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a b s t r a c t

The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an
underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies
of the relative contributions of the respiratory chain (RC) complexes I, II and III towards production of
reactive oxygen species (ROS) have focussed on rat tissues and certainly not on human skin which is
surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative
stress. In a novel approach we have used an array of established specific metabolic inhibitors and
DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS
production in 2 types of human skin cells. These include additional enhancement of ROS production by
exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are
compared to other tissue cell types as well as those harbouring a compromised mitochondrial status
(Rho-zero A549). The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to
significantly increase UVA-induced ROS production in both skin cell types (Po0.05) suggesting that the
role of human skin complex II in terms of influencing ROS production is more important than previously
thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of
complex II enzyme was observed in both skin cell types compared to liver (Po0.001). The activities of RC
enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study
showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung
fibroblasts transfected with telomerase) cells than the corresponding wild type cells (P¼0.0012) which
can be considered (in terms of telomerase activity) as models of younger and older cells respectively.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

The cellular and molecular effects of UVA exposure in skin have
been well documented and its relationship with increased reactive
oxygen species (ROS) production and associated damage to lipids,
proteins and nuclear DNA [1–3]. The mitochondrial respiratory
chain (RC) is the major cellular generator of superoxide and
associated ROS as electrons leak from sites at or within the RC
complexes [4,5]. Mitochondrial DNA (mtDNA) is close to the site of
superoxide production making it highly vulnerable to oxidative
damage. As the integrity of mtDNA is essential for mitochondrial
function, the generation of ROS from mitochondria and the
accumulation of mutations and dysfunction in a vicious cycle of
B.V. This is an open access article u

k (M.A. Birch-Machin).
events is considered a contributor to ageing, cancer, neurodegen-
eration, and cell death in many tissues as well as skin [1,4,6]. We
and others have previously shown that mtDNA mutations and ROS
increase in skin due to UVA irradiation which has led to pioneering
the use of mtDNA damage as biomarker of UV exposure in human
skin [7–9].

Due to an increase of ROS being associated with many human
diseases, there has been a considerable amount of interest and
controversy in the literature regarding the most important sites of
ROS production within the mitochondrial RC [5,10–12]. Many of
the studies have been carried out in brain, muscle or liver
mitochondria from humans and rats and this has led to the
general opinion that complexes I (NADH–ubiquinone oxidoreduc-
tase) and III (ubiquinol–cytochrome c oxidoreductase) of the RC
are the major sources of cellular ROS [5,10,13,14]. However,
complex II (succinate–ubiquinone oxidoreductase) has been sug-
gested as an under-studied source of cellular ROS [12,15,16]. To
date there have been few investigations of the relative roles of
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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these RC complexes in ROS production (even within the same
experimental conditions); furthermore these have predominantly
focussed on rat as opposed to human tissues. The few human
studies conducted have not featured skin which is surprising as
this tissue is regularly exposed to the harmful UVA rays in sunlight
which are a potent generator of cellular oxidative stress [1,4].

Specific inhibitors of the RC complexes are commonly used as
tools for assessing the role of individual complexes in ROS produc-
tion. If a specific site of a complex is blocked, ROS is produced at or
upstream of that site (usually via a free ubisemiquinone radical). The
inhibitors rotenone (and to a lesser extent diphenyleneiodonium
(DPI) and 1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline (TaClo)),
2-trithenoylacetone (TTFA) (and to a lesser extent 3-nitropropionic
acid (3NP)) and antimycin are frequently used as they are specific
inhibitors of complexes I, II and III respectively [17–21].

In this novel approach we have used an array of commonly
used specific metabolic inhibitors and DHR123 fluorescence to
study the relative roles of the mitochondrial RC complexes in
cellular ROS production in human skin cells under the same
experimental conditions. These include additional enhancement
of ROS production by exposure to physiological levels of UVA. The
effects within skin cells (epidermal and dermal derived) were
compared to other tissue cell types (e.g. liver) where the RC
complexes have been extensively studied as well as those har-
bouring a compromised mitochondrial status (i.e. Rho-zero). The
results show that the role of mitochondrial complex II in terms of
influencing ROS production in human skin is more important than
previously thought based upon previous studies in other tissues
predominantly in non-human cell types (e.g. rat). It has been
proposed that the activity of RC enzymes decrease with increasing
age and that telomere length is correlated with ageing. Our
investigations showed that the level of complex II activity was
much higher in the MRC5/hTERT (human lung fibroblasts trans-
fected with telomerase) cells than the corresponding wild type
MRC5 cells which, in terms of considering telomerase activity as
an ageing biomarker, can be considered as models of younger and
older cells respectively.
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Fig. 1. UVA dose response of DHR123 fluorescence in (A) HaCaT and (B) HDFn cells.
Cells loaded with DHR123 were shown to exhibit significantly increased fluores-
cence intensity over controls at all UVA irradiances (one-way ANOVA including
Bonferroni's post-hoc test, Po0.001, n¼8). Data representative of 2 repeats, n¼8
replicates for each experimental dose, bars represent means7SEM.
Materials and methods

