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Adiponectin is an adipokine inversely correlated with obesity, which has beneficial effect on insulin resistance
and lipid metabolism. Considering its potential as a therapeutic target in the metabolic disorder contexts, and
in order to add knowledge in the area, our study evaluated the ADIPOQ 276G N T polymorphism effect on
adiponectin levels, and on lipoproteins of clinical interest in a population sample composed of 211 healthy indi-
viduals. Significant effects were observed only among men: the carriers of heterozygous genotype (GT) showed
high levels of adiponectin (p=0.018),while the rare homozygous genotype (TT) gave its carriers a negative phe-
notype, represented by higher levels of low density lipoprotein cholesterol (LDL-C) (p = 0.004 and p = 0.005)
and total cholesterol (TC) (p=0.010 and p=0.005) compared to carriers of other genotypes (GG andGT respec-
tively), the independent effect of SNP on LDL-C and TC levels was confirmed bymultiple regression analysis (p=
0.008 and p= 0.044).We found no evidence of correlation between circulating adiponectin levels and biochem-
icalmarkers,which suggests, therefore, an SNP 276G N T independent effect on adiponectin levels and on lipopro-
tein metabolism in men enrolled in this study.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Adipose tissue, besides the traditional functions of energy storage
and thermal insulator, is considered as an endocrine organ (Kershaw
and Flier, 2004), able of acting in multiple metabolic pathways, due
large amounts of bioactive compounds that are secreted by it, including
free fatty acids and various adipokines, such as adiponectin (Lara-Castro
et al., 2007; Whitehead et al., 2006).

Adiponectin is exclusively secreted by adipose tissue, being in-
versely correlated with obesity (Arita et al., 1999). Systemic action
of adiponectin has been demonstrated, contributing for the glucose
and lipid metabolism modulation (Cnop et al., 2003; Zhao and
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; GWA study, genome-wide as-
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Zhao, 2011), with anti-inflammatory and antiatherogenic properties
(Kubota et al., 2002; Nawrocki and Scherer, 2004). It acts through
activation of several intracellular pathways, including the adenosine
monophosphate-activated protein kinase (AMPK) pathway, promoting
the free fatty acids oxidation and increasing glucose uptake by reducing
gluconeogenesis in the liver (Fruebis et al., 2001). These actions are as-
sociated with improvement of insulin resistance markers (Hotta et al.,
2000; Weyer et al., 2001), increasing of nitric oxide production (Chen
et al., 2003; Qiao et al., 2008), and suppression of endothelial expression
of adhesion molecules, smoothmuscle cells proliferation, and the trans-
formation of macrophages into foam cells (Ouchi et al., 1999).

The variants of adiponectin gene (ADIPOQ; 3q27.3) were associated
with obesity, metabolic syndrome markers and cardiovascular disease
(Cheung et al., 2014; Gao et al., 2013; Lu et al., 2014). Given the complex
network of adiponectin interactions with several enzymes and hor-
mones, and a wide range of modulator factors, the study's results
which evaluate the ADIPOQ single-nucleotide polymorphisms (SNPs)
effects on metabolism homeostasis are quite diverse (Gao et al., 2013;
Zhao and Zhao, 2011), but very promising (Cheung et al., 2014; Lu
et al., 2014), revealing that some variants seem to play a relevant role
in these contexts.

Considering the adiponectin functional role in the metabolic pro-
cesses of various clinical contexts, and its possibility to become a thera-
peutic target (Caselli, 2014; Hand et al., 2015), our work aims to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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contribute to knowledge in the area by evaluating the variant 276G N T
(rs1501299) effect on adiponectin levels, and on biochemical markers
associated with metabolic syndrome and cardiovascular risk in a popu-
lation sample from Southern Brazil. The 276G N T SNP was chosen for
this study because it had previously been associated with changes in
the adiponectin levels (Heid et al., 2010; Ramya et al., 2013) and traits
related to obesity (Lu et al., 2014) and metabolic syndrome (Ouyang
et al., 2014), furthermore, the 276G N T effect on biochemical variables
had not been investigated in individuals from Southern Brazil.
Materials and methods

Subjects

The sample consisted of 211 workers of Euro–Brazilian descent,
employed by the Federal University of Paraná in Southern Brazil. Since
the aim in selecting the volunteers was to obtain a sample representa-
tive of the population heterogeneity, no pathology was used as
an inclusion or exclusion criterion. The study was approved by the
ethics committee of the Federal University of Paraná (CEP/SD
1159.084.11.06/CAAE0082.0.091.000-11), and the study time period
was the year 2012–2014.

