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Abstract

The population dynamics of mosquitoes in temperate regions are not as well understood as

those in tropical and subtropical regions, despite concerns that vector-borne diseases may

be prevalent in future climates. Aedes albopictus, a vector mosquito in temperate regions,

undergoes egg diapause while overwintering. To assess the prevalence of mosquito-borne

diseases in the future, this study aimed to simulate and predict mosquito population dynam-

ics under estimated future climatic conditions. In this study, we tailored the physiology-

based climate-driven mosquito population (PCMP) model for temperate mosquitoes to

incorporate egg diapauses for overwintering. We also investigated how the incorporation of

the effect of rainfall on larval carrying capacity (into a model) changes the population dynam-

ics of this species under future climate conditions. The PCMP model was constructed to

simulate mosquito population dynamics, and the parameters of egg diapause and rainfall

effects were estimated for each model to fit the observed data in Tokyo. We applied the

global climate model data to the PCMP model and observed an increase in the mosquito

population under future climate conditions. By applying the PCMP models (with or without

the rainfall effect on the carrying capacity of the A. albopictus), our projections indicated that

mosquito population dynamics in the future could experience changes in the patterns of

their active season and population abundance. According to our results, the peak population

number simulated using the highest CO2 emission scenario, while incorporating the rainfall

effect on the carrying capacity, was approximately 1.35 times larger than that predicted

using the model that did not consider the rainfall effect. This implies that the inclusion of rain-

fall effects on mosquito population dynamics has a major impact on the risk assessments of

mosquito-borne diseases in the future.
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1. Introduction

The climate change-induced spread of vector-borne diseases that threaten human health is a

growing global concern [1]. Predicting the impact of climate change on vector-borne diseases

can be problematic as vector activity is strongly influenced by habitat conditions. In the case of

mosquito-borne diseases, changes in temperature, rainfall, and humidity influence the scale of

infection in complex ways [2]. One of the reasons for this is that the life cycle and physiological

responses of mosquitoes are dependent upon the environmental conditions of their habitat

[3]. For example, the development rate and mortality of mosquitoes vary depending on the

temperature of the habitat [4–7], and precipitation affects their population density during

their aquatic life stages [8–12]. Therefore, the spread of mosquito-borne diseases is closely cor-

related with meteorological factors. In particular, a rise in temperature and precipitation due

to climate change is anticipated in temperate regions [13]. There are many cities globally that

have temperate-climate zones and large populations. Accordingly, the way in which climate

change affects prevailing mosquito-borne infectious diseases is of great concern [14–18].

The outbreak of dengue fever was observed in the metropolis of Tokyo, one of the world’s

most populous cities in the temperate climatic zone in 2014 [19]. The prediction of dengue

fever in populous cities is a matter of urgent concern, not only for the area where the outbreak

occurred but also for other places in the world, due to the risk of a secondary outbreak via

those infected.

The population dynamics of the Aedes genus, a vector of dengue virus, have been previously

modeled [20–25], owing to the fact that an increase in mosquito population may result in

increased transmission of the dengue virus. In particular, the population model of Aedes
aegypti, whose species are distributed in the tropics and subtropics, has been well studied [20,

21, 23], as many mosquito-borne diseases, including dengue fever, Zika, and chikungunya,

originated in tropical regions. Recently, several population models for the Asian tiger mos-

quito (Aedes albopictus), which are distributed across wide climatic regions (from tropical to

temperate), have been proposed [17, 22, 24, 26, 27]. The life cycle of Aedes albopictus, which

inhabits temperate regions, has an egg diapause stage. Accordingly, Tran et al. and Jia et al.

developed population models that incorporated this stage based on observational data that

assumed the given diapause period fitting to the latitude of the observation area [22, 24]. For

Culex pipiens, which has a life cycle that features an adult diapause stage [28], the physiology-

based climate-driven mosquito population (PCMP) model was developed in which the dia-

pause behavior was estimated to fit the observed data in Tokyo. Notably, in the PCMP model,

the diapause is assumed to be controlled solely by the photoperiod. However, the length of

mosquito’s active period is affected by other environmental factors, including habitat tempera-

ture [29–32]. Thus, future studies that use mosquito population model must incorporate dia-

pause and habitat environment information.