Cell culture

HaCaT cells are a spontaneously immortalised human skin
keratinocyte cell line. Human dermal fibroblasts (HDFn) cells are
neonatal human dermal fibroblasts. HepG2 cells are a hepatocel-
lular carcinoma cell line. A549 Parental cells are adenocarcinomic
human alveolar basal epithelial cells whereas A549 Rho-zero cells
are treated with ethidium bromide to deplete mtDNA, producing
cells lacking a functional RC (gift from Prof. Ian Holt, University of
Cambridge). MRC5 cells are human foetal lung fibroblast cells, and
MRC5/hTERT cells are lung fibroblast cells which overexpress a
subunit of telomerase. All cell lines were grown in Dulbecco's
Modified Eagles' Medium (DMEM) supplemented with 10% Foetal
Calf Serum (FCS) and 5% penicillin/streptomycin with the excep-
tion of a549 Rho-zero cells which were supplemented with 50 mM
uridine.

UVA treatment and fluorimetric analysis of DHR123
(dihydrorhodamine 123) fluorescence intensity (FI) in cultured cells

UVA irradiation used a glass filtered TL-09 lamp (315–400 nm,
peak emission at 360 nm). Cells grown in the presence or absence
(controls) of respiratory inhibitor (18 h) were loaded with 25 mM
DHR123 (Sigma-Aldrich, Poole, UK) for 20 min. Excess DHR123
was removed (centrifugation and washing with PBS) then
fluorescence intensity measurement was measured using a Varian,
Cary Eclipse fluorimeter (Varian, UK) (λex¼488 nm and λem
¼520 nm respectively). Controls included cells loaded with
DHR123 and no UVA; cells without DHR123 but exposed to UVA,
to ensure that the increase in fluorescence intensity (FI) was due to
increased DHR123 fluorescence and not autofluorescence of the
cells. Cell viability was determined by the MTS assay (Promega,
UK). Absorbance was measured at 490 nm with a 96-well plate
reader (SpectraMax 250, Molecular Devices) using SOFTmax pro
3.1.1. An optimal sub-lethal UVA dose was derived from these
detailed dose response experiments which provided a significant
induction of FI without compromising cell viability. The sub-lethal
optimal dose was 14 J/cm2 for the skin cells (Figs. 1 and 2) and the
same UVA dose was found to provide the same profile of response
in the other cell types that were tested (results not shown).
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Fig. 2. Summary of relative fluorescence intensity of HaCaT cells treated with
respiratory chain inhibitors for 18 h prior to exposure of 14 J/cm2 UVA. Significant
increases in DHR123 fluorescence intensity over control (i.e. UVA exposure in the
absence of inhibitor) were found in rotenone (Rot), antimycin (Am), TTFA and TaClo
for 18 h compared to UVA alone (control) (*Po0.05, n¼8, as analysed by a one-way
ANOVA with Dunnett's post-hoc test). No significant difference in fluorescence
intensity was found for 3NP and DPI treatment 18 h, (P40.05). Data representative
of 2 repeats, n¼8 replicates for each inhibitor treatment, bars represent
means7SEM.

Table 1
The maximal sub-lethal doses of the respiratory chain inhibitors (mM) for all cell
types. Cultured cells were pre-treated with a range of concentrations of inhibitors
(rotenone, DPI and TaClo inhibit complex I; TTFA and 3NP inhibit complex II; and
antimycin inhibits complex III) and cell viability was assessed using the MTS assay.
The numbers refer to the maximum sub-lethal concentrations (mM) for each
inhibitor. Statistical significance of cell death was assessed by performing a one-
way ANOVA with Dunnett’s post-hoc test compared to control (untreated).

