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Abstract
Resting-state functional MRI (rs-fMRI) permits study of the brain’s functional networks with-

out requiring participants to perform tasks. Robust changes in such resting state networks

(RSNs) have been observed in neurologic disorders, and rs-fMRI outcome measures are

candidate biomarkers for monitoring clinical trials, including trials of extended therapeutic

interventions for rehabilitation of patients with chronic conditions. In this study, we aim to

present a unique longitudinal dataset reporting on a healthy adult subject scanned weekly

over 3.5 years and identify rs-fMRI outcome measures appropriate for clinical trials. Accord-

ingly, we assessed the reproducibility, and characterized the temporal structure of, rs-fMRI

outcome measures derived using independent component analysis (ICA). Data was com-

pared to a 21-person dataset acquired on the same scanner in order to confirm that the val-

ues of the single-subject RSN measures were within the expected range as assessed from

the multi-participant dataset. Fourteen RSNs were identified, and the inter-session repro-

ducibility of outcome measures—network spatial map, temporal signal fluctuation magni-

tude, and between-network connectivity (BNC)–was high, with executive RSNs showing

the highest reproducibility. Analysis of the weekly outcome measures also showed that

many rs-fMRI outcome measures had a significant linear trend, annual periodicity, and per-

sistence. Such temporal structure was most prominent in spatial map similarity, and least

prominent in BNC. High reproducibility supports the candidacy of rs-fMRI outcome mea-

sures as biomarkers, but the presence of significant temporal structure needs to be taken

into account when such outcome measures are considered as biomarkers for rehabilitation-

style therapeutic interventions in chronic conditions.
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Introduction
Functional magnetic resonance imaging (fMRI) can noninvasively reveal the functional organi-
zation of the human brain, even in the absence of explicit tasks. Referred to as resting-state
functional MRI (rs-fMRI), the method exploits synchronous fluctuations in blood oxygen level
dependent (BOLD) signal throughout intrinsic brain functional networks [1]. The ability to
study the brain’s functional networks without requiring participants to perform explicit tasks
has clinical appeal, as it allows use of an identical protocol for all patients, regardless of cogni-
tive or physical limitations. This is especially important in chronic conditions that affect motor
function, and the need for non-invasive and reproducible biomarkers is enhanced by advances
in long-term therapeutic interventions for such chronic conditions [2–5]. Further, robust
changes in resting state networks (RSNs) have been observed in chronic diseases such as spinal
cord injury [6], cerebral palsy [4,5], Parkinson’s disease [7,8], multiple sclerosis [9,10], and
stroke [11], indicating that rs-fMRI based network outcome measures have the potential to
serve as biomarkers for chronic diseases and their progression, as well as the effects of possible
therapeutics.

Here we report the use of a unique longitudinal dataset that covers the time span of 185
weeks with weekly repeat measures. The dataset is exceptional in its length and frequency of
acquisition and provides a unique opportunity to gain insight into two different aspects of rs-
fMRI derived measures that were previously not accessible: 1) the reproducibility of the RSN
outcome measures over an extended time period relevant for long-term clinical trials, and 2)
inter-session temporal characteristics of the multi-year time courses of the rs-fMRI based out-
come measures, provided through time series analysis.

In this study, we aimed to: 1) present the unique longitudinal dataset reporting on a healthy
adult subject scanned weekly over 3.5 years, 2) identify RSN outcome measures appropriate for
clinical trials, with high intra-subject inter-session reproducibility over an extended timeframe,
and 3) identify potential parameters-of-interest by assessing the existence of temporal structure
within RSN outcome measure time courses. To achieve these goals, we first investigated the
intra-subject inter-session reproducibility of independent component analysis (ICA)-derived
rs-fMRI outcome measures, namely network spatial maps, BOLD temporal signal fluctuation
magnitudes, and temporal correlations between pairs of functional networks (between-network
connectivity; BNC). We then performed time series analysis on the time courses of the RSN
outcome measures to assess their temporal structure.

The RSN outcome measures were stable over the period of 185 weeks, with executive RSNs
showing the highest reproducibility. Significant trend, annual periodicity, and persistence
existed in the time courses of the outcome measures, suggesting that when such outcome mea-
sures are considered as biomarkers for rehabilitation-style therapeutic interventions in chronic
conditions, it may be beneficial to take into consideration the temporal structure of the out-
come measure.

Material and Methods

Participants
The longitudinal single-subject dataset was acquired from a healthy volunteer (40 years of age
at time of initial scan; male). A total of 158 sessions of MRI data was acquired on a weekly
basis, over a span of 185 weeks. Scans were typically performed on Thursday mornings at
11:30am; in cases of scheduling conflicts, scans were performed on different days of the week
and/or times, or skipped, depending on the types of conflicts. The initial image acquisition was
performed on the 7th of December, 2009, and the last image acquisition was performed on the
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20th of June, 2013. Acquisition dates for each session as well as the dates of the missed scans are
reported in the S1 Table.

A publically available multi-participant dataset [12] (referred to as “Kirby-21”; available at
http://www.nitrc.org/projects/multimodal), which was acquired using the same rs-fMRI imag-
ing protocol on the same MRI scanner, was used in order to confirm that the values of the sin-
gle-subject RSN measures are within the expected range as assessed from the multi-participant
dataset. The multi-participant dataset is from 21 healthy volunteers (22–61 years, mean 32
years, Male/Female ratio: 11/10).

In order to distinguish the study participant of the longitudinal single-subject study from
the participants of the Kirby-21 study, the former will be referred as “the subject” from this
point on. The term “participants” will be used inclusively to refer to study participants from
both single- and multi-participant studies.

Both the longitudinal single-subject and multi-participant Kirby-21 studies were performed
under protocols approved by the Institutional Review Board at Johns Hopkins University
School of Medicine. Signed informed consents were obtained from all study participants of the
studies.

Image Acquisition
All participants were scanned on a 3T Philips Achieva scanner (Philips HealthCare, Best,
Netherlands).

T1 weighted (T1w) MPRAGE (Magnetization-Prepared Rapid Acquisition Gradient Echo)
structural scans were acquired for each session (acquisition time = 6 min, TR/TE/TI = 6.7/3.1/
842 ms, resolution = 1x1x1.2 mm3, SENSE factor = 2, flip angle = 8°).

Rs-fMRI data of the subject was acquired using a multi-slice SENSE-EPI pulse sequence
[13,14] with TR/TE = 2000/30 ms, SENSE factor = 2, flip angle = 75°, 37 axial slices, nominal
resolution = 3x3x3 mm3, 1 mm gap, 16 channel neuro-vascular coil, number of dynamics
(frames) per run = 200. Identical imaging parameters were used to acquire the Kirby-21 rs-
fMRI data [12], except for the number of dynamics per run, which was 210. Only the first 200
dynamics of the multi-participant data were analyzed, in order to match the length of the runs
with the single-subject data. One of the 21 healthy volunteer dataset was identified to include
excess motion and was excluded from further data analysis. The rs-fMRI scans were always
acquired after the T1w scans, to allow participants to get acclimated to the noise and environ-
ment inside the scanner. Participants were instructed to stay as still as possible with their eyes
closed during the entire scan, and no other instruction was provided.

Data Processing
Preprocessing of the rs-fMRI datasets was performed using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm) [15] and Matlab (Natick, MA). The preprocessing pipeline included: 1) slice timing
correction, used to correct differences in image acquisition time between image slices, 2)
motion correction, 3) co-registration, used to align structural images to functional images, 4)
unified segmentation-normalization [16], used to transform functional images to normalized
Montreal Neurological Institute (MNI) space (2x2x2 mm3), 5) high pass filtering with 0.01 Hz
cutoff, used to eliminate slowly varying background noise and effects of scanner drift, and 6)
spatial smoothing using 6 mm full-width at half-maximum Gaussian kernel (i.e., twice the
nominal size of the rs-fMRI acquisition voxel), used to suppress noise and reduce effects of
imperfect normalization.

Group ICA of fMRI toolbox (GIFT) software (http://mialab.mrn.org/software/gift) [17] was
used to perform group independent component analysis (GICA) [18]. Single- and multi-
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participant datasets were combined, and two steps of principal component analysis (PCA) data
reduction were performed for group level analysis, where individual session data were first
reduced to 70 principal components. The reduced data was then concatenated in the temporal
direction and further reduced to 35 principal components.