Of these 211 individuals, 137 are woman, aged between 24 and
70 years old, and mean BMI = 27.20 (60.9% showed overweight and
obesity). The Men (N = 74) aged between 26 and 59 years old, and
mean BMI = 27.02 (66.6% exhibited overweight and obesity). Weight
andheightweremeasuredwith an accuracy of 0.1 kg and 0.1 cm respec-
tively (BMI ≥ 25 = overweight; BMI ≥ 30 = obese).

The physical activity of the individuals wasmeasured for seven days
using a pedometer (YamaxDigi-Walker SW-700). This data showed that
23% were sedentary, 37% had low physical activity, 26%were active and
14% had high physical activity according to criteria proposed by Wyatt
et al. (2005) and Tudor-Locke et al. (2011).

The sample used for independently test our results consisted of 182
premenopausal women from a different sample of a Southern Brazilian
population.
Biochemical parameters

Fasting glucose, triglycerides (TG), total cholesterol (TC) and high
density lipoprotein cholesterol (HDL-C)weremeasured by standard au-
tomated methods. Low density lipoprotein cholesterol (LDL-C) levels
were calculated using the Friedewald equation (Friedewald et al.
1972), for triglycerides levels below 200 mg/dL. In cases where this cri-
terion was not observed, the LDL-C levels were quantified by direct
assay.

Due to technical limitations, the adiponectin concentration was
measured in a subgroup of 128 individuals randomly chosen from the
total sample by Enzyme-Linked Immunosorbent Assay (ELISA)method,
applied according to manufacturer's protocol (kit Elisa Duo Set Human
Adiponectin, R&D systems).
Table 1
Allele and genotype frequencies of 276G N T SNP (%± standard error) in the total sample
(n = 211).

Allele frequencies Genotype frequencies

G 69.9 ±0.01 GG 48.34
T 30.1 ±0.01 TG 43.13

TT 8.53
DNA analysis

DNA was extracted from peripheral blood by a salting-out meth-
od (Lahiri and Nurnberger Jr, 1991) and then diluted to a final con-
centration of 20 ng/μL. The intronic variant rs1501299 (276G N T)
of ADIPOQ gene, were genotyped using a TaqMan allelic discrimina-
tion assay on an StepOnePlus™ real time PCR systems (Applied
Biosystems, Foster City, CA, USA). The conditions of TaqMan reac-
tions were as follows: 50 °C for 2 min, 95 °C for 10 min and
50 cycles of 95 °C for 15 s and 62 °C for 1 min. Three previously
sequenced control samples, representative of each of the possible
genotypes, were included in each reaction.
Statistical analysis

Allele and genotype frequencies of the SNP genotyped were obtain-
ed bydirect counting andHardy–Weinberg equilibriumwas testedwith
χ2 test.

The comparisons between means were performed by Mann–
Whitney test, and within-group and between-group differences were
analyzed using Kruskall–Wallis.

A multiple regression analysis was performed to confirm the hy-
pothesis that the variables are independent factors for observed
differences. Spearman rank order correlations analysis, for non-
parametric correlation, was applied to test correlations between
variables.

The probability value for the comparative tests were considered
significant at p b 0.05 (5%).

Results

The genotype distribution of the investigated SNP is in Hardy–
Weinberg equilibrium, and allele and genotype frequencies are shown
in Table 1.

The Kruskal–Wallis test results revealed differences in the levels of
some biochemical variables: HDL-C, LDL-C and TC (p = 0.0379; p =
0.0133 and p = 0.0097 respectively) when compared carriers of the
three possible SNP 276G N T genotypes (GG, GT, TT) of the ADIPOQ
gene, and thus grouped only by genotype.

