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Abstract

Two-level Mokken scale analysis is a generalization of Mokken scale analysis for multi-rater data.
The bias of estimated scalability coefficients for two-level Mokken scale analysis, the bias of their
estimated standard errors, and the coverage of the confidence intervals has been investigated,
under various testing conditions. It was found that the estimated scalability coefficients were
unbiased in all tested conditions. For estimating standard errors, the delta method and the clus-
ter bootstrap were compared. The cluster bootstrap structurally underestimated the standard
errors of the scalability coefficients, with low coverage values. Except for unequal numbers of
raters across subjects and small sets of items, the delta method standard error estimates had
negligible bias and good coverage. Post hoc simulations showed that the cluster bootstrap does
not correctly reproduce the sampling distribution of the scalability coefficients, and an adapted
procedure was suggested. In addition, the delta method standard errors can be slightly improved
if the harmonic mean is used for unequal numbers of raters per subject rather than the arith-
metic mean.
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In multi-rater assessments, multiple raters evaluate or score the attribute of subjects on a stan-

dardized questionnaire. For example, several assessors may assess teachers’ teaching skills

using a set of rubrics (e.g., Maulana, Helms-Lorenz, & Van de Grift, 2015; Van der Grift,

2007), both parents may rate their child’s behavior using a health-related quality of life ques-

tionnaire (e.g., Ravens-Sieberer et al., 2014), and policy holders may evaluate the quality of

health-care plans using several survey items (e.g., Reise, Meijer, Ainsworth, Morales, & Hays,

2006). In multi-rater assessments, raters (assessors, parents, policy holders) are nested within

subjects (teachers, children, health-care plans). From this two-level data, measuring the
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attribute (teaching skills, behavior, quality) of the subjects at Level 2 is of most interest.

Because raters are the respondents, they may have a large effect on the responses to the items,

which can interfere with measuring the subjects’ attribute.

For dichotomous items, Snijders (2001) proposed two-level scalability coefficients to inves-

tigate the scalability of the items used in multi-rater assessments. These coefficients are gener-

alizations of Mokken’s (1971) single-level scalability coefficients (or H coefficients), which

are useful as measures to assess whether ‘‘the items have enough in common for the data to be

explained by one underlying latent trait . . . in such a way that ordering the subject by the total

score is meaningful’’ (Sijtsma & Molenaar, 2002, p. 60). Mokken introduced scalability coeffi-

cients for each item-pair (Hij), each item (Hi), and the total set of items (H). For multi-rater data,

Snijders proposed extending the Hij, Hi, and H coefficients to within-rater scalability coeffi-

cients (denoted by the superscript W ), between-rater scalability coefficients (denoted by the

superscript B), and the ratio of the between to within coefficients (denoted by the superscript

BW ).

The scalability coefficients are related to measurement models, in which subject and rater

effects are jointly modeled (Snijders, 2001). A more detailed description of the measurement

models and the two-level coefficients is provided below. Crisan, Van de Pol, and Van der Ark

(2016) generalized the two-level scalability coefficients for dichotomous items to polytomous

items, and Koopman, Zijlstra, and Van der Ark (in press) derived standard errors for the esti-

mated two-level scalability coefficients using the delta method (e.g., Agresti, 2012, pp. 577-

581; Sen & Singer, 1993, pp. 131-152). Alternatively, a cluster bootstrap may be used to esti-

mate standard errors. The cluster bootstrap (Sherman & Le Cessie, 1997; see also Cheng, Yu,

& Huang, 2013; Deen & De Rooij, in press; Field & Welsh, 2007; Harden, 2011) has not been

applied to two-level scalability coefficients, but it has been applied in similar data structures—

for example, children within county (Sherman & Le Cessie, 1997), siblings or genetic profiles

within families (Bull, Darlington, Greenwood, & Shin, 2001; Watt, McConnachie, Upton,

Emslie, & Hunt, 2000), repeated measurements of homeless people their housing status (De

Rooij & Worku, 2012), or of children’s microbial carriage (Lewnard et al., 2015).

For the two-level scalability coefficients, the problem at hand is that neither the bias of the

point estimates nor the bias and accuracy of the standard errors have been thoroughly investi-

gated. For the single-level scalability coefficients, the point estimates were mostly unbiased

(Kuijpers, Van der Ark, Croon, & Sijtsma, 2016) and for both the analytically derived standard

errors using the delta method (Kuijpers et al., 2016) and the bootstrap standard errors (Van

Onna, 2004), the levels of bias and accuracy were satisfactory. However, these results cannot

be generalized to two-level scalability coefficients because single-level coefficients do not take

into account between-rater scalability, nor the dependency in the data due to the nesting of

raters within subjects. The goal of this article is to investigate the bias of the point estimates

and the standard errors of the two-level scalability coefficients. The remainder of this article

first discusses two-level nonparametric item response theory (IRT) models, two-level scalabil-

ity coefficients, and the two standard error estimation methods. Then, the article discusses the

simulation study to investigate bias and coverage, and its results.

Nonparametric IRT Models for Two-Level Data

In multi-rater data, an attribute of subject s (s = 1, . . . , S) is scored by Rs raters using I items.

Raters are indexed by r or p (r, p = 1, . . . , Rs; r 6¼ p), and items are indexed by i or j

(i, j = 1, . . . , I ; i 6¼ j). Each item has m + 1 ordered response categories, indexed by x or y

(x, y = 0, 1, . . . , m). Let Xsri denote the score of subject s by rater r on item i. Typically, the
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mean item score across raters, X s�� = (IRs)
�1
PRs

r = 1

PI
i = 1 Xsri, is used as a measurement for the

attribute of subject s.