Estimation of the number of independent components (i.e., 35) was guided by order selec-
tion using the minimum description length (MDL) criterion [19]. The dimensionality of the
individual session PCA data reduction (i.e., 70) was set by doubling the estimated component
number, to ensure robust backreconstruction [20,21] following the ICA decomposition.

ICA [22] is one of the most commonly used methods for analyzing rs-fMRI data. It models
the data as a linear mixture of signals originating from spatially-independent sources, and then
estimates the sources by maximizing their independence [23]. These sources include not only
the spontaneous fluctuations in BOLD signals in functional networks, but also “nuisance” sig-
nals such as those arising from head motion, respiration, and cardiac pulsations. Later, these
nuisance components are eliminated and only sources identified as RSNs are retained for fur-
ther analysis. One of the biggest advantages of the method is that it allows the analysis of rs-
fMRI data without a priori knowledge of the sources [18,24]. In this study, ICA was performed
using the InfoMax algorithm [22], and the process yielded a total of 35 aggregate independent
component (IC) spatial maps and associated time courses. Single-session maps for each session
(single-subject) and participant (multi-participant) were obtained using backreconstruction
[18] via the “GICA3” procedure [20]. A flowchart that visualizes the details of the preprocess-
ing and GICA steps is presented as S1 Fig.

RSNs were identified manually from the 35 ICs estimated. Three were rejected due to low
reliability of the ICs as assessed using the ICASSO toolbox [25]. The spatial distribution (i.e.,
grey matter vs. white matter and cerebral spinal fluid) and temporal frequency power distribu-
tion of the remaining 32 ICs were manually assessed, and 18 ICs were eliminated as representing
non-neuronal sources such as head motion, respiration, and cardiac pulsations—specifically,
the peak activations of the networks were required to be within the gray matter, and RSN spatial
maps were required to have low overlap with vascular and ventricular regions. Motion artifact
components that display high intensity values around the edges of the brain were also identified
and eliminated.–The process identified the remaining 14 ICs as RSNs that represent unique
functional networks.

Resting State Network Outcome Measures
The reproducibility and temporal structure (trend, annual periodicity, and persistence) were
assessed for three types of RSN outcome measures: spatial similarity of RSN maps, temporal
signal fluctuation magnitude, and BNC.

Spatial similarity of RSN maps. The spatial similarity of each week’s RSN spatial maps to
the group mean map, as calculated using η2 [26], was obtained as an outcome measure. First,
the single-session RSN maps for each week were obtained through backreconstruction of the
aggregate maps, and converted to z-score using Fisher’s r-to-z transformation [18,20]. A given
voxel’s value in each RSN maps, therefore, represents the weight of the RSN time course with
respect to the measured relative BOLD signal. The similarity measure η2 [26–28] was defined
as:

Z2 ¼ 1�

Xn

i¼1

ðai �miÞ2 þ ðbi �miÞ2

Xn

i¼1

ðai � �MÞ2 þ ðbi � �MÞ2
ð1Þ
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where i represent voxel index within a brain, n is number of voxels in a brain, ai and bi are the
values at position i in maps a and b, respectively,mi is the mean value of the two images at posi-
tion i, and �M is the grand mean across the mean imagem. η2 values can range from 0 to 1,
where 0 indicates no similarity between two images, and 1 indicates that two images are
identical.

By calculating the fraction of the variance in one image accounted for by variance in a sec-
ond image, η2 reports on the difference in the values at corresponding points in the two images.
One of the biggest advantages of η2 is that it allows the quantification of differences/similarity
of the two images instead of the correlational relationship between them [26].

Finally, for each network, a spatial overlap map [29] was created in order to provide visual
means to assess the repeatability of the single-session RSN maps. The process first involved
thresholding (z-score> 1) of the single session maps to obtain voxels most representative of
each RSN. The resulting binary maps were subsequently summed, and then normalized by
dividing the maps by the total number of image acquisition, and multiplying by 100 to convert
to percentage.

Temporal fluctuation magnitude of RSN time courses. The magnitude of temporal sig-
nal fluctuations for each RSN was calculated as the quadratic mean (root mean square; RMS)
of the backreconstructed time courses that were scaled to the original data to represent percent
signal change [18,20].

Between-network connectivity of RSN time courses. BNC, a measure of synchrony
between RSNs, was computed for each session as the Pearson correlation coefficient of the net-
work time courses [30,31].

Analysis of RSN Outcome Measures over Sessions
Reproducibility. The intra-class correlation (ICC), a metric of test-retest reliability, is

widely used in the rs-fMRI reproducibility literature. However, the ICC cannot be used for the
present study, which is a longitudinal case report, because there is no ‘class’ (or group) of sub-
jects who underwent 3.5 years of weekly scanning. Instead, for each type of RSN outcome mea-
sure (i.e., spatial similarity of RSN maps, temporal fluctuation magnitude, and BNC), intra-
subject inter-session reproducibility was characterized using coefficient of variation (CV),
defined as the ratio of standard deviation (SD) to mean, expressed in percentage. CV enables
the comparison of data sets with different means, by providing a standardized measure of dis-
persion. However, the calculated CV can appear artificially inflated if a mean value of a data set
is close to zero. Therefore, in order to help keep things in perspective, we also report corre-
sponding SD values.

Time series analysis—trend, annual periodicity, and persistence. The single-subject,
multi-year acquisition of the longitudinal rs-fMRI dataset enabled time series analysis of
weekly RSN outcome measures and observation of their temporal structure (trend, annual peri-
odicity, and persistence) over the extended time period.

Existence of linear trends in the weekly RSN outcome measures was tested using general lin-
ear model. Significance of the trend was tested using F statistics, and each outcome measure’s
p-value was adjusted for multiple comparisons using false discovery rate (FDR) correction for
the number of tested RSNs.

Recognizing that changes in degree of subject motion as well as changes in signal intensity
due to variable scanning environment over time may introduce linear trends not of neurologi-
cal origin, the degree of subject motion over each session over the 185 weeks period was
assessed to identify potential confounds. A quantitative measure of subject motion was pro-
vided by frame-wise displacement (FD) [32], which was calculated by summing the absolute
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value of the three differenced translational realignment parameters and the three differenced
rotational parameters, which were converted from radians to millimeters by assuming a brain
radius of 50 mm.

Additionally, potential changes in signal intensity arising from a variable scanning environ-
ment were assessed using a dataset from a concurrent ongoing phantom stability scan within
the F.M. Kirby Research Center. The study was run by placing a 15 cm diameter silicone oil
filled sphere “phantom” in a 32 channel head coil and running gradient-echo echo-planar
imaging (EPI) scans (TR/TE = 3000/40ms, 20 axial slices, imaging matrix: 64x64, field of view:
230 x 230 mm, 3mm slice thickness, 1 mm gap, 300 dynamics) [33], which is equivalent to
running a rs-fMRI scan. Signal intensity of the phantom from the corresponding weeks was
calculated, and a weekly signal intensity measure was constructed for detection of any linear
trend. To prevent reporting of spurious results, permutation tests with 1000 iterations were
performed.

The significance of the spectral peaks at 0.0192 weeks-1 (annual periodicity; 1/52.18 weeks)
in the RSN outcome measures was tested using a procedure for finding spectral peaks in time
series described by Ahdesmaki et al [34,35] at p< 0.05, after FDR correction for the number of
tested RSNs. The robust detection method uses Fisher’s g-test for the detection of periodic fluc-
tuations in multiple time courses. The method also incorporates regression based methods to
find the spectral estimate of a time course instead of using the basic periodogram, allowing
robust estimation of spectral peaks in non-uniformly sampled data with unknown noise char-
acteristics. This makes the method especially appropriate for the 185 weeks dataset (with 158
time points) described in this study. We refer readers to the above mentioned references for
further details of the detection method. The seasonal effect on RSN outcome measures was also
investigated by correlating the RSN outcome measure time courses with the recorded daily
maximum temperature of Baltimore (freely distributed by the National Oceanic and Atmo-
spheric Administration (NOAA); www.noaa.gov). To prevent reporting of spurious results,
permutation tests with 1000 iterations were performed.

Finally, existence of autocorrelation within the RSN outcome measures was assessed by esti-
mating the autoregressive moving average (ARMA) models of the weekly RSN outcome mea-
sures using automatic spectral analysis [36,37]. As with the robust spectral peak detection
method used to observe annual periodicity, the method is specifically designed to account for
non-uniformly sampled data with unknown noise characteristics. ARMAmodel is estimated in
two parts, through separate estimation of the autoregressive (AR) and moving average (MA)
models. Traditional ARMAmodel estimation algorithms often utilize maximum likelihood
(ML) approach for both the AR and MAmodel estimations. However, the ML approach is
known to provide poor estimates of the MA model when there are missing data. We therefore
utilize the automatic spectral analysis method, which uses reduced statistics algorithm [36,37]
to improve estimates of MA model.