Accounting for the effect of rainfall on mosquito populations within the model is crucial

for the prediction of population dynamics because water plays a pivotal role in controlling the

habitat conditions for juveniles [12]. Rainfall creates or expands the habitat of mosquitoes in

the aquatic stage [8, 10, 11], and has a positive effect on mosquito populations. Several studies

have incorporated this effect into mosquito population models as a key factor in controlling

population size [24, 33, 34]. Abiodun et al. incorporated the effect of rainfall on the carrying

capacity of puddles, which act as habitats for mosquito larvae, considering puddle evaporation

and infiltration [34]. To predict mosquito populations under the conditions that may result

from climate change, the model should simultaneously consider the effects of temperature and

rainfall, since habitat size is determined by several environmental variables.
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To reveal the potential risk of a dengue outbreak in Tokyo under future climatic conditions,

with an emphasis on the effect of precipitation, we projected the population dynamics of Ae.
albopictus using a climate-driven mechanistic population model. We improved the PCMP

model [28] by including temperature and changes in photoperiod, both of which affect the dia-

pause stage. This was modified to adjust to Aedes species, which are known to have a life cycle

of egg diapause.

Our model has the ability to provide estimations, while considering the effects of precipita-

tion on mosquito populations. It can predict the pattern of mosquito population dynamics

under the effects of future climatic conditions and help illustrate the importance of incorporat-

ing precipitation into predictive models in temperate zones. To begin with, we confirmed the

reproducibility of the observed adult female mosquito population, and subsequently used

PCMP in combination with a global climate model (GCM), while considering two representa-

tive concentration pathway (RCP) scenarios. Furthermore, we demonstrated how the rainfall

effect on population dynamics affects the predictions of future population and active seasons

of Ae. albopictus.

2. Materials and methods

2.1 Model framework

The overall flow of the PCMP model, combined with the habitat meteorological data for Ae.
albopictus, is shown in Fig 1. The model consists of two major parts: the habitat environment

derived from microclimatic conditions, and mosquito population dynamics. The habitat envi-

ronment restricts the mosquito population (Fig 1), and the thermal conditions of the habitat

drives mosquito population dynamics, with water temperature affecting the aquatic stage and

air temperature affecting the aerial stage.

Fig 1. Framework of physiology-based climate-driven mosquito population (PCMP) model for Aedes albopictus.

https://doi.org/10.1371/journal.pone.0268211.g001
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2.2 Population dynamics

To formulate the population dynamics of Ae. albopictus, we modeled the development and

mortality of the five life stages of this species: egg, diapause, larva, pupa, and adult, which are

indicated as E, Edia, L, P, and A, respectively. These dynamics were calculated using the follow-

ing equation:

_E ¼ ð1 � z1ÞovA � ðmE þ dEÞEþ z2Edia
_Edia ¼ z1ov A � z2Edia

_L ¼ dEE � mL þ dL þ
L
K

� �

L

_P ¼ dLL � ðmP þ dPÞP
_A ¼ dPP � mAA

ð1Þ

where di (i = E, L, and P),mi (i = E, L, P, and A), K, ov, and zj (j = 1, 2) represent the tempera-

ture-dependent development rate, temperature-dependent mortality rate, carrying capacity of

larvae, temperature-dependent oviposition rate, and parameters for adult diapausing, respec-

tively. These parameters are in daily time scales, as shown in Table 1 [24, 35, 36].

