group, and its elevated
expression level was associated with prolonged disease-free
survival (DFS) (44).

4.6.2 Extracellular Matrix
The ECM not only controls many cellular events of cancer cells
such as gene expression, proliferation, and metastatic invasiveness
but also plays a crucial role in regulating cancer immunity (45, 46).
It is also known that changes in ECM affect drug sensitivity in
tumor cells (47). Furthermore, the expression of several
cytokeratin genes such as KRT5, KRT6B, KRT14, and KRT17
was associated with basal-like breast cancer, a breast cancer
subtype that is highly associated with poor treatment outcome
(48). Intriguingly, the KRT14 module of the chemosensitive
network captures both KRT5 and KRT17 among these keratin
genes (Supplementary Figure S5). The results were also
consistent with KRT14 modules of both good and poor
prognosis networks (Supplementary Figure S6). Moreover, the
matrix Gla protein (MGP), which is a hub gene in the MGP
module, uniquely found in the poor prognosis network
(Supplementary Figure S6), has been reported to be among the
genes that were upregulated in breast cancer cases where the
prognosis was poor (49). Furthermore, other studies also provided
evidence for lumican (LUM) in the COL3A1 module in the
chemoresistant network (Supplementary Figure S5) and in the
COL1A2-COL3A1 module in both good and poor prognosis
networks (Supplementary Figure S6), where reduced expression
of LUM was associated with dismal outcomes in node-negative
invasive breast cancer (50). Also, carcinoembryonic antigen-
related cell adhesion molecule (CEACAM5) included in the
CEACAM6 module in the chemoresistant network
(Supplementary Figure S5) and in the SCGB2A2–SCGB1D2
modules in the poor prognosis network (Supplementary Figure
S6) was reported to be prognostic in both ER‐positive and ER‐
negative breast cancer patients (51).

4.6.3 Tumor Microenvironment
The tumor microenvironment (TME) is a milieu that affects the
behaviors of cancer cells as well as the efficacy of antitumor
treatments (52). Also, the microenvironment such as pH is
known to affect the cellular activities of cancer cells. For
instance, the hypoxic microenvironment of cancer cells could
be one of the parameters that compromise chemosensitivity.
Carbonic anhydrases that catalyze the reversible hydration of
carbon dioxide to bicarbonate and a proton are enzymes essential
to maintain pericellular pH homeostasis. Carbonic anhydrase 9
(CA9) was reported to be associated with chemosensitivity and
prognosis in breast cancer patients treated with taxane and
anthracycline (53). In our case, we found that CA2, another
form of carbonic anhydrase, was found to be associated with the
CPB1 module in the chemoresistant network (Supplementary
Figure S5).
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4.6.4 Lipid Metabolism
Lipid intake, transport, and metabolism are known to play
important roles in tumorigenesis and tumor immunity (54).
For instance, lipid droplet formation was reported to be
associated with prolonged breast cancer survival (55). Fatty
acid-binding protein (FABP4) included in the FABP4 module
in both chemoresistant (Supplementary Figure S5) and poor
prognosis networks (Supplementary Figure S6) was detected in
our encoded networks. Support for the role of FABP4 in
chemoresistance and prognosis is implicated with the recent
finding that the lipid droplet-associated protein perilipin 1
(PLIN1), which is found specifically associated with FABP4
modules in both the poor prognosis network (Supplementary
Figure S6) and the chemoresistant network (Supplementary
Figure S5), acts as a prognostic factor in breast cancer (56).

4.6.5 Hemoglobin Status
Hemoglobin (Hb) levels had been reported by a number of studies
to be associated with treatment outcomes and survival of patients of
various cancer types (57–59) including breast cancer (60). It was
reported that anemia in cancer patients is a prognostic factor
associated with shorter survival (61). Further support for the role
of Hb came from a study by Ikeda et al. which showed that
hemoglobin subunit-b (HBB) was negatively associated with
tumor reduction (62). Consistent with these findings, HBB was
found as hub-specific to the chemosensitive (HBB-FABP4 module,
Supplementary Figure S5) and good prognosis networks (NPY1R-
HBB-FABP4 module, Supplementary Figure S6).