In order to identify where these differences lie, the three possible
SNP 276G N T genotypes were compared two by two (Table 2), also
having as grouping criterion only genotype. The tests results showed
that homozygotes for the rare allele had significantly higher means of
LDL-C and TC compared with heterozygotes (p = 0.003 and p =
0.004, respectively), and also when compared with common homozy-
gotes (p=0.013 andp=0.018, respectively). No significant differences
were observed in adiponectin levels among carriers of the three possible
genotypes in the total sample (p N 0.4) (Table 2).

Considering the variations in metabolic processes which are inher-
ent to gender, we conducted the same analyses grouped by gender
and genotype. We observed that the differences in LDL-C and TC mean
levels remained only in men, and between the same genotypes: homo-
zygotes for the rare allele had higher mean levels compared with het-
erozygotes (p = 0.005 and p = 0.005 respectively) and common
homozygotes (p= 0.004 and p = 0.010 respectively). The adiponectin
mean levels are higher in heterozygotes compared with common ho-
mozygotes (p = 0.018) only in men (Table 3). When we analyze the
genotypes together, differences in adiponectin, TC and LDL levels
remained, as shown in Table 4.

Multiple regression analysis testswere performed to confirm the ob-
served effect of the SNP276G N T genotypes (independent variable), age
and BMI (continuous variables/covariates) on the LDL-C and TC levels
(dependent variables), categorizing the samples by gender. The results
showed that the SNP 276G N T genotype acted independently for the de-
termination of LDL-C and TC levels in men (F = 7.308, p = 0.008; and
F = 4.1476, p = 0.044 respectively) Figs. 1 and 2.

The Spearman correlation analysis was performed to check
the inter-relationship among adiponectin levels, 276G N T variant,
LDL-C and TC levels in men. There was no significant correlation be-
tween the LDL-C and TC levels and adiponectin circulating levels



Table 2
Means (±SE) of insulin, glucose, HDL-C, LDL-C, TG, TC and adiponectin, and paired comparisons (p) among carriers of the three possible 276G N T SNP genotypes.

Biochemical parameters SNP 276G N T genotypes

GGA (n = 102) GTB(n = 91) TTC (n = 18) Comparisons p

Insulin (μUI/mL) 10.71 ± 10.32 9.15 ± 4.64 8.00 ± 3.87 AXB 0.595
BXC 0.626
AXC 0.380

Glucose
(mg/dl)

84.58 ± 13.15 85.30 ± 20.88 82.16 ± 8.38 AXB 0.813
BXC 0.627
AXC 0.854

HDL-C
(mg/dl)

50.56 ± 13.48 48.99 ± 12.77 52.22 ± 11.58 AXB 0.435
BXC 0.160
AXC 0.431

LDL-C
(mg/dl)

131.26 ± 31.48 126.83 ± 28.66 151.99 ± 41.12 AXB 0.358
BXC 0.003
AXC 0.013

TG
(mg/dl)

133.92 ± 65.15 126.34 ± 65.25 142.67 ± 88.30 AXB 0.288
BXC 0.468
AXC 0.895

TC
(mg/dl)

208.59 ± 34.71 199.64 ± 37.90 228.88 ± 42.79 AXB 0.158
BXC 0.004
AXC 0.018

Adiponectin (ng/mL) GG (n = 69) GT (n = 48) TT (n = 11) p
4.35 ± 1.86 4.69 ± 2.36 3.97 ± 1.84 AXB 0.583

BXC 0.436
AXC 0.650

Note: A corresponds to the GG genotype; B to GT genotype and C to TT genotype.
Bold numbers represent p values significant.
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(ρ=−0.024, p N 0.05; ρ=−0.030, p N 0.05, respectively). However
the 276G N T variant was significantly correlated with adiponectin
levels in men (ρ = 0.428, p b 0.05).