Results

Functional Networks
Fourteen RSNs were identified: auditory network (Aud), ventral and dorsal sensorimotor net-
works (Smot-ven, Smot-dor), two visual networks (Vis-a, Vis-b; arbitrarily labeled), three
default mode networks (DMN; DMN-a, DMN-b, DMN-c; arbitrarily labeled), ventral and dor-
sal attention networks (Attn-ven, Attn-dor), left and right executive-function networks (Exec-
L, Exec-R), a salience network (Sal), and a cerebellar network (Cb). Fig 1 shows aggregate spa-
tial maps of the 14 RSNs in representative sagittal, coronal, and axial views.
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Reproducibility
Spatial similarity of RSN maps. Backreconstructed, single-session RSN spatial maps

from representative imaging sessions and the mean spatial maps of the 14 RSNs are shown in
the middle and leftmost column of Fig 2, respectively. Spatial overlap maps, whose values
within each voxel represent the fraction of the time the voxel is categorized as a member of the
corresponding RSN, are shown in the rightmost columns of Fig 2. Each overlap map showed
good agreement with the corresponding group mean spatial map.

Reproducibility of the spatial map similarity measure for both single- and multi-participant
datasets is presented using violin plots (Fig 3). For visualization purposes, the violin plots were
sorted based on the interquartile range of the single-subject data.

For each RSN, the degree of spatial similarity of the single-subject dataset’s backrecon-
structed spatial maps to the group mean map was found to be high, with mean η2 values rang-
ing from 0.747 to 0.841 (Fig 3, Table 1). Also, for all RSNs, the median (second quartile) η2

values of the single-subject dataset were within the range of η2 values of the multi-participant
dataset.

The two visual networks (Vis-a and Vis-b) and a sensorimotor network (Smot-dor) showed
the lowest intra-subject inter-session reproducibility, with CV values of 6.68, 4.86, and 4.75%,
while the executive networks (Exec-R and Exec-L) showed the highest reproducibility, with CV
values of 1.60 and 1.65% (Table 1). Similarly, the sensorimotor network (Smot-ven) and visual

Fig 1. Aggregate spatial maps of the resting state networks (RSNs).Group independent component analysis (GICA) was used to estimate the RSNs and
obtain the aggregate spatial maps. The spatial maps of each RSN are shown as subfigures, with representative sagittal, coronal, and axial views (left-to-
right) overlaid on structural images within the Montreal Neurological Institute (MNI) template space; coordinates (in mm) for each view are indicated below
each subfigure. (Aud: auditory, Smot: seonsorimotor, Vis: visual, DMN: default mode network, Attn: attention, Exec: executive, Sal: salience, Cb: cerebellar,
ven: ventral, dor: dorsal, R: right, L: left).

doi:10.1371/journal.pone.0140134.g001

Reproducibility and Temporal Structure in rs-fMRI over 185Weeks

PLOS ONE | DOI:10.1371/journal.pone.0140134 October 30, 2015 7 / 29



Fig 2. RSN spatial maps for representative weekly sessions. RSNmean spatial maps (leftmost column),
representative backreconstructed weekly single-session spatial maps (middle eight columns), and overlap
maps (rightmost column) for the 14 RSNs. The degree of spatial similarity of each session’s spatial map to
the corresponding mean map, as measured using eta-squared (η2), is indicated below the single-session
maps.

doi:10.1371/journal.pone.0140134.g002
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(Vis-b, and Vis-a) networks were also the least reproducible (intra-subject inter-session repro-
ducibility; CV = 3.72, 3.54, 3.44%, respectively) for the multi-participant dataset. Sal network
showed the highest inter-subject reproducibility (CV = 1.91%).

A test of equal variance (f-test) indicated that Smot-ven network showed higher intra-sub-
ject inter-session spatial map reproducibility compared to its inter-participant reproducibility
(p< 0.05, corrected; Table 1). The Vis-a network, on the other hand, showed an opposite
trend; intra-subject inter-session reproducibility was significantly lower than the inter-partici-
pant reproducibility (p< 0.05, corrected; Table 1). The higher intra-subject inter-session spa-
tial map reproducibility for the Smot-ven network was preserved when the same analysis was
performed using only the first twenty sessions of the single-subject data, matching the multi-
participant dataset’s number of sessions (not reported separately to avoid overlap). Such was
not the case for the Vis-a network; while the trend of lower intra-subject inter-session spatial
map reproducibility was still observed, the difference was no longer significant.

Temporal fluctuation magnitude of RSN time courses. Reproducibility of the RMS %
BOLD value for each session’s backreconstructed time course for both the single- and multi-
participant datasets are presented using violin plots in Fig 4. For visualization purposes, the
violin plots were sorted based on the interquartile range of the single-subject data.

The single-subject, median temporal signal fluctuation magnitude of each RSN, was within
the range of temporal signal fluctuation magnitude values of the same RSNs within the multi-
participant dataset, as shown in Fig 4. Also, the ranges of the mean temporal signal fluctuation
magnitude for the single- and multiple-participant dataset were similar—from 0.454% to
2.02% and 0.716% to 2.282%, respectively (Table 2).

Fig 3. Reproducibility of RSN spatial maps. Spatial similarity of each session’s RSN spatial map to the
corresponding group mean map, measured using eta-squared (η2), for single-subject (blue) and multi-
participant (yellow) datasets, is visualized using violin plots. The first, second, and third quartiles of the data
are represented within the violin plots as dotted lines.

doi:10.1371/journal.pone.0140134.g003
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For the single-subject dataset, the DMN-a and Smot-dor networks showed the lowest intra-
subject inter-session reproducibility over time, with CV values of 85.8 and 68.4%, respectively,
while the Exec-L and Exec-R networks showed the highest reproducibility over time, with CV
values of 24.5 and 25.0%, respectively (Table 2). For the multi-participant dataset, Aud and Cb
networks showed the lowest inter-participant reproducibility with CV values of 111.4 and
101%, respectively, and Attn-dor and Attn-ven networks had the highest reproducibility, with
CV values of 37.7 and 38.7%, respectively.

Test of equal variance (f-test) between the single-subject and multi-participant dataset indi-
cated higher intra-subject inter-session reproducibility of temporal fluctuation magnitude,
with eight RSN networks (Exec-L, Exec-R, DMN-c, Smot-ven, aud, Vis-b, Cb, and Sal net-
works) showing significantly higher intra-subject inter-session reproducibility. In contrast,
only two RSN networks (Smot-dor and DMN-a) showed significantly lower intra-subject
inter-session reproducibility of the networks (Table 2; p< 0.05, corrected). In order to ensure
that such high intra-subject inter-session reproducibility is not solely due to the larger sample
size of the single-subject dataset, reproducibility was also calculated using the first twenty ses-
sions from the single-subject dataset (not reported separately). The observation was consistent,
with six of the eight RSNs (Exec-L, Exec-R, DMN-b, DMN-c, Smot-ven, Aud, and Cb) still
showing significantly higher intra-subject inter-session reproducibility (f-test; p< 0.05,
corrected)

Between-network connectivity of RSNs. Mean BNC values for the single-subject dataset
ranged from -0.133 (Sal/DMN-a) to 0.660 (Aud/Smot-ven), and from -0.104 (Sal/DMN-a) to
0.606 (Vis-a/Vis-b) for the multi-participant dataset (Table 3, S2 Table). The top ten RSN pairs
with the largest mean BNC values for the single- and multi-participant datasets are reported in
Table 3. There was a significant overlap between the top ten lists from the single- and multi-

Table 1. Reproducibility of resting state network (RSN) spatial maps.