4.6.6 Iron Metabolism
Iron is an essential element for heme biosynthesis and can act as an
enzyme cofactor, for example, for ribonucleotide reductase that is
involved in converting ribonucleotides to deoxyribonucleotides
during DNA synthesis. High levels of iron are reported to be
associated with tumor development (63), and a low iron intake diet
has been suggested to reduce spontaneous mammary tumors in
rats (64). Iron also can promote the production of reactive oxygen
species during malignant transformation and affect tumor
immunosurveillance (65). Miller et al. reported a 16-gene list of
an iron regulatory gene signature that could predict outcome in
breast cancer (66). Lactotransferrin (LTF), which was one of those
genes, was found as a hub in the LTF-PIP and LTF modules in the
good and poor prognosis networks (Supplementary Figure
S6), respectively.

4.7 ANNE-Encoded Networks Also
Uncover Novel Gene–Gene Associations
High expression levels of the protein G0/G1 Switch 2 (G0S2)
which regulates lipid metabolism via peroxisome proliferator-
activated receptor-a (PPARa) were recently reported to
associate with a decrease in breast cancer recurrence rates (67).
Interestingly, we found G0S2 to be associated with the apoptotic
regulator BCL2A1 (also known as BFL1) via CXCL8 at the CXCL8
module specific to the chemosensitive network (Supplementary
Figure S5). However, the functional association of G0S2 to the
apoptotic regulator is lost in the poor prognosis network and
instead is rewired to the lipid-binding protein FABP4 in the
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FABP4 module (Supplementary Figure S6). Our study, thus,
suggests a novel mechanistic link between G0S2 and chemokine
CXCL8 to promote drug-induced apoptosis.

Iseri et al. demonstrated that the ECM-associated genes
ITGA6, COL4A1, COL4A2, COL6A1, COL6A2, LAMA1, FN1,
CLDN1, GPC6, SDC2, FBN1, and FBLN1 were significantly
upregulated in doxorubicin-resistant MCF-7 breast cancer cell
line (68). Intriguingly, our encoded chemosensitive network
indicates negative functional associations between hemoglobin
subunit-b (HBB) with COL3A1 and COL11A1 at the HBB-
FABP4 module (Supplementary Figure S5), consistent with the
need for high Hb and low level of collagen in promoting
chemosensitivity. However, these Hb–collagen associations are
not seen for the decoded chemoresistant network.

LGALS3BP, a member of the beta-galactoside-binding
protein family implicated in modulating cell–cell and cell–
matrix interactions, is associated with IFI27-related modules,
which in turn is associated with several interferon-inducible
proteins in all four ANNE-encoded networks (Supplementary
Figures S5, S6). High levels of LGALS3BP in serum or tumor
tissue of cancer patients were previously reported to be
correlated with a poor survival or a more advanced disease in
breast cancer (69). Our results suggest a general functional
association of LGALS3BP to interferon-inducible proteins that
regulate cell-mediated interactions in immune responses.

The above findings suggest that using the weight engineering
approach, it is possible to decode novel cross-functional
associations encoded as weight representations in autoencoders.
Finding such novel functional gene–gene associations can shed
new light in uncovering molecular crosstalk that regulates
chemosensitivity and prognosis of breast cancers for future
experimental endeavors to design novel therapeutics to better
combat cancers.
5 DISCUSSION

Studies from neuroscience revealed that the brain adjusts
synaptic strengths between neurons during the learning
process and stores information as memory in the form of a
weighted connectome (70, 71). Knowledge is therefore stored as
weight representations in the brain. ANNs learn by a similar
mechanism and their applications have been deeply embedded in
our daily life. Intriguingly, works from the past few years had
revealed that ANNs, particularly autoencoders, are capable of
storing meaningful information within hidden nodes (25–27).
Such studies open a new avenue that ANNs can be used as
knowledge discovery platforms. However, the promise of ANNs
as knowledge discovery platforms and the use of the weight
engineering approach to extract knowledge from encoded weight
representations in ANNs are not explored.

In this study, we utilized an ANN autoencoder AI model and
designed a novel weight engineering function to develop a
knowledge discovery platform called ANNE. We used a breast
cancer expression dataset with known clinical outcomes as our
study case. We built and trained autoencoder models for a
specific task and sought to decode learned weights into
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knowledge. To ensure that the reconstructed knowledge is
meaningful, we robustly trained and explored various
hyperparameters (activation function, number of nodes). Our
models were also rigorously validated in a holdout procedure to
ensure that there is no overfitting of the data. Overall, our
procedures can ascertain that our platform has the desired
functionalities for knowledge reconstruction.