In 2001, Snijders proposed a two-level nonparametric IRT model for two-level data, based

on the monotone homogeneity model (Mokken, 1971; Sijtsma & Molenaar, 2002). Let us be

the value of subject s on a unidimensional latent trait u that represents the attribute being mea-

sured, and dsr a deviation that consists of the effect of rater r and the interaction effect of rater r

and subject s. Hence, us + dsr is the value of subject s on the latent trait according to rater r. It is

assumed that, on average, the rater deviation for subject s equals zero (E(dsr) = 0). In Snijders’s

model, the responses to the different items and subjects are assumed stochastically independent

given the latent values us and dsr. The probability that subject s obtains at least score x on item i

when assessed by rater r, P(Xsri � xjus, dsr), is monotone nondecreasing in us + dsr. Because

E(dsr) = 0, the monotonicity assumption implies a nondecreasing item-step response function

P(Xsri � xjus), which is the expectation of P(Xsri � xjus, dsr) with respect to the distribution

of dsr.

An alternative generalization of the monotone homogeneity model for two-level data is the

nonparametric hierarchical rater model. The hierarchical rater model (DeCarlo, Kim, &

Johnson, 2011; Mariano & Junker, 2007; Patz, Junker, Johnson, & Mariano, 2002) is a two-

stage model for multi-rater assessments in which a single performance is rated. Similar to

Snijders’s model, latent values us and dsr are the subject’s latent trait level and the rater’s devia-

tion, respectively. The hierarchical rater model assumes an unobserved ideal rating of the per-

formance of subject s on each item i, denoted by jsi. The ideal ratings may vary across

performances and are solely based on the subject’s latent trait value. The ideal ratings to the

different items are assumed stochastically independent given us, and the item-step response

function P(jsi � xjus) is nondecreasing in us. The observed item score Xsri is the rater’s evalua-

tion of ideal rating jsi (i.e., of the performance). For raters with negative dsr, the probability

increases that Xsri is smaller than jsi, and for raters with positive dsr, the probability increases

that Xsri is larger than jsi. Observed ratings Xsri are stochastically independent given jsi and dsr

and the item-step response function P(Xsri � xjjsi, dsr) is nondecreasing in jsi + dsr.

Scalability Coefficients for Two-Level Data

Scalability coefficients evaluate the ordering of observed item responses. They are a function

of the weighted item probabilities. These weights are explained briefly here (for more details,

see Koopman, Zijlstra, & Van der Ark, 2017; Kuijpers, Van der Ark, & Croon, 2013), and illu-

strated in the appendix using a small data example. Let P(Xsri = x, Xsrj = y) denote the bivariate

probability that rater r of subject s scores x on item i and y on item j. Let P(Xsri = x, Xspj = y)

(p 6¼ r) denote the bivariate probability that rater r of subject s scores x on item i and another

rater (p) of the same subject scores y on item j. Let P(Xi = x) be the probability that a certain

rater scores x on item i for a certain subject.

Let 1( � ) denote an indicator function, which takes value 1 if its argument is true and value 0

otherwise. Each item-score Xi has m item steps Zix = 1(Xi � x) (i = 1, 2, . . . , I ; x = 1, 2, . . . , m).

An item step is passed if Zix = 1, and an item step is failed if Zix = 0. P(Xi � x) is the popularity

of item step Zix. Item steps of each item-pair are sorted in descending order of popularity. A

Guttman error is defined as passing a less popular item step after a more popular item step has

been failed. For instance, if for item-pair Xi, Xj the order of item steps is Zi1, Zj1, Zj2, Zi2, Zi3, Zj3

(i.e., P(Xi � 1) � P(Xj � 1) � P(Xj � 2) � P(Xi � 2) � P(Xi � 3) � P(Xj � 3)), then item-

score pattern (Xi = 0, Xj = 1) is a Guttman error, because this item-score pattern requires that the

second ordered item step Zj1 = 1 must be passed, whereas the first, easier step Zi1 = 0, is failed.

Patterns that are not a Guttman error are referred to as consistent patterns. If a Guttman error is
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observed within the same rater (i.e., (Xsri = 0, Xsrj = 1)), this is referred to as a within-rater error.

If a Guttman error is observed across two different raters of the same subject (i.e.,

(Xsri = 0, Xspj = 1)), this is referred to as a between-rater error. A Guttman error is considered

more severe if more ordered steps have been failed before a less popular item step has been

passed (e.g., Xi = 0, Xj = 3 is worse than Xi = 0, Xj = 1). The severity of the Guttman error for

item-score pattern (x, y) = (Xi = x, Xj = y) is indicated by weight w
xy
ij , which denotes the number

of failed item steps preceding passed item steps (Molenaar, 1991). Let z
xy
h 2 f0, 1g denote the

evaluation of the h-th (1 � h � 2m) ordered item step with respect to item-score pattern (x, y),

then weight w
xy
ij is computed as

w
xy
ij =

X2m

h = 2

z
xy
h 3

Xh�1

g = 1

1� zxy
g

� �" #( )
: ð1Þ

For consistent item-score patterns value w
xy
ij equals zero.