In this model, we used the temperature-dependent oviposition rate of Ae. aegypti and the

temperature-dependent mortality rate of the egg stage of C. pipiens. The adult mosquito pro-

duces eggs and diapause eggs with probability z1 and 1−z1, and the probability of the diapause

egg becoming active is z2. These probabilities can be expressed as follows:

z1 ¼ f1þ e� ad1ðbd1 � DweekÞg
� 1
f1þ e� at1ðbt1 � TaweekÞg� 1 where dD < 0

z2 ¼ f1þ ead2ðbd2 � DweekÞg
� 1
f1þ eat2ðbt2 � TwweekÞg� 1 where dD > 0

ð2Þ

where αXi, βXi (i = 1, 2), δD, Dweek, Taweek, and Twweek are the slope and the half-saturation

point of the sigmoidal curve for the photoperiod (X = d) and temperature (X = t) thresholds,

change in daily photoperiod, average sunlight duration (h) during the most recent 7 days, aver-

age daily air temperature (˚C) during the most recent 7 days, and the average daily water tem-

perature (˚C) during the most recent 7 days, respectively.

The effect of habitat water conditions on the mosquito population was examined to deter-

mine the larval carrying capacity of the species. We assumed that soil moisture altered the lar-

val carrying capacity as it determines the larval habitat; the response of larval carrying capacity

to soil moisture is non-linear, indicating that carrying capacity increases with increasing soil

Table 1. Parameters used in this study, along with their functions.

Parameter Description Reference

di Temperature dependent developmental rate (i = E, L, and P) [24]

mi Temperature dependent mortality rate (i = L, P and A) [24]

mE Temperature dependent egg mortality rate [35]

ov Temperature dependent oviposition rate [36]

z1 Probability of temperature and photoperiod dependent diapausing-egg laying [28]

z2 Probability of temperature and photoperiod dependent diapause breaking [28]

W Soil water content [mm] [37]

W� Soil water-holding capacity [mm] [38]

https://doi.org/10.1371/journal.pone.0268211.t001
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moisture. In the model, K is expressed as follows:

K ¼ kmax
W
W�

� �n

ð3Þ

where κmax,W, and v represent the maximum carrying capacity, soil water content (mm), and

the responsiveness of carrying capacity to soil moisture, respectively.W� refers to the soil

water-holding capacity (mm), which reflects the effects of soil texture, soil organic content,

and plant root depth, obtained from [38]. The soil moisture ratio (%) was derived fromW/W�.

2.3 Field observations, parameter estimation, and meteorological data

We used the mosquito field observation data collected by Tsuda and Hayashi containing details

of the number of adult mosquitoes captured from one site using two traps set at different heights

from the ground, which was collected on a weekly basis from May 2003 to December 2013 at the

National Institute of Infectious Disease in Tokyo, Japan [39]. This field survey was conducted

using a dry-ice trap, which implies that the captured mosquitoes were female, and they are

responsible for the transmission of several mosquito-borne diseases. The data from 2003 to 2010

were used for model calibration, and the rest were used for validation. The PCMP estimates

parameters using a simulated annealing method that uses the Markov chain Monte Carlo proce-

dure (see [28]). In parameter optimization procedures, we set the likelihood of the observed data

over calibration periods as the objective function. We assumed that the number of observed

trapped adult mosquitoes followed a Poisson distribution of which expectation was weekly aver-

aged population obtained from the model for each week. Optimal parameters were determined

in the PCMP using this heuristic estimation. The PCMP outputs the captured female population

dynamics because the observation data for parameter fitting counted female individuals. We

assumed that the capture rate was constant throughout the calculation period and the death of

the captured individual did not affect the overall population dynamics. To determine the maxi-

mum carrying capacity, κmax, we observed 1% of the active adults captured in the dry-ice traps.

Meteorological data were obtained from the Japan Meteorological Agency database [40],

and contained data on air temperature, precipitation, relative humidity, solar radiation, wind

speed, and cloud amount that were collected at the meteorological station (35˚ 41’ 30’’ N, 139˚

45’ 00’’ E, 25 m altitude, and 4.4 km from the mosquito observation site). The photoperiod was

calculated using the National Oceanic and Atmospheric Administration solar calculator [41].