Indeed, we found that several reconstructed gene–gene
associations decoded by our weight engineering function have
been previously reported in several studies. This demonstrates
that the reconstructed gene associations and their respective
networks indeed capture the clinical properties of breast cancer
and hence can be considered as “knowledge” that explains the
system (in this case, clinical traits of breast cancer). Furthermore,
the directionality of reconstructed gene associations indicates the
contribution of specific genes to the predictivity of the model
which in turn provides mechanistic insights to understand which
genes (or features) play more important roles in model
performance. As such, we reason that these key gene
associations can have an important contribution in conferring
a given clinical trait (e.g., prognosis) in breast cancer.

Interestingly, we found that well-performing models trained
with different sets of initialization parameters also encode
biologically meaningful information. The stochastic nature of
ANNs warrants some randomness, and like the human brain, no
two individuals share exactly the same learning outcomes. This
suggests that it is possible to construct multiple models that
represent individualized learning and compile each of these
“views” to generate a comprehensive picture of a system.

Although our current work uses an autoencoder with one
hidden layer as a proof-of-concept study, the applicability of
weight engineering to extract encoded knowledge is not limited
to this autoencoder architecture. The gene–gene association
scores of our weight engineering function (Equation 3) can be
easily extended to multiple hidden layers.

It is important to note that the concept of knowledge
discovery is distinct from model interpretability. ANNs are
well-known for their black box properties because it is
unknown how ANNs make predictions (72). Numerous efforts
had been spent to develop explainable artificial intelligence (XAI)
where the reasonings behind the predictions of AI algorithms
can be traced and understood by humans (72, 73). Rule-based
algorithms and decision trees are among the models that possess
explanatory capabilities. Nonetheless, a few works had been
conducted to modify ANN algorithms by incorporating
specific knowledge domains to construct ANN architectures.
Examples are visible neural networks (74) and biologically
informed deep neural network (75) where connections from
input to hidden nodes are guided by biological knowledge.
Hence, it can be seen here that model interpretability is the
inherent property of the design of the model. In contrast,
knowledge discovery or knowledge extraction pertains to
uncovering what has been learned by the model regardless of
whether we understand how the models make a prediction. Here,
knowledge refers to relationships between features that
characterize the property of the subjects learned. One of the
Frontiers in Immunology | www.frontiersin.org 12
salient examples is our own brains. Although we still do not fully
understand how our brains work to arrive at making a decision
based on learned knowledge, we trust our brains for their
learning capabilities, and in general, we know how knowledge
is represented in the brains.

In conclusion, our work illustrates that meaningful
knowledge is indeed stored as weight representations in
autoencoders. This concept alone is novel because
interneuronal weights in ANNs are not just mere learned
parameters to fit the data for a predictive task but possess a
meaningful representation of knowledge pertaining to the data.
Unlike conventional knowledge extraction which focuses on
identifying important features, knowledge reconstructed from
weight engineering approaches reveals how these features are
associated, and to a certain extent, provides deeper mechanistic
insights that can explain the properties of a disease. Knowledge
on associations between gene–gene pairs can in turn offer novel
insights on how a biological system can be better manipulated to
devise novel therapeutic options. We show that ANNE has the
power to uncover immune-related processes that underpin
breast cancer clinical traits where ANNE-reconstructed gene
association networks can provide mechanistic insights into
their actions. In summary, our weight engineering approach
has vast applicability and opens new avenues to employ AI-based
knowledge discovery platforms.
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Supplementary Figure 1 | Encoded chemosensitive (pCR) network from top 200
gene pairs of absolute association scores. Major biological processes from Gene
Ontology are highlighted with their respective colors.

Supplementary Figure 2 | Encoded chemoresistant (RD) network from top 200
gene pairs of absolute association scores. Major biological processes from Gene
Ontology are highlighted with their respective colors.

Supplementary Figure 3 | Encoded good prognosis network from top 200 gene
pairs of absolute association scores. Major biological processes from Gene
Ontology are highlighted with their respective colors.

Supplementary Figure 4 | Encoded poor prognosis network from top 200 gene
pairs of absolute association scores. Major biological processes from Gene
Ontology are highlighted with their respective colors.

Supplementary Figure 5 | Common network modules for encoded
chemosensitive and chemoresistant networks. Modules are named based on their
respective hub genes. Chemosensitive modules are shown with nodes of green
borders and chemoresistant modules are shown with nodes of grey borders. Red
edges between nodes indicate the positive cumulative association weights.
Direction of arrows shown in the edges indicates predictability of a gene to its
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counterpart. For instance, X!Y indicate expression of X from the input layer
predicts the expression of Y at the output layer.