Let FW
ij =

P
x

P
y w

xy
ij P(Xsri = x, Xsrj = y) be the sum of all weighted within-rater Guttman

errors in item pair (i, j) and let Eij =
P

x

P
y w

xy
ij P(Xi = x)P(Xj = y) be the sum of all expected

weighted Guttman errors in item pair (i, j) under marginal independence. The within-rater scal-

ability coefficient HW
ij for item-pair (i, j) is then defined as

HW
ij = 1�

FW
ij

Eij

: ð2Þ

Let FB
ij =

P
x

P
y w

xy
ij P(Xsri = x, Xspj = y), (p 6¼ r) be the sum of all weighted between-rater

Guttman errors in item pair (i, j). Replacing FW
ij with FB

ij in Equation 2 results in the between-

rater scalability coefficient

HB
ij = 1�

FB
ij

Eij

: ð3Þ

Dividing the two coefficients results in ratio coefficient HBW
ij = HB

ij =HW
ij . Note that if FW

ij = FB
ij ,

then HB
ij = HW

ij and HBW
ij = 1. As for single-level scalability coefficients, the two-level scalability

coefficients for items (HW
i , HB

i ) are defined as Hi = 1�
P

j 6¼i Fij=
P

j 6¼i Eij and the two-level

scalability coefficients for the total scale (HW , HB) are defined as H =

1�
P

i

P
j.i Fij=

P
i

P
j.i Eij (e.g., Crisan et al., 2016; Snijders, 2001). In samples, the scal-

ability coefficients are estimated by using the sample proportions; for computational details,

see Snijders (2001; also see Crisan et al., 2016; Koopman et al., 2017).

Within-rater coefficient HW reflects the consistency of item-score patterns within raters, and

its interpretation is similar to the single-level scalability coefficients of Mokken (1971).

Between-rater coefficient HB reflects the consistency of item-score patterns between raters of

the same subject. The maximum value of within- and between-rater scalability coefficients

equals 1, reflecting a perfect relation between the items, within and between raters of the same

subject. Under the discussed IRT models, if the distribution of us + dsr is equally or more dis-

persed than the distribution of us, 0 � HB � HW (Snijders, 2001). As the population of

subject-rater combinations becomes more homogeneous (i.e., the variance of us + dsr becomes

smaller), coefficient HW decreases. Likewise, as the population of subjects becomes more

homogeneous (i.e., the variance of us becomes smaller), coefficient HB decreases. Ratio coeffi-

cient HBW provides useful information on the between- to within-rater variability: the larger the
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variance of dsr (i.e., the rater effect) is compared to the variance of us (i.e., the subject effect),

the smaller the consistency of item-score patterns between raters of the same subject is relative

to the consistency of item-score patterns within raters, and the smaller HB is compared to HW .

As a result, HBW decreases as the rater effect increases. For example, if HBW is close to 1, the

test score is hardly affected by the individual raters and only few raters per subject are neces-

sary to scale the subjects, whereas if HBW is close to 0, the raters almost entirely determine the

item responses and scaling subjects is not sensible.

For a satisfactory scale, Snijders (2001) suggested heuristic criteria HW
ij � :1, HW

i and

HW � :2, HB
ij � 0, and HB

i and HB � :1. In addition, he proposed that ratio value HBW � :3 is

reasonable and HBW � :6 is excellent, with similar interpretations for HBW
ij and HBW

i . In single-

level data, an often-used lower bound is .3 (Mokken, 1971, p. 185). Due to the availability of

multiple parallel measurements per subject (i.e., multiple raters), the heuristics for two-level

scalability coefficients are lower. The value of total-scale coefficients can be increased by

removing items with low item scalability from the item set. In Mokken scale analysis for

single-level data, there exists an item selection procedure based on single-level scalability coef-

ficients, but this is not yet available for multi-rater data. In addition to Snijders’s criteria, the

authors suggest that the confidence intervals (CIs) of the H coefficients should be used in eval-

uating the quality of a scale. Kuijpers et al. (2013) advised comparing the CI with the heuristic

criteria: For example, a scale can only be accepted as strong when the lower bound of the 95%

CI is at least .5. A less conservative approach is to require the lower bound for all H coeffi-

cients to exceed zero. Items that fail to meet these criteria may be adjusted or removed from

the item set.

Standard Error of Two-Level Scalability Coefficients

Analytical Standard Errors

The delta method approximates the variance of the transformation of a variable by using a first-

order Taylor approximation (e.g., Agresti, 2012, pp. 577-581; Sen & Singer, 1993, pp. 131-

152). Recently, Koopman et al. (in press) applied the delta method to derive standard errors for

two-level scalability coefficients. Let n be a vector of order (m + 1)I containing the frequencies

of all possible item-score patterns, each pattern taking the form n
x1x2...xI

1 2 ... I . The patterns are ordered

lexicographically with the last digit changing fastest, such that n = ½n00...0
12...I n00...1

12...I . . . nmm...m
12...I �

T
.

Vector n is assumed to be sampled from a multinomial distribution with varying multinomial

parameters per subject (Vágó, Kemény, & Láng, 2011). Vector ps contains the probabilities of

obtaining the item-score patterns in vector n for subject s, with expectation E(p) for a randomly

selected subject. Suppose that for each subject R1 = R2 = . . . = RS = R. In addition, let E(x)

denote the expectation of vector x, and Diag(x) a diagonal matrix with x on the diagonal. Then

the variance-covariance matrix of n equals

Vn = SR½Diag E pð Þð Þ � E pð ÞE pð ÞT �+ SR R� 1ð Þ½E ppT
� �

� E pð ÞE pð ÞT � ð4Þ

(Koopman et al., in press; Vágó et al., 2011).