To predict the mosquito population dynamics under future climatic conditions, we used

the climate projections of the Model for Interdisciplinary Research on Climate (MIROC5) [42,

43], which is one of the GCMs. We converted the average daily values of air temperature, rela-

tive humidity, solar radiation, cloud amount, and daily cumulative precipitation to the units

used for the data collected at the study point, using the inverse distance weighted interpolation

method from the original gridded data format. Furthermore, we used the historical scenarios

prevalent during 1991–2009 and predicted two RCP emission scenarios for the period 2081–

2099, namely, low CO2 emissions (RCP 2.6), and high CO2 emissions (RCP 8.5) scenarios.

2.4 Calculation of habitat environmental conditions

Aedes albopictus has five life stages: egg, diapausing egg, larva, pupa, and adult. The first four

life stages are aquatic, and the last stage is aerial. As mentioned in Section 2.2, the aquatic envi-

ronment controls mosquito population via carrying capacity. We calculated the water temper-

ature and soil moisture ratio using the climatic factors in the aforementioned section (Fig 1).

The daily water temperature was derived using the method described in [44], which is a simple

energy balance model (see [28] for a detailed explanation). According to [37], daily soil
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moisture in the mosquito habitat was calculated as the difference between water input (precipi-

tation and snowmelt) and output (evapotranspiration). Evapotranspiration was derived using

the water balance model [45].

3. Results

3.1 Validation of PCMP model for Aedes albopictus
We applied the PCMP models while considering different rainfall effects and studied the

response of carrying capacity to soil moisture (ν = 0, 1/5, 1/2, 1). The likelihood during the val-

idation period (2011–2013) and optimized parameters of each model are listed in Table 2.

The parameters of diapause were estimated to be: photoperiod of 14.3 h for βd1 (DOY [day

of year] = 200), almost 29 weeks from the first day of the year in Tokyo (see S1 Fig in S1 File)

and temperature of approximately 29 ˚C for βt1 (maximum value of Taweek on average from

2003 to 2013 was 28.7 ˚C at 32 weeks). The parameters of diapause-breaking were estimated to

be approximately 11.5 h for βd2 (DOY = 64, between 9 and 10 weeks at Tokyo) and 9.5 ˚C for

βt2 (almost the same as the Twweek on average from 2003 to 2013 at 10 weeks at Tokyo). Addi-

tionally, the parameters of the photoperiod sensitivity αd1 and αd2 were larger than those of

temperature sensitivity αt1 and αt2. The models with v = 0 and 1/5 were estimated to have a

low temperature dependency on diapause, because the temperature sensitivity of diapause αt1

was smaller than that of αd1.

The predicted population dynamics of all models were almost identical, as shown in Fig 2,

although the model with v = 0 had the highest prediction accuracy based on log-likelihoods

Table 2. Estimated parameter of each model and its fitting to the observations.

Responsiveness of carrying capacity (v) Log likelihood κmax αd1 αd2 αt1 αt2 βd1 βd2 βt1 βt2

0 −1047 10 1.75 10 4.19 10 2.80 10 0.69 10 2.43 14.223 11.527 30.000 9.458

1/5 −1061 10 1.80 10 4.92 10 3.28 10 0.73 10 2.38 14.286 11.520 29.743 9.460

1/2 −1089 10 1.86 10 5.06 10 4.40 10 4.78 10 2.63 14.325 11.528 29.058 9.449

1 −1067 10 2.00 10 5.10 10 3.84 10 4.70 10 2.42 14.420 11.518 28.822 9.458

https://doi.org/10.1371/journal.pone.0268211.t002

Fig 2. Population dynamics during calibration (2003–2010) and validation (2011–2013) periods. The black circle represents the observation data, and

lines represent the predicted population dynamics using different models, respectively.

https://doi.org/10.1371/journal.pone.0268211.g002
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(Table 2). All models have a bias that underestimates during the most active period and overes-

timates at the end of the active period. Table 3 shows the prediction accuracy of the model for

the three characteristic periods, beginning and termination of diapausing, and the most active

season, in terms of the log-likelihood per period.