RSN Spatial similarity (η2) to group mean map

Single-subject Multi-participant

mean SD CV¶ mean SD CV

Exec-R 0.786 0.0126 1.60 0.810 0.0183 2.26

Exec-L 0.787 0.0130 1.65 0.806 0.0195 2.42

DMN-c 0.808 0.0138 1.70 0.824 0.0210 2.55

DMN-a 0.767 0.0145 1.89 0.805 0.0177 2.20

Sal 0.792 0.0152 1.91 0.826 0.0166 2.01

Smot-ven 0.817 0.0162 1.98 0.824 0.0306 3.72

Attn-ven 0.802 0.0165 2.05 0.811 0.0203 2.50

DMN-b 0.813 0.0185 2.27 0.828 0.0186 2.25

Aud 0.747 0.0185 2.48 0.753 0.0190 2.52

Cb 0.814 0.0218 2.68 0.824 0.0239 2.90

Attn-dor 0.789 0.0289 3.66 0.809 0.0175 2.16

Smot-dor 0.792 0.0376 4.75 0.826 0.0232 2.81

Vis-b 0.804 0.0391 4.86 0.847 0.0300 3.54

Vis-a 0.841 0.0562 6.68 0.882 0.0304 3.44

¶ Sorting column/variable.

The mean, standard deviation (SD), and coefficient of variation (CV) values for each RSN are shown for the single- and multi-participant datasets. (Aud:

auditory, Smot: seonsorimotor, Vis: visual, DMN: default mode network, Attn: attention, Exec: executive, Sal: salience, Cb: cerebellar, ven: ventral, dor:

dorsal, R: right, L: left)

doi:10.1371/journal.pone.0140134.t001
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participant datasets, with seven out of ten RSN pairs with the strongest connectivity in the sin-
gle-subject dataset’s top ten list also appearing in the multi-participant dataset’s top ten list.

Values of mean and SD BNCs are also visualized as matrices in Fig 5(a) and 5(b), respec-
tively. Within each matrix, the single-subject dataset is presented below the main diagonal, and
the multi-participant dataset is presented above. For each RSN pair, differences in mean and
SD BNC between single- and multi-participant datasets was small, as shown in Fig 5(c).

In order to verify that the mean BNC values for each RSN pair in the single-subject dataset
are within the range of BNC values for the corresponding RSN pairs in the multi-participant
dataset, the difference in mean BNC between the two datasets were used to sort and identify
ten RSN pairs with the smallest (Fig 5d; top) and the largest (Fig 5d; bottom) differences. Fig
5d-bottom shows that the single-subject mean BNC values for the ten RSN pairs with the larg-
est differences are still within the range of the corresponding multi-participant BNC values.

Additionally, CV values of the BNC measures were used to sort and identify ten RSN pairs
with the highest reproducibility for both the single- and multi-participant datasets (Table 4).
For the single-subject dataset (Table 4; top), the Exec-L/Exec-R network pair was shown to be
the most reproducible, with a CV value of 13.6%, while the Smot-dor/Smot-ven network pair
was the most reproducible for the multi-participant dataset (Table 4; bottom), with a CV value
of 27.4%. For the single-subject dataset, the somatosensory and visual networks had the most
reproducible correlations with other RSNs, and this observation also held for the multi-partici-
pant dataset.

Finally, recognizing that artificially inflated CV values can arise if a mean value of a data set
is close to zero, and therefore to help keep things in perspective, we also report corresponding

Fig 4. Reproducibility of RSN signal temporal fluctuationmagnitude. Blood oxygenation level
dependent (BOLD) signal fluctuation magnitude for each session’s RSN time courses, calculated as root-
mean-squared (RMS) % BOLD for the single-subject (blue) and multi-participant (yellow) data, is visualized
using violin plots.

doi:10.1371/journal.pone.0140134.g004
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SD values (Tables 3 and 4, S2 Table, and Fig 5b). BNC SD values ranged from 0.082 to 0.29
(Fig 5b and S2 Table), and the RSN pairs with the smallest SD values in the single-subject data-
set were Exec-L/Exec-R and Cb/Vis-a pairs, with SD values of 0.082 and 0.101, respectively.
Weekly BNC measures of the two RSN pairs with the smallest SD values (Exec-L/Exec-R and
Cb/Vis-a) and two RSN pairs with the largest SD values (DMN-c/Smot-ven and Smot-dor/
DMN-c) in the single-subject dataset are showed in Fig 6.

Time Series Analysis
Trend. RSNs and RSN pairs with significant (after correction for multiple comparisons) linear
trends in rs-fMRI outcome measures are visualized as matrices in the top row of Fig 7. These
matrices are color-coded to indicate statistically identified positive, negative, and no trend. For
each RSN outcome measure, the intercept and slope of the estimated linear trend, as well as the
slope’s corresponding F statistic and associated p-value, are listed in Table 5. Eleven out of the
fourteen RSNs showed significant linear trends in η2 over 185 weeks. Of these eleven RSNs, ten
showed positive trends, while Exec-R showed a negative trend. In comparison, only two (Vis-a
and DMN-b) of 14 RSNs showed significant trends in the temporal fluctuation magnitude and
twenty-nine out of 105 RSN pairs showed significant trends in BNC. All trends were positive
for temporal fluctuation magnitude and BNC. Significant linear trends in BNC were more pro-
nounced in RSN pairs containing DMN-a or DMN-c networks, although significant trends
were observed in various RSN pairs involving all categories of functional networks (i.e., audi-
tory, sensorimotor, visual, DMN, attention, executive, salience, and cerebellar).

The weekly FD (a measure of subject motion) and signal intensity measures from the phan-
tom stability study (a measure of week-to-week scanner stability), did not show significant lin-
ear trends (not reported separately). Additionally, permutation tests with 1000 iterations

Table 2. Reproducibility of RSN temporal signal fluctuationmagnitude.

RSN Quadratic mean (RMS) of percent signal change

Single-subject Multi-participant

mean SD CV (%)¶ mean SD CV (%)

Exec-L 0.879 0.2151 24.5 1.177 0.5682 48.3

Exec-R 1.146 0.2866 25.0 1.646 0.7456 45.3

DMN-c 0.803 0.2153 26.8 1.692 1.3629 80.6

Attn-dor 2.024 0.7637 37.7 1.916 0.7261 37.9

Attn-ven 1.589 0.6157 38.7 1.378 0.5371 39.0

Smot-ven 1.509 0.6486 43.0 1.821 1.1022 60.5

Aud 0.726 0.3308 45.6 0.866 0.9645 111.4

Vis-b 1.428 0.7839 54.9 2.283 1.3495 59.1

DMN-b 1.793 1.0336 57.6 1.902 1.1687 61.4

Cb 0.568 0.3439 60.6 0.948 0.9579 101.0

Sal 0.454 0.2766 60.9 0.716 0.4888 68.2

Vis-a 2.009 1.3182 65.6 2.260 0.9217 40.8

Smot-dor 1.144 0.7834 68.4 1.981 1.2326 62.2

DMN-a 0.783 0.6713 85.8 1.574 1.2306 78.2

¶Sorting column/variable.

The mean, SD, and CV values for each network’s temporal signal fluctuation magnitude, expressed as the quadratic mean (root mean square; RMS), is

shown for the single- and multi-participant datasets.

doi:10.1371/journal.pone.0140134.t002
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confirmed that significant linear trends no longer exist when weekly outcome measures are
randomized.

Annual periodicity. RSNs and RSN pairs with significant (after correction for multiple
comparisons) annual periodicity in relevant outcome measures are visualized as matrices in
the middle row of Fig 7. The matrices are color-coded in black and red, where red blocks high-
light RSNs and RSN pairs with significant annual periodicity. Table 6 lists p-values for RSNs
and RSN pairs with significant periodicity, for each outcome measure. Nine out of 14 total
RSNs showed significant annual periodicity in the η2 measure over the period of 185 weeks. In
comparison, only three (Vis-a, Attn-ven, and Attn-dor) of the 14 RSNs showed significant
annual periodicity for temporal fluctuation magnitude measures, and none of the 105 RSN
pairs showed significant annual periodicity for the BNC measures. Additionally, Table 6 shows
that the majority of the RSNs with significant annual periodicity also display good correlation
with Baltimore’s daily maximum temperature, with correlation coefficients ranging from 0.27
to 0.34. Permutation tests with 1000 iterations confirmed that the observed significant linear
trends no longer exist when weekly outcome measures are randomized.

Persistence. After ARMA models that best described the autocorrelation structure of RSN
outcome measure time courses had been estimated, the order of the AR portion of the model

Table 3. Strength of between-network connectivity (BNC).