Let g(n) be the transformation of vector n to a vector containing the scalability coefficients

g(n) = HBHW HBW½ �T . Let G [ G(n) be the matrix of first partial derivatives of g(n). According

to the delta method, the variance of g(n), V (g(n)), is approximated by

Vg(n)’GVnGT ð5Þ
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The covariance matrix of the scalability coefficients can be estimated as V̂g(n) by using the sam-

ple estimates for G and Vn. For two-level scalability coefficients, Koopman et al. (in press)

derived matrix G in Equation 5. Because the derivations are rather cumbersome and lengthy,

they are omitted here. The interested reader is referred to Koopman et al. (in press). The esti-

mated delta-method standard errors SEd(H) are obtained by taking the diagonal of (V̂g(n))
1=2.

Bootstrap Standard Errors

The nonparametric bootstrap is a commonly used and easy to implement method to estimate

standard errors (see, for example, Efron & Tibshirani, 1993; Van Onna, 2004). This method

resamples the observed data with replacement to gain insight in the variability of the estimated

coefficient. The bootstrap requires that all resampled observations are independent and identi-

cally distributed. Because in the two-level data structure the observations within subjects are

expected to correlate, a standard bootstrap will not work. The cluster bootstrap accommodates

for this dependency by resampling the subjects, thereby retaining all raters of that subject (see,

for example, Deen & De Rooij, in press; Field & Welsh, 2007; Harden, 2011; Ng, Grieve, &

Carpenter, 2013; Sherman & Le Cessie, 1997).

A bootstrap procedure is balanced if each observation occurs an equal number of times

across the B bootstrap samples. Balancing the bootstrap can reduce the variance of the estima-

tion, resulting in a more efficient estimator (Chernick, 2008, p. 131; Efron & Tibshirani, 1993,

pp. 348-349). The following algorithm is used to estimate a standard error with a balanced clus-

ter bootstrap.

1. For a bootstrap of size B, replicate the S subjects from data X B times and randomly dis-

tribute these replications in a B3S matrix S.

2. Create B cluster-bootstrap data sets X�1, . . . , X�B. To obtain X�b, take the bth row of the S

matrix; X�b consists of the observed ratings of all raters from the bootstrap subjects.

3. Compute the scalability coefficients HW
b , HB

b , and HBW
b for each bootstrap data set X�b.

4. Estimate the bootstrap standard errors SEb(H) by computing the standard deviation of

the Hb coefficient across the bootstrap samples.

Resampling at subject-level ensures that the bootstrap samples reflect a similar data structure

as the original data set. The cluster bootstrap allows observations within subjects to correlate,

but observations between subjects should be independent. The correlation structure may differ

per subject, and need not be known.

Method

Simulated data were used to investigate the bias of the two-level scalability coefficient esti-

mates, bias of the standard error estimates, and coverage of the Wald-based CIs. To keep the

simulation study manageable (and readable), a completely crossed design was avoided. Instead,

bias and coverage were first investigated in a small study that included the most important inde-

pendent variable, the rater effect sd, and the two standard error estimation methods (the main

design). Because the rater effect determines the scalability of subjects for a given test, it is con-

sidered the most important independent variable. Second, in a series of small studies with spe-

cialized designs the effects of other independent variables were investigated using the most

promising standard error estimation method. Finally, remarkable results were further investi-

gated in post hoc simulations.
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Data Simulation Strategy

Computation of the scalability coefficients and their standard errors by means of the delta

method only assumes that the item scores follow a multinomial distribution with varying multi-

nomial parameters across subjects (Koopman et al., in press). The cluster bootstrap assumes

that data between subjects are independent. Both assumptions hold under the discussed two-

level IRT models, given that each subject has a unique set of raters. The authors used a para-

metric hierarchical rater model to generate data, parameterized as follows:

us ; i:i:d:N (0, s2
u), s = 1, ::, S

jsi ; Graded response model, i = 1, :::, J , for each s

dsr ; i:i:d:N (0, s2
d), r = 1, :::, Rs, for each s

Xsri ; Signal detection model, for each s, r, i

ð6Þ

Latent trait values us were sampled from a normal distribution with mean 0 and variance s2
u.

Ideal ratings jsi were obtained using a graded response model (Samejima, 1969). This model

was used because it is the parametric version of the monotone homogeneity model that under-

lies Mokken scale analysis (Hemker, Sijtsma, Molenaar, & Junker, 1996). For latent trait value

us, item discrimination parameter ai, and item-step location parameter bix, the probability of

ideal rating jsi � x (x = 1, 2, . . . , m) according to the graded response model is

P jsi � xjusð Þ = exp ai us � bixð Þ½ �
1 + exp ai us � bixð Þ½ � : ð7Þ

Note that P(jsi � 0jus) = 1 and P(jsi � m + 1jus) = 0 by definition. Ideal ratings jsi were

sampled from a multinomial distribution using the probabilities P(jsi = xjus) =

P(jsi � xjus)� P(jsi � x + 1jus) for each subject s and item i.

Rater deviations dsr were sampled from a normal distribution with mean 0 and variance s2
d.