Inhibitor Cell line

HaCaT HDFn HepG2 A549Par A549Rho-zero

Rotenone 2.5 25 15 2.5 2.5
Antimycin 1.8 1800 9 1.8 4.5
TTFA 220 220 440 88 220
3NP 10 10 100 100 10
DPI 0.1 0.1 0.1 0.5 1
TaClo 100 100 400 100 200
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Measurement of complex II and citrate synthase activity

Enzyme activity was determined by previously described
spectrophotometric methods [22].

Statistical analyses

For each data set, an analysis of variance (ANOVA) was
performed with post-hoc test for multiple groups was performed
using commercially available software (GraphPad, Prism 5).
Results

The effect of different RC inhibitors on ROS production in UVA-
irradiated skin cells

The initial aim of the study was to perform a detailed
investigation of the effect of established inhibitors of the RC
complexes on UVA-induced ROS production in different human
cultured skin cells, namely HaCaTs and HDFns (epidermal and
dermal skin fibroblasts respectively). Firstly, it was necessary to
derive a maximal but sub-lethal concentration of the inhibitors for
the RC complexs in the skin cells (and the other cell types used in
the study) by performing an extensive range of cell viability dose–
response experiments. Cell viability was determined using the
MTS assay over a nanomolar to millimolar concentration range of
each RC inhibitor to derive a sub-lethal experimental concentra-
tion in all of the cultured cells (Table 1).

UVA in sunlight is a well-known physiological inducer of
oxidative stress in human skin. Using electrochemical studies we
have previously shown that the mechanism of the UVA-induced
ROS production involves species such as singlet oxygen [23] and
superoxide in skin cells [24] and isolated mitochondria from those
skin cells [25]. UVA was used as an inducer of ROS rather than
hydrogen peroxide as, apart from UVA exposure being more
physiologically relevant to skin, we have also previously shown
that both inducers produce the same profile of ROS production in
human skin cells [26]. It was therefore necessary to derive a sub-
lethal dose of UVA for the generation of increased ROS in the
cultured cells by means of detailed UVA dose response experi-
ments. As non-fluorescent DHR123 is oxidised to fluorescent
rhodamine-123 by cellular peroxides, fluorimetry was used to
assess cellular peroxide production in the cultured skin cells
loaded with DHR123 following irradiation with increasing UVA
doses. In all cases, an MTS assay was performed to detect cell
viability. An optimal sub-lethal UVA dose of 14 J/cm2 was derived
from these detailed dose response experiments. This dose pro-
vided a significant induction of fluorescent intensity (FI) without
compromising cell viability. An example of the UVA dose curves
for both HaCaT and HDFn skin cells is shown in Fig. 1 (parts A and
B respectively). The UVA dose of 14 J/cm2 is a physiologically
relevant dose being consistent with previous studies such as those
described by Gniadecki et al. [13] and Aitken et al. [24].

Following the derivation of the sub-lethal/maximal effect of
both the RC inhibitor concentrations and the UVA doses, the
combined effect of RC inhibitor concentrations on UVA-induced
ROS production (DHR123 fluorescence) was determined in HaCaT
and HDFn cells (Figs. 2 and 3 respectively). The effect profiles of
the different RC inhibitors (in terms of enhancing the UVA-
induced ROS production) was different between the two skin cell
cultures as shown by a different hierarchy of effect following
individual inhibitor treatment. This is not surprising as the two
skin cell cultures reflect or are derived from different parts of the
skin where the cellular bioenergy demands from mitochondria are
different [27]. However, a closer examination of the data shows
quite clearly that the complex II inhibitor, TTFA, was the only RC
inhibitor to significantly increase UVA-induced ROS production in both
skin cell types (Po0.05, one-way ANOVA with Dunnett's correction).
This consistent effect of TTFA treatment is important as it suggests that
the influence of complex II in skin cells may be more important than
previously thought based upon the prevailing literature view in other
cell types where the dominant influence centres upon complexes I
and III. In detail, a high proportion of these latter studies have been
initially performed in whole cells and/or isolated mitochondria
particularly from liver (but also from other rat and animal tissue
(e.g. muscle) rather than human).