To validate our findings, the same tests were applied to an inde-
pendent sample available in our database composed of 182 healthy
women. The results also showed no association of ADIPOQ SNP
276G N T with any of the biochemical variables evaluated (Supple-
mentary material).
Table 3
Biochemical variables means (±SE) in men and women, stratified by 276G N T SNP genotypes

Biochemical
parameters

Men

GGA (n = 33) GTB (n = 35) TTC (n = 6) Comparison

Insulin (μUI/Ml) 8.93 ± 5.40 9.60 ± 4.49 10.04 ± 4.18 AXB
BXC
AXC

Glucose (mg/dl) 84.94 ± 11.34 86.71 ± 7.05 88.33 ± 5.28 AXB
BXC
AXC

HDL-C (mg/dl) 44.91 ± 10.33 42.88 ± 6.62 46.83 ± 11.18 AXB
BXC
AXC

LDL-C (mg/dl) 131.46 ± 28.29 131.22 ± 25.70 181.73 ± 45.12 AXB
BXC
AXC

TG (mg/dl) 147.64 ± 72.18 150.09 ± 77.65 188.83 ± 118.31 AXB
BXC
AXC

TC (mg/dl) 205.97 ± 30.87 204.17 ± 30.64 256.00 ± 45.46 AXB
BXC
AXC

Men

GG (n = 21) GT (n = 11) TT (n = 5) Comparison

Adiponectin (ng/mL) 3.96 ± 2.18 5.64 ± 2.28 3.62 ± 0.77 AXB
BXC
AXC

Note: A corresponds to the GG genotype; B to GT genotype and C to TT genotype.
Bold numbers represent p values significant.
Discussion

The purpose of the present study was to investigate the 276G N T
ADIPOQ variant effects on biochemical indicators and plasma adiponectin
levels in a sample of a Southern Brazilian population of self-declared
European ancestrality. Our work consisted of a cross-section analysis
which allowed the identification of important associations, where the
modulation of observed effects was markedly dependent on the gender.
and compared two by two (p).

Women

s p GG (n = 69) GT (n = 55) TT (n = 12) Comparisons p

0.477 11.50 ± 11.85 9.10 ± 4.77 6.31 ± 2.90 AXB 0.351
0.874 BXC 0.207
0.558 AXC 0.075
0.095 84.40 ± 14.00 84.65 ± 26.27 79.08 ± 8.05 AXB 0.332
0.897 BXC 0.578
0.192 AXC 0.279
0.492 53.26 ± 14.03 53.12 ± 14.11 54.92 ± 11.26 AXB 0.910
0.568 BXC 0.578
0.683 AXC 0.623
0.883 131.16 ± 33.09 124.71 ± 30.17 137.12 ± 31.06 AXB 0.314
0.005 BXC 0.086
0.004 AXC 0.253
0.801 127.36 ± 60.97 112.45 ± 57.63 119.58 ± 62.78 AXB 0.143
0.671 BXC 0.713
0.360 AXC 0.632
0.703 209.84 ± 36.55 197.89 ± 41.41 215.33 ± 35.90 AXB 0.154
0.005 BXC 0.116
0.010 AXC 0.253

Women

s p GG (n = 48) GT (n = 37) TT (n = 6) Comparisons p

0.018 4.52 ± 1.70 4.40 ± 2.34 4.258798 AXB 0.364
0.079 BXC 0.930
0.696 AXC 0.804



Ta
bl
e
4

Bi
oc

he
m
ic
al

va
ri
ab

le
s
m
ea
ns

(±
SE

)
in

m
en

an
d
w
om

en
,s
tr
at
ifi
ed

by
27

6G
N
T
SN

P
gr
ou

pe
d
ge

no
ty
pe

s
an

d
co
m
pa

re
d
tw

o
by

tw
o
(p

).