For deviation dsr and ideal rating jsi, the probability of observed score Xsri = x,

P(Xsri = xjjsi, dsr), was obtained from a discrete signal detection model. In this model, the prob-

abilities are proportional to a normal distribution in x with mean jsi + dsr and rating variance t2
r ;

that is,

P Xsri = xjjsi, dsrð Þ} exp � x� jsi + dsrð Þ½ �2

2t2
r

( )
ð8Þ

(also, see Patz et al., 2002). The computed probabilities P(Xsri = xjjsi, dsr) for the m + 1 answer

categories were normalized to sum to 1. Finally, observations Xsri were sampled from a multi-

nomial distribution with parameter P(Xsri = xjjsi, dsr).

Main Design

Independent variables. Rater effect sd had four levels, each reflecting a different degree of rater

effect: sd = 0:25 (very small), sd = 0:50 (small), sd = 0:75 (medium), and sd = 1 (large).

Because the rater effect determines the scalability of subjects for a given test, it is considered

the most important independent variable. As noted earlier, both the subject effect su and the

rater effect sd affect the magnitude of the scalability coefficients. By setting su + sd = 2, the

magnitude of HW was similar across the four levels of rater effect, which facilitated compari-

son. HB and HBW decreased as sd increased.
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Standard-error estimation method had two levels: the delta method and the bootstrap

method. These methods were applied to each level of rater effect.

Other variables in the main design were fixed: The number of subjects was S = 100, and each

subject was rated by the independent group of raters of size Rs = 5. The number of items was

I = 10, and each item had m + 1 = 5 answer categories. Item discrimination was equal for each

item at ai = 1 (Equation 7), the item-step location parameter bix (Equation 7) had equidistant

values between values –3 and 3, and rating variance t2
r = 0:52 (Equation 8).

Dependent variables. The scalability coefficients H and standard errors of the estimates SE were

computed for the three classes of the two-level total-scale scalability coefficients (HW , HB, and

HBW ). Item-pair and item scalability coefficients were not computed because the total-scale

coefficient can be written as a normalized weighted sum of the Hij or Hi coefficients (Mokken,

1971, pp. 150-152). Therefore, it is expected that potential bias of Hij or Hi is reflected in H . In

the specialized design, the authors investigated conditions with two items; in that case,

Hij = Hi = H .

Bias of the estimated H coefficient. Bias reflects the average difference between the sample

estimate and population value of H . Let Hq be the estimated scalability coefficient of the qth

replication. The bias was determined across Q replications as Bias(H) = Q�1
PQ

q = 1 (Hq � H).

The population values (Table 1) were determined based on a finite sample of 1,000,000 sub-

jects and five raters per subject. Table 1 shows that HB and HBW decrease as rater effect sd

increases. As the rater effect in Table 1 increases the difference between HB and HW becomes

larger. Therefore, the correlation between the sample estimates of HB and HW will be larger

for small rater effects than for large rater effects. On average, a relative Bias(H) of 10% reflects

a value of 0.044. Therefore, absolute bias values below 0.044 is considered satisfactory.

Bias of the estimated standard errors. Let SEq be the standard error of the qth replication, and

SD the population standard error, then Bias(SE) = Q�1
PQ

q = 1½SEq � SD�. The population SD val-

ues (Table 1) were determined by the standard deviation of Hq across the Q replications and is

assumed to be representative of the true standard deviation of the sampling distribution of H ,

under the conditions of the main design. On average, a relative Bias(SE) of 10% reflects a value

of 0.004. Therefore, absolute bias values below 0.004 is considered satisfactory.

Coverage. Coverage of the 95% CIs was computed as the proportion of times, in Q replica-

tions, the population value H was included in the Wald-based confidence interval

CIq = Hq61:96SEq. This interval is selected because the distribution of the two-level scalability

coefficients is asymptotically normal (Koopman et al., in press). There were Q = 1, 000 replica-

tions per condition, and B = 1, 000 balanced bootstrap samples per replication.

Analyses. The simulation study was programmed in R (R Core Team, 2018). and partly per-

formed on a high performance computing cluster. The scalability coefficients and delta method

standard errors were computed using the R-package mokken (Van der Ark, 2007, 2012; also,

see Koopman et al., in press). The main design had eight conditions (two standard error

Table 1. Population Values of the Two-Level Scalability Coefficients HW , HB, and HBW and the SD of the
Sampling Distribution for the Four Conditions of sd in the Main Design.

sd 0.25 0.50 0.75 1.00

H SD H SD H SD H SD

HW .437 .037 .418 .034 .435 .029 .479 .025
HB .415 .038 .316 .038 .214 .036 .126 .032
HBW .948 .010 .756 .036 .483 .057 .262 .058
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estimation methods 3 four rater effect levels). Summary descriptives were computed and

visualized for relevant outcome variables for all scalability coefficients. An Agresti–Coull CI

(Agresti & Coull, 1998) was constructed around the estimated coverage using R-package binom

(Dorai-Raj, 2014) to test whether it deviated from the desired value .95.

Specialized Designs

Each specialized design varied one of the independent variables that had been fixed in the main

design. The levels of rater effect sd remained unchanged (sd = 0.25, 0.50, 0.75, and 1.00), to

allow for the detection of potential interaction effects.

Independent variables. The following variables defined the specialized designs:

Number of subjects S was 50, 100 (as in main design) 250, or 500.

Number of raters per subject Rs had six conditions. Let Ufa, bg denote a discrete uniform

distribution with minimum a and maximum b. In the six conditions Rs (s = 1, . . . , S) were

sampled from Uf2, 2g, Uf5, 5g (as in main design), Uf30, 30g, Uf4, 6g, Uf3, 7g, and

Uf5, 30g, respectively. Hence, in the first three conditions, each subject had the same num-

ber of raters, and in the last three conditions the number of raters differed across subjects.