This issue was addressed by repeating the experimental pro-
tocol utilised to generate data shown in Figs. 2 and 3 but using
HepG2 cells derived from human liver. In order to ensure a direct
comparison, the exact protocol used on the skin cells was
performed on the liver cells. Hydrogen peroxide is often used as
an inducer of ROS production in cultured cells, however we have
observed that UVA and hydrogen peroxide produce the same
profile of ROS production response in vitro [4]. Unsurprisingly,
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Fig. 3. Summary of relative fluorescence intensity of HDFn cells treated with
respiratory chain inhibitors for 18 h before exposure to 14 J/cm2 UVA. Significant
increases in DHR123 fluorescence intensity over control (i.e. UVA exposure in the
absence of inhibitor) were found in TTFA and 3NP at 18 h treatment compared to
UVA alone (control) (*Po0.05, n¼8, as analysed by a one-way ANOVA with
Dunnett's post-hoc test). No significant difference in fluorescence intensity was
found for all other inhibitor treatment 18 h, (P40.05). Data representative of
2 repeats, n¼8 replicates for each inhibitor treatment, bars represent
means7SEM.
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the data from this series of experiments described in Fig. 4
confirms the predominant view in the liver (and muscle/brain)
literature that complex I (inhibited by rotenone) and complex III
(inhibited by antimycin) are indeed the major sites of influence on
ROS generation in the RC. However, it should be noted that the role
of complex II appears to be greater than previously assumed even
in liver as portrayed by the 3NP results. The addition of this other
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Fig. 4. Summary of relative fluorescence intensity of HepG2 cells treated with
respiratory chain inhibitors for 18 h before exposure to 14 J/cm2 UVA. Significant
increases in DHR123 fluorescence intensity over control (i.e. UVA exposure in the
absence of inhibitor) were observed for all inhibitors at 18 h treatment compared to
UVA alone (control) (*Po0.01, n¼8, analysed by a one-way ANOVA with Dunnett's
post-hoc test). Data representative of 2 repeats, n¼8 replicates for each inhibitor
treatment, bars represent means7SEM.
commonly used complex II inhibitor shows a degree of inhibition
which is comparable to that observed using the other complex I
inhibitor TaClo [28]. Interestingly, although 3NP is a well-docu-
mented RC inhibitor, the emphasis in the literature in terms of
numbers of studies remains biased towards the complex I and III
inhibitors, rotenone and antimycin, with an additional focus on
(rat) liver and muscle studies as opposed to skin.

Comparison of complex II activity in skin cells with human liver, Rho-
zero and Parental cells

This apparent importance of human skin complex II in ROS
production compared to the scenario observed in liver was
investigated further by direct measurement of the maximal
activity of complex II in these and other cell types to provide
context. This was performed using methods previously established
in our laboratory and used for many years in other laboratories to
investigate many cell types [29]. The maximum capacity of
complex II activity values were normalised to citrate synthase
activity which is a standard procedure in mitochondrial research
[29]. Citrate synthase is a mitochondrial matrix enzyme not
involved in the RC and is frequently used a marker of mitochon-
drial content as opposed to simply normalising to total cellular
protein where it is not possible to discern non-mitochondrial
protein [22]. The results in Table 2 show that the citrate synthase
normalised complex II activity in both types of skin cells (HaCaT
and HDFn) is approximately two-fold greater than that observed in
liver cells (HepG2). This represents a statistically significant
difference (HepG2 vs. HaCaT, Po0.001 and HepG2 vs. HDFn,
Po0.001, unpaired t-test) whereas there was no statistical differ-
ence in complex II activity between the two types of skin cells
(HaCa T vs. HDFn, P¼0.51, unpaired t-test).

The two-fold difference in complex II activity coupled with the
associated difference in the inhibitor profiles (i.e. particularly
complex II, Figs. 2–4) between the liver and the skin cells
(Table 2) prompted further investigations of other cell types to
provide context. This entailed the determination of complex II
activity in the A549 Rho-0 cell line. These cells are depleted of the
mtDNA genome encoding for specific parts of the RC complexes I–
V except for complex II which is uniquely and exclusively nuclear
encoded and therefore contrasts with the other RC complexes
which are under dual genetic control (i.e. both mitochondrial and
nuclear DNA) [30]. Although Rho-zero cells are effectively absent
of mtDNA they do retain mitochondria and carry out some
electron transport activities which allows them to be used as a
model for ROS production from the RC complexes [31]. The
enzyme activity of complex II was determined in both the Parental
and Rho-zero A549 cells (Table 2) and the activity measurements
were again normalised to citrate synthase activity. In addition the
Table 2
Complex II activity in the different cell types. The activity of complex II in different
cell types was normalised against the activity of the mitochondrial housekeeping
enzyme citrate synthase to obtain the ratio of mitochondrial content to complex II
activity (nmols DCPIP reduced min�1/unit citrate synthase). The degree of complex
II inhibition by the specific inhibitors, TTFA and 3NP is expressed as a percentage of
the total activity.