The model having the responsiveness of carrying capacity value of v = 1 had better reproduc-

ibility at the termination of the diapausing periods, and the model having the v value of 0 had

good reproducibility in the most active season, compared to the other models. The intermediate

values of the response function of carrying capacity to soil moisture in cases where v = 1/2 and

1/5, larger log-likelihoods were observed than the cases wherein v = 0, which in turn, had larger

log-likelihoods than the proportional response case where v = 1. As shown in Table 3, the mod-

els with v = 1/5 and v = 0 indicated a similar pattern: the log-likelihood was lower at the begin-

ning of diapause and higher during the active period. Notably, the non-linear response of

carrying capacity to soil moisture enhanced the mosquito population size, even if precipitation

was low and reached the plateau quickly in the responding as well as the fixed case (v = 0),

because the function is highly responsive to soil moisture. This was not true when the respon-

siveness was low, as shown in the case of v = 1/2, and the pattern in the log-likelihood of the

model having value of v = 1/2 was different from that having values of v = 0 and 1/5.

3.2 Understanding output bias from input meteorological, observed, and

historical data using global climate model

In this study, the prediction of mosquito populations was made using the PCMP model. The

mosquito populations during the historical (1991–2009) and future (2081–2099) periods were

simulated using the PCMP model coupled with a GCM model (MIROC5). First, we showed

two different predicted population dynamics for Ae. albopictus using the models having

responsiveness values of v = 0 and 1 during 2003–2009: one derived by coupling with the

observed climate data, and the other with the GCM model. As shown in Fig 3, the active peri-

ods of Ae. albopictus in the predicted population dynamics were almost the same between the

two predictions if the model having a value of v = 0 was used (Fig 3a), whereas the population

peak in the historical simulation was larger than that obtained using observed meteorological

data for v = 1 (Fig 3b). In the cases where v = 1, the peak population (on average) estimated

using the GCM historical data was 1.29 times larger than that estimated using observed meteo-

rological data, whereas the bias was 1.03 in the case of v = 0 (see S1 Text in S1 File for calculat-

ing these biases). The bias arises from the fact that the precipitation pattern in GCM differed

from the observed data, as shown in Fig 4, which shows the frequencies of precipitation in the

observation, GCM historical, and GCM future climate (see S2 Text in S1 File for the output

procedure of Fig 4). The frequency of non-precipitation days was comparatively higher in the

observed data, while the frequency of a small amount of precipitation was higher in the GCM

data (see S1 Table in S1 File). Additionally, the GCM data had no measurements for a large

amount of precipitation. These differences in precipitation patterns between the observed and

Table 3. Mean log-likelihoods of three specific periods during the simulated term of validation.

Responsiveness of carrying capacity (v) Weeks

16–23 29–36 42–49

0 −18.728 −114.826 −42.870

1/5 −18.496 −115.690 −44.011

1/2 −18.458 −116.201 −47.013

1 −17.698 −121.953 −45.835

https://doi.org/10.1371/journal.pone.0268211.t003
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GCM data caused a large discrepancy in the frequency of soil moisture content, as shown in

Fig 5, which regulates the carrying capacity and appears as a difference in peak population.

Assuming that there would be a bias in the peak population in the GCM data, we made predic-

tions of mosquito population dynamics under future climate conditions.

3.3 Predictions of mosquito population with and without the incorporation

of rainfall effect on carrying capacity

Fig 6 shows the simulation results of the population dynamics under future climate conditions

for each CO2 emission scenario. In our study, the population increased in the spring season

Fig 3. Population dynamics (2003–2009) with two different climate data using model having (a) v = 0 and (b) v = 1. Solid line represents the prediction

using the observed climate data and dashed line represents those with global climate model (GCM) historical data. Light and strong colors indicate the

result of each year and its average, respectively.

https://doi.org/10.1371/journal.pone.0268211.g003

Fig 4. Differences in the precipitation among observed and MIROC (a global climate model) data. The leftmost bar in each histogram represents the

frequency of zero precipitation.