Bi
oc

he
m
ic
al

pa
ra
m
et
er
s

M
en

W
om

en

G
G

(n
=

33
)

G
T
+

TT
(n

=
41

)
p

G
G
+

G
T

(n
=

68
)

TT (n
=

6)
p

G
G

(n
=

69
)

G
T
+

TT
(n

=
67

)
p

G
G
+

G
T

(n
=

12
4)

TT (n
=

12
)

p

In
su

lin
(μ
U
I/
M
l)

8.
93

±
5.
4

9.
73

±
7.
2

0.
40

3
9.
17

±
5.
0

10
.0
4
±

4.
1

0.
63

5
11

.5
0
±

11
.8

8.
71

±
4.
6

0.
17

6
10

.4
5
±

9.
4

6.
31

±
2.
9

0.
10

6
G
lu
co

se
(m

g/
dl
)

84
.9
3
±

11
.3

86
.9
5
±

6.
7

0.
06

5
85

.8
5
±

9.
3

88
.3
3
±

5.
2

0.
45

8
84

.4
0
±

14
.0

83
.6
5
±

24
.0

0.
23

1
84

.5
2
±

20
.2

79
.0
8
±

8.
0

0.
37

3
H
D
L-
C
(m

g/
dl
)

44
.9

±
10

.3
43

.4
6
±

7.
4

0.
62

5
43

.8
7
±

8.
6

46
.8
3
±

11
.1

0.
59

9
53

.2
6
±

14
.0

53
.4
5
±

13
.5

0.
79

4
53

.2
0
±

14
.0

54
.9
2
±

11
.2

0.
58

3
LD

L-
C
(m

g/
dl
)

13
1.
46

±
28

.2
13

8.
6
±

33
.8

0.
53

5
13

1.
33

±
26

.7
18

1.
73

±
45

.1
0.
00

3
13

1.
16

±
33

.0
12

6.
93

±
30

.4
0.
62

1
12

8.
30

±
31

.8
13

7.
11

±
31

.0
0.
14

1
TG

(m
g/
dl
)

14
7.
64

±
72

.1
15

5.
76

±
84

.0
0.
62

8
14

8.
90

±
74

.4
18

8.
83

±
11

8.
3

0.
48

2
12

7.
36

±
60

.9
11

3.
73

±
58

.1
0.
15

4
12

0.
75

±
59

.7
11

9.
58

±
62

.7
0.
92

1
TC

(m
g/
dl
)

20
5.
97

±
30

.8
21

1.
76

±
37

.4
0.
72

8
20

5.
04

±
30

.5
25

6.
00

±
45

.4
0.
00

5
20

9.
84

±
36

.5
20

1.
01

±
40

.7
0.
39

2
20

4.
54

±
39

.0
21

5.
33

±
35

.9
0.
61

M
en

W
om

en

G
G

(n
=

21
)

G
T
+

TT
(n

=
16

)
p

G
G
+

G
T

(n
=

32
)

TT (n
=

5)
p

G
G

(n
=

48
)

G
T
+

TT
(n

=
43

)
p

G
G
+

G
T

(n
=

85
)

TT (n
=

6)
p

A
di
po

ne
ct
in

(n
g/
m
L)

3.
96

±
2.
18

5.
01

±
2.
13

0.
04

3
4.
53

±
2.
32

3.
62

±
0.
76

0.
68

9
4.
52

±
1.
70

4.
38

±
2.
33

0.
37

3
4.
47

±
1.
98

4.
26

±
2.
47

0.
84

8

Bo
ld

nu
m
be

rs
re
pr
es
en

tp
va

lu
es

si
gn

ifi
ca
nt
.

Fig. 1. Multiple regression analysis, where the effect of the three possible 276G N T
genotypes on LDL-C levels were evaluated in men and women. GG genotype (0); GT
genotype (1), and TT genotype (2).
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Despite the fact that no differences were found in adiponectin mean
levels between men and women (4.41 ± 2.19 and 4.44 ± 1.99 p =
0.628, respectively), it is known that plasma levels of this protein exhib-
it sexual dimorphism (Arita et al., 1999), and our sample was not
sufficiently large to observe this effect.Womenhave significantly higher
serum concentrations than men (Haluzík et al., 2004) regardless of the
fat mass amount and distribution (Cnop et al., 2003). Contributing
to these differences several factors are found, including nutritional
(Alsaleh et al., 2013), endocrine (Henneman et al., 2010), and envi-
ronmental, such as levels of physical activity (Saunders at al.,
2012). Despite the heritability of plasma adiponectin levels may
reach 88% (Cesari et al., 2007), it still shows gender variations: a
study found that in men the genetic component contribution re-
sponsible for the variance in adiponectin levels was 34%, while in
women no evidence of heritability was found (Miljkovic-Gacica
et al., 2007).