Cell type Mean CII/CS activity % Inhibition by
TTFA

% Inhibition by
3-NP

HaCaT 0.2770.016, N¼8 42.4071.72 51.8576.89
HDFn 0.2570.016, N¼7 30.2277.33 32.171.11
HepG2 0.1370.005, N¼6 49.2176.59 57.7470.72
Parental 0.1570.009, N¼6 26.3070.06 49.8871.84
Rho-zero 0.2970.020, N¼4 0.00 48.7773.90
MRC5 0.2770.014, N¼7 3575.46 3674.43
MRC5/hTERT 0.3770.011, N¼4 3870.48 4270.94
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degree of inhibition by the specific complex II inhibitors, TTFA and
3NP, was also determined. The data shows that the maximum
specific activity of complex II in the Rho-zero cells was approxi-
mately two-fold greater than the Parental cells (Po0.0001, un-
paired t-test). In terms of sensitivity to inhibition of complex II
activity, it is clear that the Rho-zero cells are completely resistant
to inhibition by TTFA in contrast to the Parental cells which exhibit
a significantly different inhibition of 26% (Po0.0004, unpaired t-
test). Interestingly, 3NP inhibits complex II activity in both the
Parental and Rho-zero cells to the same degree at approximately
50% and 49% respectively (i.e. no significant difference in the 3NP
inhibition between the 2 cell types (P¼0.85, unpaired t-test))
which is also within the range of 3NP inhibition observed in the
other cell types (Table 2)). Furthermore, the levels of complex II
activity in the Rho zero and Parental cells were very similar to
those activity levels observed in the skin cells and liver cells
respectively.

Decline of complex II activity associated with ageing biomarkers

It has been proposed that the activity of RC enzymes decrease
with increasing age [32–34] and furthermore that telomere length
is correlated with ageing [35]. Based upon these observations it
was decided to compare the level of complex II activity in human
lung fibroblasts transfected with a subunit of telomerase (enzyme
involved in telomere repair) (i.e. MRC5/hTERT) with cells lacking
additional telomerase (i.e. MRC5), as a model for younger and
older cells respectively. It was found that the level of complex II
activity was much higher in the MRC5/hTERT cells than the MRC5
cells (Table 2) (MRC5 vs. MRC5/hTERT, P¼0.0012, unpaired t-test).
Discussion

Increased cellular oxidative stress is thought to be an under-
lying cause of the carcinogenic and ageing processes in many
tissues as well as skin [4]. This is important because it is well
established that the mitochondrial RC is the major cellular gen-
erator of superoxide as a result of leakage of single electrons which
reduce O2 to form −O2 [5]. The effect of UVA in our study involves
singlet oxygen [23] and superoxide and our previous electroche-
mical studies have shown that skin cells and their isolated
mitochondria produce superoxide following electron leakage from
the RC in response to UVR [24,25]. DHR123 is an established
fluorescent probe for cellular ROS measurements and used pre-
viously in skin cells [26] although one should be mindful of its
limitations versus other cellular probes and include appropriate
controls [36,37].

Using specific established inhibitors of the RC, our study shows
that the complex II inhibitor, TTFA, was the only inhibitor to
significantly increase UVA-induced ROS generation in both skin
cell types against a background of differential effects of the other
inhibitors observed in the skin cells. This suggests that the effect of
complex II in skin cells may be more important than previously
thought based upon the prevailing literature view in other cell
types where historically the research tends to focus on complexes I
and III. Indeed this latter scenario was confirmed in liver cells (the
present study) in which much of the previous work in the
literature has been performed as well as to muscle and brain.