Rating variance t2
r had four conditions. In three conditions, tr was fixed at 0:25, 0:50 (as in

main design), and 0:75, respectively. In the fourth condition tr was sampled for each rater

from an exponential distribution with mean l�1 = 0:5.

Number of items I was 2, 3, 4, 6, 10 (as in main design), or 20.

Number of answer categories m + 1 had four levels: 2 (dichotomous items), 3, 5 (as in main

design), and 7. The parameters of the signal detection model were adjusted according to the

number of answer categories, to ensure that the magnitude of the scalability coefficients

remained similar to those in the main design (Table 2).

Item discrimination parameter ai had four levels. In three conditions ai was kept constant

for each item at 0.5, 1.0 (as in main design), or 1.5. In the last condition, the item discrimi-

nation varied across items at equidistant values between 0.5 and 1.5.

Distance between item-step location parameters bix had four levels. In the first three

conditions, value bix ranged between –4.5 and 4.5, between –3 and 3 (as in main design),

or between –1.5 and 1.5. In the last condition, the item-step locations were equal for the

same item-steps across items, and ranged between –3 and 3 within items (i.e.,

bi1 = � 3, bi2 = � 1:5, bi3 = 1:5, bi4 = 3 for all i).

Table 2. Rater Effect (sd) and Rating Variance (t2
r ) Values for the Number of Answer Categories (m + 1)

Specialized Design.

Rater effect sd

m + 1 tr 0.25 0.50 0.75 1.00

2 .3 0.18 0.27 0.35 0.45
3 .4 0.20 0.33 0.48 0.65
5 .5 0.25 0.50 0.75 1.00
6 .5 0.30 0.70 1.00 1.20

Note. m + 1 = 5 is the level from the main design.
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Dependent variables and analyses. The dependent variables and statistical analyses were the

same for the specialized designs and the main design. The specialized designs item discrimina-

tion, item-step location, and rating variance had an effect on the magnitude of (some of) the

population H values, see Table 3. Population SDs were similar to those in the main design, but

increased for fewer items and smaller sets of subjects or raters.

Post Hoc Simulations

Some exploratory simulations were performed to investigate aberrant results from the main and

specialized designs.

Results

Main Design

Bias of all two-level scalability coefficients was close to zero across the different levels of rater

effect sd (Table 4, left panel).

Bias of the delta method standard error estimates was generally close to zero, but the boot-

strap standard error estimates were negatively biased (Table 4, last two panels). As a result, cov-

erage of the 95% CIs was too low for the cluster bootstrap, with values ranging between .82 and

.88 across the different conditions and coefficients (Figure 1). The delta method coverage is

excellent for the between-rater coefficient, but is conservative for the within-rater coefficient

HW if rater effect sd is large (Figure 1). In addition, coverage of the ratio coefficient HBW tends

to be too high, especially if the rater effect is nearly absent. The high coverage may be explained

by the small sd value. For sd ¼ :25, HB’HW , hence there is hardly any variation of HBW

across different samples, indicated by a true standard error of .01 (Table 1). The bias of the esti-

mated standard error was .006 (Table 4, first row, sixth column), which is identical to the bias in

Table 4. Bias of Estimated Coefficients (H) and of the Estimated Standard Errors (SE).

sd

Bias(H) Bias(SE) delta Bias(SE) bootstrap

HW HB HBW HW HB HBW HW HB HBW

0.25 –.000 –.001 –.002 .002 .002 .006 –.007 –.007 –.002
0.50 –.001 –.002 –.007 .002 .001 .004 –.008 –.009 –.010
0.75 .001 –.002 –.009 .003 .002 .004 –.007 –.009 –.016
1.00 .001 –.003 –.008 .003 .003 .006 –.007 –.009 –.016

Note. Bias that exceeds the boundary of .044 and .004 for SE and HW , respectively, is printed in boldface.

Table 3. Population Values for HW , HB, and HBW for the Specialized Designs Item Discrimination ai,
Item-Step Location bix , and Rating Variance t2

r , for Rater Effect sd = :5.

ai bix tr

0.5 1 1.5 Varied 1.5 3 4.5 Equal 0.25 0.50 0.75 Varied

HW .185 .418 .569 .381 .377 .418 .439 .400 .464 .418 .357 .384
HB .125 .316 .439 .284 .327 .316 .270 .252 .343 .316 .269 .270
HBW .675 .756 .772 .747 .866 .756 .616 .630 .738 .756 .752 .704
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the sd ¼ 1 condition (Table 4, last row, sixth column), for which the true standard error is .058

(Table 1). Relative to their true standard error, the bias of .006 was 60% for sd = :25, and only

10% for sd = 1. Therefore, coverage was much larger in the sd = :25 condition compared with

the sd = 1 condition, even though the bias was equal.

Specialized Designs

For all conditions in the specialized designs, the bias of the point estimates of the two-level scal-

ability coefficients was satisfactory with values between –.004 and .014. Because of the poor

performance in the main design, the bias and coverage of the cluster-bootstrap standard errors

were not computed in the specialized designs, so all results for the standard errors pertain to the

delta method. Number of subjects, S, number of answer categories, m + 1, item discrimination,

ai, item-step location, bix, and rating variance, t2
r , had little or no effect on the bias of the esti-

mated standard errors and the coverage of the Wald-based CI. As in the main design, for HW

and HB, bias was satisfactory and coverages were accurate; whereas for HBW , the bias was occa-

sionally unsatisfactory–bias(SE) � :008–and coverages conservative. Number of raters, Rs, and

number of items, I had an effect (Table 5). No interaction effect was found between rater effect

(sd) and the specialized design variables. Therefore, results are discussed only for sd = 0:5.