Due to the multifactorial nature that controls adiponectin serum
levels, the reproducibility of the studies associating genetic variants to
Fig. 2. Multiple regression analysis, where the effect of the three possible 276G N T
genotypes on TC levelswere evaluated inmen andwomen. GG genotype (0); GT genotype
(1), and TT genotype (2).
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this feature is low. Our results suggest that the 276G N T SNP contributed
for the adiponectin levels variation only among men, conferring to
heterozygotes (GT) higher mean levels when compared to common
homozygotes (GG). However, this finding should be interpreted with
caution, since these results were derived from small sample analysis,
which may cause instability in the statistical significance found. Even
considering the above, the data indicates a possible effect that worth
being investigated in larger samples. The association of this SNP with
adiponectin levels have been established through Genome-Wide
Association Studies (GWAs) (Heid et al., 2006; Heid et al., 2010; Pollin
et al., 2005), and the association with traits related to metabolic
syndrome, diabetes and atherogenic indicators shows heterogeneous
results (Al-Daghri et al., 2012; Arikoglu et al., 2014; Kawai et al., 2013;
Melistas et al., 2009; Pyrzak et al., 2013; Zhao and Zhao, 2011), probably
due to multiple factors that influence its modulation, in addition to
methodological differences between studies.

Some work signaled to sex dependent effects, for example, the
extensive study by Cheung and collaborators, which found 276G N T
SNP association with coronary heart disease, and the T allele with
hipoadiponectinaemia only in men (Cheung et al., 2014). Our findings
also suggest that the SNP has differential effect on adiponectin levels
and the lipoprotein metabolism inmen, considering the detrimental ef-
fect that the rare allele in homozygous (TT) has conferred to carriers,
contributing independently to increased levels of TC and LDL-C
compared to common homozygous genotypes (GG) and heterozy-
gous (GT). This result corroborates with others that suggests signif-
icant gender effect on the association between this variant and
metabolic disorders (Khabour et al., 2013), and highlights the
importance of future studies that consider stratification by gender
in their analysis.

The steroid hormones act in adiponectin regulation and may influ-
ence the underlying mechanisms to variation of effect observed be-
tween the sexes. It was shown that castrated experimental animals
had increased adiponectin levels, whereas when under the effect of
supplemental testosterone the adiponectin levels decreased, demon-
strating the testosterone effects in reducing plasmatic adiponectin con-
centration (Nishizawa et al., 2002). In the same study it was observed
that mRNA adiponectin levels were not affected by testosterone
in vitro or in vivo, suggesting that the hormonemay act on the secretory
pathway, and not necessarily on the regulation of its nuclear production,
but the exact dynamics of the androgens action in this setting remains
unknown (Nishizawa et al., 2002).

In addition, the lipoproteins of lipid metabolism, and the en-
zymes that modulate it, also differ in their distribution and activity
in a gender-dependant way, as they are regulated by steroid hor-
mones (Nikkila at al., 1984; Taskinen and Kuusi, 1986; The Lipid
Research Clinics Program Epidemiology Committee, 1979). In
women, the hepatic lipase (HL) activity is around 60% to 70% of
the activity found in men (Kuusi et al., 1989), besides lipoprotein
lipase (LPL) higher activity compared to men (Nikkila at al., 1984;
Taskinen and Kuusi, 1986). Early in life, before the sex hormones ac-
tion, HDL-C is similar between the sexes, but after puberty, decreases
in boys and remains unchanged in girls (The Lipid Research Clinics
Program Epidemiology Committee, 1979). It is suggested that activa-
tion of HL by testosterone is responsible for the decline in HDL-C
levels (Sorva et al., 1988), and this difference remains in adult life.
On the other hand, the LDL-C is lower in women, presumably due
to the action of estrogens on the increase in LDL-C receptor (LDLR)
activity (Kovanen et al., 1979), since after menopause this difference
disappears between the sexes (The Lipid Research Clinics Program
Epidemiology Committee, 1979). Variations in lipid metabolism in-
herent to sex may also contribute to the heterogeneity and lack of re-
producibility of studies investigating the effects of factors that
interfere in energy homeostasis, among these, the effects of genetic
variants in genes encoding proteins that modulate these key en-
zymes, such as ADIPOQ.
Despite that the ADIPOQ gene variants have been associated with
dyslipidemia (Hotta et al., 2000; Ryo et al., 2004), it is not clearwhether
there is a direct relationship between low adiponectin levels and this
disease (Lara-Castro et al., 2007).