RSN pairs Between network connectivity

Single-subject Multi-participant

mean¶ SD CV (%) mean SD CV (%)

Aud / Smot-ven 0.660 0.126 19.1 0.567 0.187 32.9

Smot-dor / Vis-b 0.650 0.135 20.7 0.445 0.223 50.1

Vis-b / Vis-a 0.636 0.166 26.1 0.606 0.191 31.6

Exec-L / Exec-R 0.599 0.0815 13.6 0.509 0.152 29.9

Smot-ven / Vis-a 0.593 0.167 28.1 0.453 0.163 36.0

Vis-b / DMN-b 0.554 0.208 37.6 0.398 0.215 54.2

Smot-dor / Smot-ven 0.551 0.204 37.1 0.554 0.152 27.4

Aud / Vis-a 0.538 0.171 31.8 0.306 0.160 52.2

Smot-dor / Vis-a 0.538 0.212 39.4 0.488 0.182 37.3

Aud / DMN-b 0.527 0.182 34.5 0.345 0.247 71.5

RSN pairs Between network connectivity

Single-subject Multi-participant

mean SD CV (%) mean¶ SD CV (%)

Vis-b / Vis-a 0.636 0.166 26.1 0.606 0.191 31.6

Aud / Smot-ven 0.660 0.126 19.1 0.567 0.187 32.9

Smot-dor / Smot-ven 0.551 0.204 37.1 0.554 0.152 27.4

Exec-L / Exec-R 0.599 0.082 13.6 0.509 0.152 29.9

Smot-dor / Vis-a 0.538 0.212 39.4 0.488 0.182 37.3

Smot-ven / Vis-a 0.593 0.167 28.1 0.453 0.163 36.0

Smot-dor / Vis-b 0.650 0.135 20.7 0.445 0.223 50.1

Vis-b / Attn-dor 0.358 0.233 65.3 0.412 0.230 55.9

DMN-c / DMN-b 0.276 0.198 71.9 0.411 0.208 50.7

Aud / Attn-dor 0.505 0.164 32.5 0.402 0.179 44.5

¶Sorting column/variable.

The mean, SD, and CV values of the ten RSN pairs with the largest BNC values of the single- (top table) and multi- (bottom table) participant datasets.

Each table was sorted based on the mean BNC values. A full table of mean and SD values for all RSN pairs can be found in the S2 Table.

doi:10.1371/journal.pone.0140134.t003
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Fig 5. Reproducibility of between-network connectivity (BNC) measurements. The combined BNCmatrices show the degree of temporal synchrony
between RSN pairs. Mean (a) and standard deviation (SD) (b) BNC values of the single- (below the main diagonal) and multi-participant (above the main
diagonal) are shown. The diagonal elements were zeroed for display purposes. (c) Absolute value of the difference between the single- and the multi-
participant BNC values. (d) Ten RSN pairs with the smallest (top) and the biggest (bottom) differences between single- and multi-participant mean BNC
values. Mean BNC values from the single-subject dataset are overlaid as magenta circles on boxplots reporting on multi-participant data.

doi:10.1371/journal.pone.0140134.g005
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for each RSN and RSN pair were visualized as matrices in the bottom rows of Fig 7 (More
detailed description of the ARMAmodels can be found in S1 Text). The matrices were color-
coded, where red indicates AR order of 1, yellow indicates AR order of 2, and white indicates
AR order of 3. The MA portion of the model are not visualized, but are listed in S3 Table,
which lists the ARMAmodels that best describe the autocorrelation structure of the weekly
outcome measures.

Twelve out of 14 RSNs displayed significant autocorrelation in the η2 measure over the
period of 185 weeks. In comparison, only three (Vis-a, DMN-b, and Sal) out of 14 RSNs dis-
played significant autocorrelation for temporal fluctuation magnitude measures, and 26 of the
105 RSN pairs displayed significant autocorrelation in BNC. The order of estimated ARMA
models was shown to vary, where AR and MA orders ranged from 0 to 3 for the three types of
RSN outcome measures (S3 Table).

Discussion
Previous reproducibility studies of intrinsic functional networks showed that RSNs are repro-
ducible across participants [29,38,39], within participants over durations of weeks to months

Table 4. Reproducibility of BNC.

RSN pairs Between network connectivity

Single-subject Multi-participant

mean SD CV (%)¶ mean SD CV (%)

Exec-L / Exec-R 0.599 0.0815 13.6 0.509 0.152 29.9

Aud / Smot-ven 0.660 0.126 19.1 0.567 0.187 32.9

Smot-dor / Vis-b 0.650 0.135 20.7 0.445 0.223 50.1

Vis-b / Vis-a 0.636 0.166 26.1 0.606 0.191 31.6

Smot-ven / Vis-a 0.593 0.167 28.1 0.453 0.163 36.0

Aud / Vis-a 0.538 0.171 31.8 0.306 0.160 52.2

DMN-a / Smot-ven 0.489 0.158 32.3 0.259 0.268 104

Cb / DMN-b 0.338 0.110 32.4 0.325 0.209 64.3

Aud / Attn-dor 0.505 0.164 32.5 0.402 0.179 44.5

Aud / Cb 0.360 0.123 34.1 0.323 0.201 62.4

RSN pairs Between-network connectivity

Single-subject Multi-participant

mean SD CV (%) mean SD CV (%)¶

Smot-dor / Smot-ven 0.551 0.204 37.1 0.554 0.152 27.4

Exec-L / Exec-R 0.599 0.082 13.6 0.509 0.152 29.9

Vis-b / Vis-a 0.636 0.166 26.1 0.606 0.191 31.6

Aud / Smot-ven 0.660 0.126 19.1 0.567 0.187 32.9

Smot-ven / Vis-a 0.593 0.167 28.1 0.453 0.163 36.0

Smot-dor / Vis-a 0.538 0.212 39.4 0.488 0.182 37.3

Attn-ven / DMN-a 0.502 0.172 34.2 0.395 0.154 39.1

DMN-c / Exec-R 0.306 0.151 49.3 0.387 0.162 41.9

Aud / Attn-dor 0.505 0.164 32.5 0.402 0.179 44.5

DMN-b / Exec-R 0.256 0.153 59.8 0.345 0.165 47.9

¶Sorting column/variable.

The mean, SD, and CV values of the ten most reproducible network pairs of the single- (top table) and multi-participant (bottom table) datasets. A full table

of mean and SD values of all network pairs can be found in the S2 Table.

doi:10.1371/journal.pone.0140134.t004
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[29,40,41], as well as up to a year [42]. The primary goal of this study was to investigate
whether intra-subject inter-session RSN outcome measures were reproducible over an even
longer period that is more relevant for rehabilitation studies, and this is confirmed by the
results.

Functional Networks
The 14 RSNs identified in this study (Fig 1) were in good correspondence with those consis-
tently reported in previous rs-fMRI studies. The identified RSNs included an auditory network
[41], ventral and dorsal sensorimotor networks [1,24,41], two visual networks [24,41], three
default mode networks [24,41,43], ventral and dorsal attention networks [41], left and right
executive-function networks [44], a salience network [45], and a cerebellar network [29,46]. Of
the 35 initially estimated ICs, 21 were rejected as nuisance components (of non-neuronal
sources); this rate of rejection of nuisance components was consistent with previous studies
[29].

Fig 6. Weekly BNCmeasures of RSN pairs with the two largest and smallest variations in BNC
measurements.Weekly BNCmeasures are plotted against the corresponding image acquisition weeks for
the RSN pairs with the two largest (top) and two smallest (bottom) variations in BNCmeasurements, as
measured by SD.

doi:10.1371/journal.pone.0140134.g006
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Fig 7. RSNs with significant temporal structures. TOP Existence of significant (after correction for multiple
comparisons) linear trends in three RSN outcomemeasures, namely the (a) spatial similarity (eta-squared,
η2), (b) temporal signal fluctuation magnitude, and (c) BNC, are visualized using matrices. Red blocks
indicate significant positive linear trend, blue blocks negative trend, and black boxes no significant trend.
MIDDLE Existence of significant (after correction for multiple comparisons) annual periodicity in three RSN
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Reproducibility
Spatial similarity of RSN maps. As group mean maps (Fig 2; left column) are obtained by

averaging multiple RSN spatial maps across sessions, the most robust “core” activation regions
in the RSN spatial maps are preserved within the group mean maps. Measuring the spatial sim-
ilarity of each backreconstructed RSN map to its corresponding group mean map, therefore,
may provide insight into the degree of robustness of core activation region, reflected by the
value of η2, and the degree of robustness of “non-core” activations, reflected by the variance of
η2. The high mean η2 values of all RSNs, ranging from 0.747 to 0.84, show that the 14 RSNs
identified in the study have very robust core activation regions. Stronger core activation
regions, however, did not translate to higher reproducibility. The Vis-a network, for example,
showed that a network can have a strong core activation region and also have variable non-
core activation regions that lead to increased variability in the spatial similarity measure
(Table 1 and Fig 3). This network’s variable non-core activation regions can also be visually
observed in Fig 2.