https://doi.org/10.1371/journal.pone.0268211.g004
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and the termination of active period after autumn was prolonged in the simulated result under

future climate conditions as CO2 emissions increased. In particular, the termination timing

was prolonged even though the beginning of the mosquito activation period did not change in

either case (v = 0 and v = 1). The peak in the number of individuals was fixed at the 30th week

and did not change depending on the emission scenarios and year of simulation, regardless of

the models (Table 4). Conversely, in RCP 8.5 (the scenario with the highest CO2 emission),

there was a large fluctuation in the population number in the simulated years; in the historical

simulation and the RCP-2.6 simulation, there were only small fluctuations. Abrupt increases

Fig 5. Differences in the soil moisture content among observed and MIROC (a global climate model) data.

https://doi.org/10.1371/journal.pone.0268211.g005

Fig 6. Different patterns of population dynamics in the future between two models having different responsiveness values: (a) v = 0 and (b) v = 1.

Projected population dynamics with global climate model (GCM) data (historical, RCP 2.6, and RCP 8.5). Lines with light colors represent the

population dynamics of each year and lines with strong colors represent the averaged population dynamics, and black, blue, and red lines represent the

predicted population dynamics using historical data (1991–2009), the projected population dynamics with GCM data of RCP 2.6 scenario (2081–2099),

and that with GCM data of RCP 8.5 scenario (2081–2099), respectively.

https://doi.org/10.1371/journal.pone.0268211.g006
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in population immediately after diapause-breaking were found in the RCP 8.5 model, while

populations tended to gradually increase in the RCP 2.6 and historical simulations.

In this study, we compared the simulated populations using models under different future

climate conditions (v = 0, fixing the carrying capacity, and v = 1, incorporating the effect of

rainfall on carrying capacity), while focusing on how precipitation affects the prediction of

mosquito population dynamics. The population number and fluctuations in the population

number in the simulated years predicted by the model having a responsiveness value of v = 0

were smaller than those predicted by the model having a responsiveness value of v = 1

throughout the simulation period. Peak population number simulated with RCP 8.5 predicted

by the model having a responsiveness value of v = 1 was 1.35 times (1.09 times if bias is cor-

rected) larger than the predictions obtained by the model having a responsiveness value of

v = 0 (Table 4).

Compared with the case where the non-linear response in the carrying capacity was consid-

ered (S2 Fig, S3 Text in S1 File), a larger population number was simulated because the esti-

mated maximum carrying capacity κmax of the model having a responsiveness value of v = 1

was greater than that estimated using models of other values (Table 2). In addition, soil mois-

ture content of 100% provided the maximum carrying capacity, as shown in Fig 5.

4. Discussion

Through the simulation of population dynamics of the Asian tiger mosquito (Ae. albopictus), a

vector of dengue virus, we could deduce that climate change may increase the potential risk of

dengue fever outbreak in the future. The PCMP model reproduced the seasonal trends of mos-

quito population activity, which was observed weekly at the study point from 2003 to 2013

[i.e., under current temperate-climate conditions (Table 2)]. In particular, the predictions of

both the beginning of the active season for mosquito and the peak of the active period are

important for warning of vector-borne diseases. The reproducibility of mosquito population

dynamics at the termination of diapause was more accurate and effective when the model

incorporated rainfall as one of its parameters, whereas the estimated environmental cues for

diapause-break were almost identical in both mosquito population models that incorporated

and overlooked the effect of rainfall. Furthermore, the larger population, simulated by a model

that incorporated the effects of rainfall at the beginning of the active season, was estimated

more accurately than that of the population simulated by the model that did not consider the

rainfall effect in future climate conditions. This study claims that the risk assessment for future

dengue fever outbreak requires precipitation data, whereas the current risk assessment is

based on temperature (mainly for the estimation of habitat distribution and population num-

ber of mosquitoes) [2].