Often the 276G N T SNP association with metabolic disorders is not
related to differences in plasma adiponectin (Gable et al., 2006; Heid
et al., 2006), suggesting that in some cases the effect of the genetic var-
iant may be independent of the circulating levels of the protein, as pro-
posed by Qi (Qi et al., 2005). Likewise we propose that the 276G N T
variant impacted independently on adiponectin levels and on lipid
metabolism inmenwho composed our study, since therewas no signif-
icant correlation between adiponectin levels and biochemical markers
(p N 0.05). Furthermore, the independence of these effects was also ver-
ified by disparity in genetic composition responsible for the observed
differences: rare allele homozygotes (TT) had higher LDL-C and TC aver-
age levels (recessive effect), while on the adiponectin levels only indi-
viduals with heterozygous genotype (GT) showed increased serum
levels (overdominance).

Despite the diversity of observed results, some mechanisms have
been proposed to explain the adiponectin influence on lipid homeosta-
sis. This adipokine acts on plasma lipoprotein levels altering the levels
and activity of key enzymes of lipid metabolism, among them the LPL
and HL, previously mentioned (Lara-Castro et al., 2007). LPL hydrolyzes
triglycerides in chylomicrons and in the very low density lipoproteins
(VLDL), releasing free fatty acids and giving rise to intermediate density
lipoproteins (IDL). Part of the IDL is removed by the liver, but most of it
is converted into LDL-C by HL (Kersten, 2014). Transgenic mouse over
expressing adiponectin showed increased expression and activity of
LPL in skeletal muscle, and increased VLDL hydrolysis, thus leading to
the decreased in TG levels (Qiao et al., 2008). Similar results were also
described by (Combs et al., 2004) where female mice super expressing
adiponectin showed increased expression of LPL inwhite adipose tissue,
and the same results were found in similar studies in humans (De Vries
et al., 2005; Von Eynatten et al., 2004). The increase in VLDL hydrolysis
leads indirectly to decreased levels of total cholesterol. On the other
hand, low levels of adiponectin are correlated with increased HL
(Schneider et al., 2005) and decreased LPL activities (Saiki et al.,
2007), which may lead to higher levels of LDL-C and reduction in
HDL-C levels due to the combined effects of these two enzymes (Lara-
Castro et al., 2007).

Given the complex nature which controls the lipoprotein and
adiponectin circulating levels, the effect of SNP investigated in this
study represents a small portion of many factors that contribute to the
mechanisms underlying of these differences. We can state some limita-
tions of our study, among them the relatively small sample size, because
larger samples could reveal undetected effects of genotypic and allelic
composition and confirm the effects found in this study. The replication
of the tests in an independent sample of men would be interesting to
validate our results, as well as the application of this study in postmen-
opausal women, which could provide similar results to those seen in
men. We used only a premenopausal women sample for tests replica-
tion, whose results were similar to those found in the women group
who composed the original sample.

In conclusion we propose a gender dependent effect of the 276G N T
polymorphism on adiponectin levels, TC and LDL-C, with the heterozy-
gous genotype (GT) conferring higher levels of protein, while the rare
homozygous genotype (TT) was associated with higher TC and LDL-C.
It is also important to emphasize that the polymorphism influence on
the levels of biochemical markers was independent of adiponectin
circulating levels.
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