For both single- and multi-participant datasets, the three networks with the lowest spatial
map inter-session reproducibility were exteroceptive in nature (i.e., related to the external
world), namely visual and sensorimotor networks (Vis-a, Vis-b, Smot-dor, and Cb). Consistent
with Kosslyn’s reports on ideation [47], “mind wandering” during rest may have led to
increased modulation in the exteroceptive networks.

Finally, for nine out of 14 RSNs, the intra-subject inter-session reproducibility, as measured
using CV, of the RSN spatial maps was higher than, or similar to, inter-participant reproduc-
ibility, with Smot-ven network displaying significant difference after Bonferroni correction for
multiple comparisons. While this observation may be explained by the inherent higher inter-
participant variability in the dataset, such a difference could also arise due to imperfect spatial
normalization across participants. This suggests that caution may be warranted in using atlas-
based seed placement for seed-based correlation, and that more sophisticated spatial normali-
zation methods (e.g., large deformation diffeomorphic metric mapping (LDDMM) [48,49])
may be beneficial.

Temporal fluctuation magnitudes of RSN time courses. For all RSNs, mean intra-sub-
ject inter-session RMS % BOLD values (Fig 4, Table 2) were comparable to those reported in a
previous multi-participant rs-fMRI study [41]. Additionally, RSNs that showed low spatial
map intra-subject inter-session reproducibility also tended to show low temporal fluctuation
magnitude intra-subject inter-session reproducibility. Many such least-reproducible RSNs
were of exteroceptive nature, and thus may support the previously stated hypothesis that
“mind wandering” [47] during rest may have led to increased modulation in exteroceptive
networks.

It should also be noted that compared to the CV values of the network spatial maps
(Table 1), the CV values of the temporal fluctuation magnitude (Table 2) were significantly
larger, ranging from 24.5 to 85.8% for the single-subject dataset and from 37.9 to 111.4% for
the multi-participant dataset. These significantly larger CV values were driven by the small
mean values and large SD values of the temporal signal fluctuation measurement. Using CV as
a measure of dispersion is suboptimal when a mean value is close to zero, as calculated CV
measure becomes sensitive to small changes. In this case, a larger issue may be the relatively

outcomemeasures. Red blocks indicate significant annual periodicity and black boxes no annual periodicity.
BOTTOM AR orders of the estimated ARMAmodels for RSNs and RSN pairs are visualized for each
outcomemeasures, where black box indicates no autocorrelation, red box AR order of 1, yellow box AR order
of 2, and white box AR order of 3. Refer to S3 Table for information on full ARMAmodel parameters.

doi:10.1371/journal.pone.0140134.g007
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Table 5. RSNs with significant linear trends in RSN outcomemeasures.

(a) Eta-squared (η2)

RSN Intercept Slope (week-1) F statistic (slope) p-value

Smot-dor 0.77 1.94E-04 12.78 4.67E-04

Vis-a 0.81 3.77E-04 22.89 3.94E-06

Vis-b 0.78 2.50E-04 20.57 1.14E-05

DMN-a 0.76 1.31E-04 46.92 1.61E-10

DMN-b 0.8 1.15E-04 19.28 2.07E-05

DMN-c 0.8 5.65E-05 7.87 5.67E-03

Attn-ven 0.8 7.40E-05 9.47 2.47E-03

Attn-dor 0.78 1.50E-04 12.91 4.38E-04

Exec-R 0.79 -6.15E-05 11.42 9.16E-04

Sal 0.78 7.76E-05 12.59 5.13E-04

Cb 0.8 1.21E-04 14.96 1.61E-04

(b) Temporal fluctuation magnitude

RSN Intercept Slope (week-1) F statistic (slope) p-value

Vis-a 1.42 6.51E-03 11.64 8.24E-04

DMN-b 1.4 4.36E-03 8.33 4.46E-03

(c) Between-network connectivity

RSN pairs Intercept Slope (week-1) F statistic (slope) p-value

Aud/Smot-dor 0.3 1.01E-03 9.4 2.56E-03

Aud/Vis-a 0.46 8.26E-04 11.11 1.07E-03

Aud/DMN-a 0.41 6.44E-04 6.78 1.01E-02

Aud/DMN-b 0.47 6.82E-04 6.48 1.19E-02

Aud/DMN-c 0.02 1.30E-03 13.14 3.90E-04

Aud/Exec-R 0.12 6.50E-04 6.46 1.20E-02

Smot-ven/DMN-a 0.43 6.06E-04 6.79 1.01E-02

Smot-ven/DMN-c 0.06 1.45E-03 12.19 6.24E-04

Smot-dor/Vis-a 0.47 7.68E-04 6.05 1.50E-02

Smot-dor/DMN-a 0.17 7.76E-04 7.27 7.77E-03

Smot-dor/DMN-c 0.13 1.58E-03 14.99 1.59E-04

Smot-dor/Cb 0.07 6.09E-04 10.65 1.36E-03

Vis-a/ DMN-a 0.36 5.88E-04 6.4 1.24E-02

Vis-a/ DMN-b 0.43 8.59E-04 6.01 1.53E-02

Vis-a/ DMN-c 0.13 1.05E-03 8.93 3.27E-03

Vis-a/Exec-L 0.12 -9.81E-04 10.87 1.21E-03

Vis-b/DMN-c 0.09 1.43E-03 16.16 9.02E-05

DMN-a/ DMN-c 0.28 6.38E-04 9.03 3.09E-03

DMN-a/Exec-R 0.13 7.83E-04 7.18 8.16E-03

DMN-a/ Sal -0.21 8.33E-04 10.34 1.59E-03

DMN-b/ DMN-c 0.19 9.64E-04 11.27 9.90E-04

DMN-b/ Cb 0.29 5.40E-04 11.55 8.60E-04

DMN-c/Attn-ven -0.02 1.69E-03 23.52 2.96E-06

DMN-c/Attn-dor -0.17 1.18E-03 11.51 8.78E-04

DMN-c/Exec-R 0.25 6.04E-04 7.44 7.10E-03

DMN-c /Sal -0.14 1.01E-03 8.3 4.51E-03

Attn-ven/ Cb 0.09 3.82E-04 5.93 1.60E-02

Attn-ven/Exec-R 0.27 5.84E-04 5.89 1.64E-02

(Continued)

Reproducibility and Temporal Structure in rs-fMRI over 185Weeks

PLOS ONE | DOI:10.1371/journal.pone.0140134 October 30, 2015 19 / 29



large SD values of the RSN temporal fluctuation magnitude; the fact that the SD values of
many RSNs are close to the corresponding mean values indicates that the measure may be rela-
tively insensitive to small effect sizes, and caution is thus warranted when using the this out-
come measure in longitudinal studies.

Between-network connectivity of RSN time courses. The ranges of mean BNC values for
the single-subject dataset (-0.133–0.660), and the multi-participant dataset (-0.104–0.606)
(Table 3, S2 Table) were similar, and strong BNC values were observed between networks
within the same functional domains; such as between the Vis-a/Vis-b (0.636), Exec-L/Exec-R
(0.599), and Smot-dor/Smot-ven (0.551) RSN pairs. The same held for the multi-participant
dataset, with BNC values of 0.606 for Vis-a/Vis-b, 0.554 for Smot-dor/Smot-ven, and 0.509 for
Exec-L/Exec-R network pairs. Overall, the mean BNC values for the single- and multi-partici-
pant datasets were similar, reflected by the highly symmetric combined correlation matrix of
the datasets (Fig 5a). In addition, network pairs that showed strong connectivity within the sin-
gle-subject dataset also showed strong connectivity within the multi-participant dataset.

Similar to the large CV values that were observed for temporal fluctuation magnitude mea-
surements, the CV values for the BNC measurements were also relatively high, driven by the

Table 5. (Continued)

Attn-dor/ Cb 0.16 8.40E-04 18.04 3.71E-05

Intercept and slope of the estimated linear trend, as well as the slope’s F statistic and p-value in three RSN outcome measures, namely the (a) spatial

similarity (eta-squared, η2), (b) temporal fluctuation magnitude, and (c) BNC, for each RSNs with significant linear trends are listed.

doi:10.1371/journal.pone.0140134.t005

Table 6. RSNs with significant annual periodicity and/or significant correlation with daily maximum temperature (Baltimore MD, USA) in outcome
measures.