On the other hand, the output of the PCMP model underestimates population peaks and

overestimates them at the end of the active season under current climate conditions. One rea-

son for these inaccuracies is the use of single point observation data for parameter estimation,

which results in biased estimation. Using multilocation data could have solved this problem;

however, it was not possible to obtain time-series data on the number of mosquitoes around

Table 4. Peak population number on averaged dynamics with Global Climate Model (GCM) and the peak week.

GCM Scenario v = 0 v = 1

Averaged population number [week number at peak] Historical 21.1 [31] 23.7 [29]

RCP 2.6 34.7 [30] 43.3 [29]

RCP 8.5 57.4 [30] 77.6 [29]

https://doi.org/10.1371/journal.pone.0268211.t004
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Tokyo and even throughout Japan except for open data available in [39]. Applying the PCMP

model to multilocation data is an issue that must be addressed in the future. Another reason is

that observation errors caused by mosquito behaviors and detailed adult behavior were not

considered in the model. In this study, for simplicity, the PCMP model assumed that the mos-

quito capture rate was 1%, whereas the mosquito capture rate varied under natural conditions,

depending on the habitat’s meteorological conditions. Therefore, the observation error should

be examined to reveal the range of uncertainty needed by using outdoor trapping, because the

captured population might change considerably. Moreover, the PCMP did not consider the

physical activity of the mosquitoes. Accordingly, the model could not consider unmoving indi-

viduals that were inactivated by the cool temperature of the habitat in autumn and early win-

ter. Furthermore, the mortality rate will be higher in field conditions [46] than that assumed in

this model, which is based on observations in the laboratory [24]; hence, the PCMP model

may overestimate the mosquito populations in autumn. The model underestimates the mos-

quito populations in summer as a result of selecting a large likelihood values during summer

and autumn seasons. As the number of observation data is small, the variance of Poisson dis-

tribution is small, and as a result, the likelihood has a larger value if the difference between

observation and prediction by the model is small.

This study demonstrates the significant differences in the projection of mosquito popula-

tions even if the models that consider the effects of rainfall can predict the current population

dynamics (Fig 6). There was no significant difference in the reproduction accuracy between

the two models (one with constant carrying capacity and the model with a variable carrying

capacity proportional to soil moisture content). This was the case throughout the simulated

period for the current temperate-climate conditions (Table 2), but large differences were

observed in future projections. Larger populations and their fluctuations during the active sea-

son were simulated in the future projection as the responsiveness of carrying capacity (to soil

moisture) increased (Fig 6 and S3 Text, S3 Table in S1 File). One reason of this difference is

the different size of carrying capacity (κmax in Table 2). A larger carrying capacity for the larval

stage was estimated as parameter v in the model assumes a larger value. Another reason was

the rainfall pattern of the GCM. Incorporating the effect of rainfall into the model or overlook-

ing this effect caused a different level of bias on the simulated mosquito population between

the output obtained using the observed meteorological data and that using GCM data, as

shown in Fig 3. The frequency of occurrence of days using high soil moisture obtained from

GCM meteorological data was higher than that obtained from observed meteorological data,

as shown in Figs 4 and 5. To project the population of Ae. albopictus in the future, it is impor-

tant to consider this effect because of the extreme amount of rainfall forecasted in temperate

regions [13]. Notably, the GCM could not generate the daily rainfall pattern, even though it

could reflect the rainfall pattern on a monthly scale. It is necessary to assess mosquito-borne

diseases to improve the generation of rainfall patterns on a daily scale. In addition, the gener-

ated pattern of future climate differs depending on GCMs. We also made projections using cli-

mate data of Geophysical Fluid Dynamics Laboratory (GFDL) and Hadley Centre Global

Environment Model [43], which are GCMs other than MIROC to confirm whether the GCM

output pattern might make a difference in the projection of population dynamics under future

climatic conditions (See S4 Text, S3 Fig, and S4 Table in S1 File). The difference between RCP

2.6 and RCP 8.5 in the output of PCMP model was consistent with that derived using the cli-

mate data of MIROC. It was confirmed that the assumption of the responsiveness of carrying

capacity to soil moisture (v) will cause a difference in mosquito population during active sea-

son in the future.