The increased importance of complex II in UVA-induced ROS
production in skin cells compared to liver cells (Figs. 2–4) is
associated with an approximately two-fold greater activity of
complex II enzyme (Table 1) in skin cells compared to liver.
Interestingly, a two-fold greater complex II activity is also seen
on comparison of Rho-zero A549 with the Parental A549 cells
(Table 2). The greater reliance and emphasis on the nuclear
encoded complex II in the mtDNA depleted Rho-zero cells may
explain this observation and may also further support the sugges-
tion of a greater influence or emphasis of complex II in skin cells
compared to liver cells. The complex II inhibitors TTFA and 3NP,
were used to enhance ROS production at or upstream of the site of
complex II. TTFA is an incomplete inhibitor binding at the (distal)
site of UQ cycling whereas 3NP is a competitive inhibitor at the
succinate binding (proximal) site [18,19]. The relative similarities
in the degree of complex II inhibition by TTFA and 3NP in both skin
cells and liver cells compared to the marked differences observed
between the Rho-zero and Parental A549 cells suggests unsurpris-
ingly that the stochastic arrangement of mitochondrial and nucle-
ar encoded enzyme subunits immediately proximal and distal to
complex II is similar in both skin and liver cells.

The findings in our study of increased importance of complex II
in terms of influencing ROS production is strongly supported by a
recent investigation showing that complex II under certain condi-
tions can generate ROS at high rates comparable to the other ROS
producing sites at complexes I and III [16]. Although this study was
performed in rat muscle the authors suggest that complex II may
be an important contributor to physiological and pathological ROS
production. In this respect, it is interesting to note that the
increase in 14 J/cm2 UVA-induced DHR123 fluorescence compared
to un-irradiated controls is two-fold greater in skin cells than in
liver cells (i.e. 6.571.00 and 6.970.15 in HDFns and HaCaTs
respectively vs. 3.370.63 in HepG2s Po0.001; one way ANOVA
with Bonferroni's post-hoc test for both HDFns and HaCaTs vs.
HepG2s). Indeed, increased ROS production from complex II has
been found in human diseases such as heart failure [38] and
complex II inhibition has a key role in the development of
Huntington's disease [39] as well as tumourigenesis in a number
of tissues [40].

Respiratory chain enzyme activity and/or mitochondrial de-
rived cellular bioenergy are known to decline with age in many
tissues [32–34] and telomere length has been correlated with
ageing. In keeping with this we have observed that the activity of
complex II was higher in the MRC5/hTERT cells compared to the
same cells without additional telomerase (MRC5), as a model for
younger and older cells respectively [41,42].

In terms of mechanism, our study shows that UVA irradiation
enhanced the increase in ROS production caused by the presence
of the RC inhibitors. In this context, it has been postulated that iron
may play a critical role in the modulation of UVA-induced
oxidative damage. An increased presence of free iron further
exacerbates oxidative damage through interaction with reactive
oxygen intermediates via Fenton reactions. Studies have reported
an increased level of iron subsequent to UVA irradiation, which
has been shown to potentiate irreversible oxidative damage [43–
45]. Enzymes with iron–sulphur (Fe–S) centres have been shown
to be sensitive to modification by UVA rendering the enzyme
inactive [46] and consequently resulting in the release and
accumulation of free intracellular iron [47]. Interestingly, Fe–S
centres are integral to the RC complexes I, II and III [48] which may
make them vulnerable targets for photosensitisation and a poten-
tial hotspot for iron-mediated oxidative damage. Indeed our group
has recently shown that tiron (4,5-dihydroxy-1,3-benzenedisulfo-
nic) which chelates iron (and other metals), exhibits ROS scaven-
ging properties and enters mitochondria, is able to prevent UVA
and hydrogen peroxide induced mitochondrial DNA damage in
human skin cells [49].

In summary, we have used an array of established specific
metabolic inhibitors and DHR123 fluorescence as a novel approach
to study the relative roles of the mitochondrial RC complexes in
cellular ROS production in human skin cells under the same
experimental conditions. These include additional enhancement
of ROS production by exposure to physiological levels of UVA
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which is a potent inducer of oxidative stress to sunlight exposed
skin tissue. The effects within epidermal and dermal derived skin
cells are compared to other tissue cell types (e.g. liver) where the
RC complexes have been extensively studies as well as those
harbouring a compromised mitochondrial status (i.e. Rho-zero).
The results show that the role of human skin mitochondrial
complex II in terms of influencing ROS production is more
important than previously thought based upon previous studies
in other tissues predominantly in non-human cell types. Further
investigation of complex II showed a decline in enzyme activity
with ageing biomarkers (telomerase). Additionally, our observa-
tions may help to partly explain the comparatively recent clinical
success of a complex II metabolic substrate (i.e. fumarate) which
has been used in the clinical treatment of patients suffering from
the proliferating and energy demanding skin disease psoriasis
[50].
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