Supplementary Figure 6 | Common network modules for encoded good and
poor prognosis networks. Modules are named based on their respective hub
genes. Modules of good prognosis network are shown with nodes of green borders
andmodules of poor prognosis network are shown with nodes of grey borders. Red
and blue edges between nodes indicate positive and negative cumulative
association weights, respectively. Direction of arrows shown in the edges indicate
predictability of a gene to its counterpart.

Supplementary Figure 7 | Gene expression profiles (z-scores) for hub genes and
their associated genes in ANNE-encoded networks. (A) Chemosensitivity networks
(pCR: chemosensitive; RD: chemoresistant). (B) Prognosis networks.

Supplementary Data Sheet 1 | GeneSet Enrichment Analyses (GSEA) for models
trained with different sets of initialization parameters. Models were trained with linear
activation function and50 hidden layer nodes for each of the sample subsets pCR,RD,
good, and poor prognosis. For each subset, 10models initializedwith different random
seeds were trained and analyzed. For each model, 50 ranked gene lists containing the
weight between the hidden layer nodes to input layerweregeneratedandusedas input
for GSEA against the MSigDB database. Genesets with false discovery rate (FDR) <
0.05weredeemedenrichedpathways.Tables1A through1d indicate thegenesets that
appeared in at least 1 hidden layer nodeof all 10modelswith different randomseeds as
well as in the model further discussed in this work (the “reference model”), i.e., these
gene sets are common to all these models. Tables 2A through 2d show the gene sets
that appear in the “reference model”, and in at least 1 of the 10 models with different
random seeds. The number in the cells indicates the number of occurrences of hidden
layer nodes enriched for a given pathway.
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73. Dosǐlović FK, Brčić M, Hlupić N. Explainable Artificial Intelligence: A Survey.
IEEE MIPRO (2018), 210–15.

74. Ma J, Yu MK, Fong S, Ono K, Sage E, Demchak B, et al. Using Deep Learning
to Model the Hierarchical Structure and Function of a Cell. Nat Methods
(2018) 15:290–8. doi: 10.1038/nmeth.4627

75. Elmarakeby HA, Hwang J, Arafeh R, Crowdis J, Gang S, David L, et al.
Biologically Informed Deep Neural Network for Prostate Cancer Discovery.
Nature (2021) 598:348–52. doi: 10.1038/s41586-021-03922-4
Frontiers in Immunology | www.frontiersin.org 15
Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Correia, Weiskittel, Tan, Meng-Lin, Yu, Yao, Yeo, Zhu,
Ung and Li. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
July 2022 | Volume 13 | Article 920669

https://doi.org/10.1002/ijc.23970
https://doi.org/10.1038/nature23455
https://doi.org/10.1126/science.1221762
https://doi.org/10.1038/538020a
https://doi.org/10.1038/nmeth.4627
https://doi.org/10.1038/s41586-021-03922-4
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	A Knowledge-Based Discovery Approach Couples Artificial Neural Networks With Weight Engineering to Uncover Immune-Related Processes Underpinning Clinical Traits of Breast Cancer
	1 Introduction
	2 Materials and Methods
	2.1 Data Preparation and Normalization
	2.1.1 Chemosensitivity Models
	2.1.2 Prognosis Models

	2.2 Hyperparameter Selection
	2.3 Model Training Details
	2.4 Prediction of Clinical Phenotypes
	2.5 Gene Set Enrichment Analysis on Hidden Nodes
	2.3 Weight Engineering Function to Extract Encoded Gene–Gene Associations Within an Autoencoder Model

	3 Source Code
	4 Results
	4.1 Basic Concepts on Weight Engineering to Extract ANN Weight-Encoded Biological Knowledge
	4.2 The Design of the Artificial Neural Network Encoder Platform
	4.3 Model Construction and Training
	4.4 Hidden Nodes Encoded Insightful Biological Information
	4.5 Knowledge Extraction From ANNE-Encoded Networks
	4.6 Decoded Gene–Gene Associations From ANNE-Encoded Networks Revealed the Importance of Immune-Related Processes in Cancer Clinical Traits
	4.6.1 Chemokine Responses
	4.6.2 Extracellular Matrix
	4.6.3 Tumor Microenvironment
	4.6.4 Lipid Metabolism
	4.6.5 Hemoglobin Status
	4.6.6 Iron Metabolism

	4.7 ANNE-Encoded Networks Also Uncover Novel Gene–Gene Associations

	5 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