Different patterns of mosquito population dynamics were predicted (for the future) by each

model at the beginning of the active season of mosquitoes, indicating that different approaches
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must be prepared for the risk management of dengue fever to prevent an outbreak. This kind

of variation in projection always occurs if the model incorporates environmental factors that

control population dynamics; notably, the pattern of these factors may be altered in the future.

Therefore, the differences in assumptions of the models can result in significant differences in

future projections if there are multiple models that can reproduce the current observation data

effectively. For optimal risk assessment, it is necessary to perform a comparison among these

models. The inter-model comparison method has already been carried out using the future

projection from climate models, such as the Coupled Model Inter-comparison Project [13]

and crop models for agriculture such as the Agricultural Model Inter-comparison and

Improvement Project [47]. The improved PCMP model in this study incorporates several

meteorological factors that affect the output. The mechanistic population model with diapause

(MPAD) [24, 48] and the models used by Tran et al. [22] are climate-driven models of mos-

quito population dynamics for Ae. albopictus. For the risk assessment of dengue outbreaks,

mosquito population models for Ae. aegypti (e.g., the dynamic mosquito simulation model)

[49] and matrix population model [23], also need to be implemented, and these results must

be compared with each other.

The PCMP applied in our study estimates the photoperiod and temperature sensitivity

parameters related to the diapause to fit the observations obtained through the study in Tokyo

such that the prediction and projection of the population dynamics are tailored to the area.

Prediction of population dynamics in Ae. albopictus was conducted by Jia et al. in Guangzhou,

China [48], in which the temperature in the MPAD model [24] was assumed to add 1, 3, and

5 ˚C constantly to the current climatic condition during specific seasons. The condition of dia-

pause was fixed as Tave < 21 (˚C) and Dave < 13.5 (h) for diapause and Tave > 10.5 (˚C) and

Dave > 10.25 (h) for diapause breaking, in which Tave and Dave refer to the weekly average of

daily temperature and daily photoperiod, respectively, based on the former experimental find-

ings (for diapausing [50]: in Shanghai [51]; in Nagasaki; for awaking [52]: in Rome). The dia-

pause in the MPAD model was assumed to have been switched on and off. These critical

temperatures or photoperiods for diapause determine the appearance and disappearance tim-

ing of Ae. albopictus.
Tave < 21 (˚C) and Dave < 13.5 (h) in Tokyo were realized during weeks 39–40 and 33–34

from the first day of the year from 2003 to 2013, and Tave > 10.5 (˚C) and Dave > 10.25 (h)

were realized approximately at 12 weeks and during weeks 5–6. The first appearance in a year

and the last appearance, as well as the peak timing, will be later than the observation if the

model used those thresholds.

Thus, despite the fact that the observation data were limited to the adult population, the

PCMP model reproduces the weekly observation effectively. This suggests that the parameter

estimation for each habitat was effective for the construction of the population dynamics

model to fit observed data at the observation site, and also for forecasting future population

dynamics at the target site. However, the mosquito’s adaption abilities imply that it can adapt

to the environment under climate change conditions. Therefore, we applied the optimized

parameters to the current observations to predict future population dynamics and ignored the

possible changes in these parameters in this study. Notably, the physiological traits of the mos-

quitoes may evolve through generations, leading to alterations in population responses to cli-

mate change in the far-future. Therefore, it will be necessary to consider the adapted life cycle

of mosquitoes for forecasting population dynamics accurately and assessing the outbreak of

dengue fever under climate change conditions. Incidentally, projections of population dynam-

ics by the PCMP were made for the near future (2031–2049), when traits are unlikely to change

much (see S5 Text, S4 Fig, and S5 Table in S1 File for details). The differences in patterns of

population dynamics derived from the responsiveness of carrying capacity to soil moisture (v)
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and the differences in the output of the PCMP model between the two RCPs were consistent

with those of the distant projection for 2081–2099.
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