For unequal numbers of raters, the standard errors of the two-level scalability coefficients

were too conservative (Table 5, left panel) and the coverage of the CIs too high (Figure 2, left

plot, right-hand side of the plot). The overestimation was stronger if the variation of Rs was

larger. As in the main design with five raters, the standard errors were also too conservative for

HBW in the condition with two raters (Figure 2, left plot).

For two and three items, the standard errors were underestimated for the between-rater coef-

ficient HB (Table 5, right panel). As a result, coverage was too low (Figure 2, right plot).

Post Hoc Simulations

It was unexpected that the cluster bootstrap in the main design performed poorly in estimating

the standard errors of the two-level scalability coefficients, resulting in poor coverage values.

Apparently, the cluster bootstrap does not correctly approximate the sampling distribution of H

Figure 1. Plot of the coverage of the 95% confidence interval of the two-level scalability coefficients, for
different levels of rater effect sd and the two standard error estimation methods.
Note. Error bars represent the 95% Agresti–Coull confidence interval.
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in the population. An explanation may be that the cluster bootstrap ignores the assumption that

the raters should be a random sample of the population of raters. Therefore, an alternative, two-

stage bootstrap is proposed (for a similar bootstrap procedure, see Ng et al., 2013). At Stage 1,

the clusters are resampled as in the cluster bootstrap and at Stage 2, the raters of the selected

subjects are resampled. Compared with the cluster bootstrap, the two-stage bootstrap resulted in

substantial improvements in the standard error estimates and the coverages (Table 6, rows 1

and 2). In an effort to further improve the coverage rates of the two-stage bootstrap, the percen-

tile and bias-corrected accelerated interval were also computed (see, for example, Efron &

Tibshirani, 1993, pp. 170-187, for a detailed description). These two methods use the empirical

distribution of H to construct an interval, rather than assuming a normal distribution. The cov-

erages of the percentile and bias-corrected accelerated intervals were equal to or lower than the

coverages of the Wald-based intervals. Because the bias and coverages of the two-stage boot-

strap are still inferior to those of the delta method (Table 4, third row), the delta method remains

the preferred method.

There were two odd results in the specialized designs: the relatively poor results of the stan-

dard error estimates for unequal group sizes and for a set of two items. The standard error

Table 5. Bias of the Delta Method Standard Errors (SE) for the Two-Level Scalability Coefficients HW ,
HB, and HBW for Specialized Designs of Number of Raters (Rs) and Number of Items (I).

Rs HW HB HBW I HW HB HBW

2 .002 .002 .009 2 .002 –.009 –.003
5 .002 .001 .004 3 .001 –.004 .000
30 .000 .000 .001 4 .002 –.001 .003
4-6 .004 .005 .008 6 .001 .001 .006
3-7 .013 .015 .017 10 .002 .001 .004
5-30 .032 .037 .035 20 .002 .002 .003

Note. Bias that exceeds the boundary of .004 is printed in boldface.

Figure 2. Coverage plots for the two-level scalability for different number of raters and items,
respectively.
Note. Error bars represent the 95% Agresti–Coull confidence interval.
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estimates of the two-level scalability coefficients rapidly increased if the variation in number of

raters across subject became larger. For unequal number of raters across subjects, R in Equation

4 was estimated by the (arithmetic) sample mean bR = S�1
PS

s = 1 Rs. As a solution, the authors

estimated R by the harmonic mean, which is lower than the arithmetic mean if group sizes dif-

fer, and is computed as bR = S=
PS

s = 1 R�1
s . Using the harmonic mean improved the bias of the

standard error and the coverage compared to the use of the arithmetic mean (Table 6, rows 4-9).

However, the estimates were still too conservative, and equal group sizes are preferred.

The standard error of between-rater coefficient HB was underestimated for sets of two items.

Although, in general, testing with a small set of items is discouraged (see, for example, Emons,

Sijtsma, & Meijer, 2007), this condition was of interest because for only two items, the total-

scale coefficient HB is equal to item-pair coefficient HB
ij . To investigate whether bias in the

standard error of item-pair coefficient HB
ij persisted for larger sets of items, the coefficients and

their standard errors were computed in a new condition with four items and in the main design

with 10 items (both for sd = :5). As is shown in Table 6, bottom three rows, bias of HB
ij standard

errors vanished as the number of items increased. However, Table 6 also shows that the stan-

dard error estimates estimates and coverages of item-pair ratio coefficient HBW
ij were increas-

ingly conservative, more than the total-scale coefficient HBW .

Discussion

Point estimates of the two-level scalability coefficients were unbiased in all conditions, with

bias values approximately zero. Standard errors were mostly unbiased if the delta method was

used but not for the traditional cluster bootstrap. A two-stage cluster bootstrap was proposed

that partially mitigated the bias, yet the delta method remains the preferred method.

Table 6. Post Hoc Results of the Bias(SE) and Coverage for the Two-Stage and Cluster Bootstrap and
the Delta Method, the Arithmetic and Harmonic Mean of Rs, and item-pairs Hij with Two, Four, and 10
Items, for HW, HB, and HBW , and Main Design Condition With sd = :5.