(a) Eta-squared (η2)

RSN p-value (annual periodicity) Correlation coefficient (w/ daily maximum temperature) p-value (w/ daily maximum temperature)

Aud & 0.27 5.44E-04

Smot-dor 1.32E-03 0.31 6.41E-05

Vis-a 2.28E-03 0.29 2.14E-04

Vis-b 4.71E-04 0.29 2.80E-04

DMN-a 3.38E-05 0.29 2.78E-04

Attn-ven 7.44E-03 0.34 1.13E-05

Attn-dor 2.61E-03 0.31 9.74E-05

Exec-R 2.81E-03 & &

Sal 3.79E-03 0.31 6.85E-05

Cb 5.29E-04 0.34 1.44E-05

(b) Temporal fluctuation magnitude

RSN p-value (annual periodicity) Correlation coefficient (w/ daily maximum temperature) p-value (w/ daily maximum temperature)

Vis-a 7.90E-03 0.30 1.43E-04

DMN-b & 0.25 1.44E-03

Attn-ven 7.84E-04 0.30 1.31E-04

Attn-dor 5.72E-03 0.23 3.34E-03

& Statistically not significant.

P-values of RSNs with significant annual periodicity and/or correlation coefficient and associated p-values of RSNs with significant correlation with daily

maximum temperature of Baltimore, MD, are listed for two RSN outcome measures; namely the (a) spatial similarity (η2) and (b) temporal fluctuation

magnitude. No RSN pairs showed significant annual periodicity for BNC measures.

doi:10.1371/journal.pone.0140134.t006
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small mean BNC values. Nonetheless, the intra-subjection inter-session reproducibility of BNC
values was good, reflected by the small SD values, as shown in Fig 5b and S2 Table. It should be
noted, however, that in cases where a mean BNC value is close to zero, the corresponding SD
value needs to be very small before the BNC value of a particular functional network pair can
be used as a reproducible longitudinal measure. Therefore, caution should be taken when
investigating network pairs with high variance, relative to the corresponding mean BNC value.

For both the single- and multi-participant datasets, RSN pairs with connections to the
somatosensory and visual networks demonstrated higher reproducibility (Table 4). This obser-
vation agrees with results from a previous study that reported robust inter-participant reliabil-
ity for the primary visual network [50], compared with other networks.

One of the main observations of this study was the very high intra-subject inter-session
reproducibility of the Exec-L and Exec-R networks. For the single-subject dataset, these net-
works were the most reproducible RSNs for spatial map (Table 1) and temporal signal fluctua-
tion magnitude (Table 2) outcome measures. Additionally, connectivity between the Exec-L/
Exec-R RSN pair was the most reproducible, with the smallest CV value of 13.6% (Fig 4,
Table 4). This RSN pair was also among the most reproducible networks for all rs-fMRI out-
come measures in the multi-participant dataset. Such high intra-subject inter-session repro-
ducibility of the executive control network components has an important implication, as the
executive control network is known to be actively involved in functions such as impulse control
[51] and consciousness [52,53], and is closely related to disease states such as substance abuse
[51], unresponsive wakefulness syndrome [52], and Alzheimer’s disease [54]. Accordingly, this
suggests that the executive RSN components and the related outcome measures have high
potential for serving as biomarkers of disease states.

Time Series Analysis
Trend. η2 values of weekly RSN spatial maps correspond to degrees of spatial similarity

between weekly maps and a group mean map. Therefore, the existence of a trend in the η2 mea-
surements (Fig 7 TOP(a), Table 5a) is noteworthy. Specifically, a positive trend in η2 indicates
that as time passes, weekly single-session maps become more stable, looking more like the
group mean map. A negative trend, on the other hand, would indicate that weekly maps
become more variable, looking less like the group mean map as time passes. Previous studies
show that a constant and linear decrease of gray matter volume can be initiated as early as the
20’s [55–57]. While the exact cause of this decline is still under debate, one theory suggests that
the decline is due to neuronal and synaptic pruning in the human cortex during reorganization
following neural maturation [58]. Our observation of positive trends in the η2 values for most
of the RSNs may partially be explained by such neuronal pruning of gray matter. Preliminary
analysis of the subject’s high resolution T1w structural images revealed that the subject’s gray
matter volume decreased by about 0.30 ml/month over the study period [59]; this linear
decrease in gray matter volume is consistent with previous reports [55].

Possible long-term habituation of the subject to the scanning environment, and a subse-
quent decrease of subject motion, was also identified as possible causes for the almost ubiqui-
tous positive trends in η2 measures. Analysis of the degree of subject motion, represented by
weekly FD measures, however, showed that there was no significant trend in the degree of
movement across imaging sessions. Similarly, there was no significant trend in the weekly sig-
nal intensity measures from the phantom stability data, indicating that any contribution of var-
iable scanning environment over the 185 weeks to the observed linear trends in the η2 values
was minimal.
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The effect of age on RSNs has been extensively explored in previous literature [20,60–68].
Specifically, the level of coherent activity and degree of co-activation within RSNs are shown to
increase during early childhood and young adulthood, indicating neuronal maturation of the
networks. This phase is followed by decreases in the level of coherent activity and degree of co-
activation in the older population, marked by subsequent cognitive decline [20,60–68]. Such
decreases in coherent activity, measured using the magnitude of temporal fluctuation, and
degree of co-activation, measured using BNC, were not observed in the subject. Instead, all sig-
nificant trends reported in this study were positive (Fig 7 TOP(b-c) and Table 5b and 5c). One
reason for the discrepancy may be that majority of the above-mentioned studies compared
cohorts of young participants (10–34 yrs) and much older participants (60–93 yrs), thus not
including the age range of the subject studied here (ca. 40 yrs). Two studies that did include
participants in their 40’s [20,68] reported mixed results for different RSNs. It should also be
noted that the effects of age on functional connectivity could be mediated by various factors
such as stress, education, and exercise [69,70].

A limitation of this study is that the existence of a trend was inferred only using general lin-
ear model. This method reports the best fitting linear model of the type specified, but more
sophisticated trend detection algorithms may reveal more complex types of trends. Also, it
should be noted that effect sizes in the temporal analyses are very small, which may indicate
that observed significance is driven by the large number of degrees of freedom. And while this
data set is large for fMRI, it is not an exceptionally long time series relative to the norm of sea-
sonal studies.

Annual periodicity. The unique longitudinal dataset of the study enabled us to investigate
whether seasonal (more specifically, annual) patterns exists in RSN outcome measures, and the
results show that such seasonal patterns exist in the weekly η2 and temporal fluctuation magni-
tude measures of relevant RSNs (Fig 7 MIDDLE and Table 6). This result is also confirmed by
the good correlation between the RSN outcome measure time courses and Baltimore’s daily
maximum temperature observed in Table 6. However, the cause and mechanism of the
observed seasonal patterns is unknown at this time. There are, however, several studies that
look into the fluctuating patterns of shorter timeframe (e.g., diurnal and monthly) in functional
connectivity measures, and we looked to see whether such higher frequency fluctuation in rele-
vant RSNs translate to lower frequency annual fluctuation.

Interaction between circadian rhythmicity and time awake (homeostatic process), and the
resulting diurnal rhythms within various biological systems that range from gene expression
[71,72] to body temperature [73] is well-known. Diurnal rhythms were also shown to affect
higher order cognitive functions [74–76], and recent studies have shown that diurnal rhythms
also exist in the strength of functional connectivity [77–79]. One study in particular showed
that highly rhythmic connectivity patterns exist within sub-systems of DMN and sensorimotor
network [77]. However, the observed diurnal rhythm in DMN and sensorimotor networks did
not translate to the existence of annual periodicity in the same RSNs (i.e., DMN and sensori-
motor networks did not show annual periodicity; Fig 7 TOP(b)). None of the BNC measures
display significant annual periodicity (Fig 7 MIDDLE(c) and Table 6c), and this result is con-
sistent in part with a previous study [80], which reported a lack of monthly fluctuation of BNC
values. It is not clear at this time why some RSN outcome measures, but not others, show
annual periodicity.