Bias (SE) Coverage

HW HB HBW HW HB HBW

Method
Two-stage bootstrap –.003 –.004 –.007 .930 .930 .880
Cluster bootstrap –.008 –.009 –.010 .865 .861 .853
Delta method .002 .001 .004 .955 .950 .970

Rs Mean
4-6 A .004 .005 .008 .970 .972 .983

H .003 .003 .007 .965 .965 .979
3-7 A .013 .015 .017 .991 .993 .990

H .009 .011 .013 .984 .984 .989
5-30 A .032 .037 .021 .999 .999 1.00

H .018 .021 .021 .992 .994 .999
Number of Items

2 .002 –.009 –.003 .944 .910 .941
4 .002 –.001 .011 .945 .938 .983
10 .002 .003 .019 .950 .953 .989

Note. Bias that exceeds the boundary of .004 and coverages where .95 is outside the Agresti–Coull interval are

printed in boldface. The two-stage bootstrap results are based on 100 replications. The Hij results are averaged across

all item-pairs. A = arithmetic mean and H = harmonic mean of Rs.
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The delta method resulted in unbiased standard error estimates for both the within- and

between-rater scalability coefficients HW and HB, respectively. For large rater effects, the cov-

erage of the within-rater coefficient HW was slightly conservative. However, if the rater effect

is large, standard errors are of less interest, because the test will be determined of poor quality

based on the (unbiased) coefficients alone. Standard error estimates and coverages for ratio

coefficient HBW were conservative, especially if HBW was close to its upper bound 1. In this

latter situation, standard errors are also of less interest, because if the coefficient estimate is so

high, so is its interval estimate.

For all coefficients, the delta method overestimated the standard error if the number of raters

was unequal across subjects, especially if the variation was larger. Post hoc simulations showed

some improvements if the harmonic mean of the group size was used rather than the arithmetic

mean, but equal group sizes are recommended. In addition, for small sets of items the standard

errors between-rater coefficient HB were too liberal. Post hoc simulations showed that the stan-

dard errors of the total scale and the item-pair between-rater coefficients are unbiased, provided

that a scale consists of at least four items.

The results of this study demonstrate that, in general, the estimated scalability coefficients

and delta method standard errors are accurate and can therefore be confidently used in practice.

When the scalability of a multi-rater test is deemed satisfactory, a related (but different) topic

concerns the reliability. For a given test, Snijders (2001) presented coefficient alpha to deter-

mine how many raters are necessary for reliable scaling of the subjects. Note that the magnitude

of the scalability coefficients is not affected by the number of raters. Alternatively, generaliz-

ability theory provides a more extensive selection of methods to investigate reliability (general-

izability) of multi-rater tests (see, for example, Shavelson & Webb, 1991).

The application of two-level scalability coefficients and their standard errors is not limited

to multi-rater data. They may also be applied in research with multiple (random) circumstances

or time points in which the same questionnaire is completed. Also, the items may be replaced

by a fixed set of situations in which a particular skill is scored using a single item. The standard

errors examined in this article are also useful for single-level Mokken scale analysis for data

from clustered samples (e.g., children nested in classes) because the single-level standard error

will typically underestimate the true standard error (see, for example, Koopman et al., in press).

Future research may focus on how the point and interval estimates can be useful to select a sub-

set of items from a larger set of items.

Appendix

Illustrative Example

Table A1 shows two small constructed data examples, each with two subjects and five raters

per subject on two three-category items. The same item scores are present in both data sets, but

Rater 4 of Subject 1 and Rater 5 of Subject 2 are exchanged in the second data set.

For both data sets in Table A1, the item-step ordering is Zi1; Zj1; Zi2; Zj2. Therefore, consistent

item-score patterns are (0, 0), (1, 0), (1, 1), (2, 1), and (2, 2), whereas patterns (0, 1), (0, 2), (1, 2),

and (2, 0) are Guttman errors. Within raters, Guttman error (0, 1) occurs once in each data set

(Rater 2 of Subject 2). In the first data set, there are five between-rater Guttman errors (0, 1) (for

Subject 2, Rater 1 scored 0 on Xi, whereas Raters 2, 4, and 5 scored 1 on Xj, and Rater 2 scored

0 on Xi, whereas Raters 4 and 5 scored 1 on Xj), four between-rater Guttman errors (1, 2), and

five between-rater Guttman errors (2, 0), summing up to 14 between-rater Guttman errors. In

the second data set there are only three (0, 1) and two (1, 2) between-rater Guttman errors, sum-

ming up to five.
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Because there are relatively many between-rater Guttman errors in the first data set, there is

little consistency between raters of the same subject and HB is low compared to HW , as is

reflected in ratio HBW = :219. Although scalability coefficients HWB are above the criteria pre-

sented by Snijders (2001), the ratio coefficient is below .3 and the 95% CI of HB and HBW

includes zero. This indicates that the item responses are mainly determined by the raters, and it

is doubtful whether it makes sense to scale subjects on u using the test score on this set of

items. In the second data set there is almost as much consistency between raters as there is

within raters, reflected by a ratio coefficient of HBW = :922. All coefficients are above the cri-

teria of Snijders and the CIs exceed zero. This indicates that the item responses are mainly

determined by the subject, and subjects can be scaled on u using these items.

The data example demonstrates that high values for two-level coefficients do not require per-

fect agreement among raters of the same subject. For HBW to be high it is of importance that the

probability of a between-rater Guttman error pattern is close to the probability of a within-rater

Guttman error pattern.
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