Persistence. The persistence, or autocorrelation, of a system describes the system’s ten-
dency to stay in the same state from one observation to the next, and is a common feature of
many biological systems. While the existence of persistence within a system can complicate the
understanding of its underlying mechanism by reducing the number of independent variables
and introducing multiple confounding parameters that are not easily separable, persistence can
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also be exploited to predict future observations based on those of the past [81,82]. Realization
of the existence of persistence in a system, and the subsequent estimation of a best-fit mathe-
matical model of the persistence, therefore can lead to: 1) better understanding of the system
by quantitatively assessing the fraction of the system’s variance explained by the measured per-
sistence, and 2) better prediction of the behavior of a time course based on past observations.
Our results show that persistence is a characteristic of many RSNs and RSN pairs, for all three
types of RSN outcome measures (Fig 7 BOTTOM and S3 Table). Within the context of using
rs-fMRI derived outcome measures as patient-specific biomarkers of recovery during clinical
trials, this observation may lead to the development of more accurate inferences from such
data.

Limitations
Amajor limitation of this report is that only one subject underwent the weekly scanning for
185 weeks. Scanning additional participants would have helped to ensure the generality of our
findings. However, ensuring compliance of multiple participants over such a prolonged period
would have been difficult. We have sought to address this issue by including results from a pre-
viously acquired multi-participant dataset on the same scanner and with identical acquisition
parameters [12], and ensured that the healthy male individual of the longitudinal dataset was a
representative healthy control. Estimated means of all network outcome measures for the lon-
gitudinal dataset—spatial maps, temporal fluctuation magnitude, and BNC—were within the
range of the corresponding outcome measures from the multi-participant dataset, as shown in
Figs 3–5 –i.e., in all cases, values for the longitudinal dataset were within the range of those
computed for the multi-participant dataset.

While we report some outcome measures for the multi-participant dataset, we refrain from
an in-depth analysis of it, as the focus of this paper was on long-term reproducibility of the sin-
gle-subject data. However, published reproducibility studies have consistently shown that rs-
fMRI derived outcome measures were robust across participants [29,38,39,83], and here we
briefly summarize previous literature on this subject. An early study by Chen et al., acquired
data from 14 healthy participants over the period of 16 days and reported that the intrinsic net-
works were consistent across multiple sessions [29]. Meindl et al., assessed the reproducibility
of DMN networks across multiple sessions in 18 healthy participants each scanned three times
over the period of a week, and found DMN networks to be highly spatially consistent across
sessions [38]. Shehzad et al. reported modest to high inter-participant reproducibility in a data-
set acquired from 26 participants at three different times over five months [83].

Another limitation of this study is that we report only on outcome measures derived using
group ICA (GICA) [18]. However, as one of the most commonly used methods to estimate
RSNs, GICA offers many advantages. GICA is an extension of the ICA method, in which
reducing and concatenating multi-session/multi-participant fMRI data allows ICA to be
applied once to the aggregate data. This obviates the cumbersome and potentially inaccurate
matching of components estimated separately from data from individual sessions and/or par-
ticipants. Furthermore, the alternative method of performing ICA separately for each session
may result in different numbers of components for different sessions, depending on the level of
noise. A possible consequence of such approach is that networks may split into varying num-
bers of sub-networks, as seen in higher-order ICA analysis [20]. This in turn introduces addi-
tional uncertainty into the network identification process, and may make group inference
across sessions unfeasible. Alternatively, use of GICA [18] allows delineation of identical net-
works for the single- and multi-participant datasets, eliminating the need to perform ICA sepa-
rately on each dataset. There have been concerns that the identification of aggregate networks
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using a single dataset of multiple groups, and then backreconstructing the single-session data-
sets, may bias the results towards the group mean. However, the original report by Calhoun
et al., [18], and a study by Schmidhorst and Holland [84] show that GICA can identify a net-
work present in as little as 10% of the study population. Also, the findings reported in this
study are consistent with reports of the reproducibility of rs-fMRI outcome measures estimated
using alternative analytic approaches such as seed based temporal correlation [85–89].

Finally, due to time constraints, additional physiological or psychological measures were
not obtained during the acquisition of this dataset. Together, such additional measures would
have provided valuable information regarding the nature of the temporal structure we have
observed in this study. Indeed, there are now ongoing endeavors to acquire longitudinal rs-
fMRI data like ours, augmented with the regular parallel acquisition of many auxiliary mea-
sures, ranging from sleep data to blood samples. One such example is the MyConnectome proj-
ect (http://myconnectome.org/wp/), during which along with rs-fMRI, biological samples (i.e.,
blood) as well as data about daily life activities were collected. We expect our study, along with
other unique longitudinal studies, will provide new insight into understanding the dynamics of
brain function over time.

Conclusions
Rs-fMRI allows noninvasive observation of brain networks, and has potential to yield biomark-
ers for clinical trials in neurological diseases where such RSNs may change. The goal of this
study was to present a unique longitudinal dataset reporting on a healthy adult subject scanned
weekly over 3.5 years, and identify RSN outcome measures with high intra-subject inter-ses-
sion reproducibility over prolonged timeframes appropriate for rehabilitation trials. ICA was
used to identify fourteen RSNs that represent unique functional networks. Three types of rs-
fMRI outcome measures, namely spatial map similarity, temporal fluctuation magnitude, and
BNC, were found to be reproducible across the extended study period. In particular, the Exec-
R and Exec-L networks, which are closely related to disease states such as substance abuse and
Alzheimer’s disease, showed high intra-subject inter-session reproducibility for all three types
of RSN outcome measures, suggesting that these networks may be of particular interest.

Additionally, we sought to identify potential parameters-of-interest for clinical studies, by
assessing the existence of temporal structure in the three types of rs-fMRI outcomes measures.
Time series analysis showed that the RSN outcome measures displayed properties including
linear trend, annual periodicity, and persistence. This finding suggests that when RSN outcome
measures are considered as imaging biomarkers for lengthy therapeutic interventions in
chronic conditions it may be beneficial to take the temporal structure parameters into
consideration.

Supporting Information
S1 Fig. Preprocessing and group independent component analysis (GICA) flowchart.
(DOCX)

S2 Fig. Reproducibility of resting state network (RSN) spatial maps, visualized using box-
plots. Spatial similarity of each session’s RSN spatial map to the corresponding group mean
map, measured using eta-squared (η2), for single-subject (a) and multi-participant (b) datasets,
is visualized using box plots (end of boxes: quartiles, bar within boxes: median, small dots: out-
liers). In (b), for each RSN, the mean η2 of the single-subject dataset is overlaid as a large gray
circle.
(DOCX)
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S3 Fig. Reproducibility of RSN signal temporal fluctuation magnitude, visualized using
boxplots. Blood oxygenation level dependent (BOLD) signal fluctuation magnitude for each
session’s RSN time courses, calculated as root-mean-squared (RMS) % BOLD for single-subject
(a) and multi-participant (b) datasets, is visualized using boxplots. In (b), for each RSN, the
mean RMS % BOLD value for the single-subject dataset is overlaid as a large gray circle.
(DOCX)

S1 Table. Acquisition dates of the 158 resting state functional MRI (rs-fMRI) scans. A total
of 158 scans were acquired over the period of 185 weeks.
(DOCX)

S2 Table. Reproducibility of single- and multi-participant between-network connectivity
(BNC) measurements. The mean and standard deviation (SD) values for all resting state net-
work (RSN) pairs are shown for the single- and multi-participant datasets. (Aud: auditory,
Smot: seonsorimotor, Vis: visual, DMN: default mode network, Attn: attention, Exec: execu-
tive, Sal: salience, Cb: cerebellar, ven: ventral, dor: dorsal, R: right, L: left).
(DOCX)

S3 Table. Estimated autoregressive moving average (ARMA) models of each RSNs, for
three rs-fMRI outcome measures–η2, temporal signal fluctuation, and BNC. Properties of
the estimated ARMAmodels for three outcome measures of each RSN are listed. The observed
outcome measures are (a) spatial similarity (η2), (b) temporal fluctuation magnitude, and (c)
BNC. The coefficients of the estimated ARMAmodel conform to the following equation:

Yt þ a1yt�1 þ a2yt�2 þ a3yt�3 ¼ et þ c1et�1 þ c2et�2 þ c3et�3;

where autoregressive (AR) coefficients are listed on top rows and moving-average (MA) coeffi-
cients are listed on bottom.
(DOCX)

S1 Text. Detailed explanation of the autoregressive moving average (ARMA) models.
(DOCX)
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