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AMP-activated protein kinase as a key molecular link
between metabolism and clockwork

Yongjin Lee and Eun-Kyoung Kim

Circadian clocks regulate behavioral, physiological and biochemical processes in a day/night cycle. Circadian oscillators have

an essential role in the coordination of physiological processes with the cyclic changes in the physical environment. Such

mammalian circadian clocks composed of the positive components (BMAL1 and CLOCK) and the negative components

(CRY and PERIOD (PER)) are regulated by a negative transcriptional feedback loop in which PER is rate-limiting for feedback

inhibition. In addition, posttranslational modification of these components is critical for setting or resetting the circadian

oscillation. Circadian regulation of metabolism is mediated through reciprocal signaling between the clock and metabolic

regulatory networks. AMP-activated protein kinase (AMPK) in the brain and peripheral tissue is a crucial cellular energy sensor

that has a role in metabolic control. AMPK-mediated phosphorylation of CRY and Casein kinases I regulates the negative

feedback control of circadian clock by proteolytic degradation. AMPK can also modulate the circadian rhythms through

nicotinamide adenine dinucleotide-dependent regulation of silent information regulator 1. Growing evidence elucidates the

AMPK-mediated controls of circadian clock in metabolic diseases such as obesity and diabetes. In this review, we summarize

the current comprehension of AMPK-mediated regulation of the circadian rhythms. This will provide insight into understanding

how their components regulate the metabolism.
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INTRODUCTION

Circadian rhythms are under the direct influence of environ-
mental cues, most notably the day–night cycles and controlled
a genetically determined endogenous clock.1 Circadian
(derived from the Latin circa diem; about a day) clock could
adapt organisms to the natural environment and then enable
them to anticipate the environmental changes that the
behavior and physiology of organisms can be adjusted to
proper time a day.

Circadian rhythms are widely distributed in plants, animals,
fungi and cyanobacteria, and are regulated by endogenous
molecular oscillators called circadian clocks.2,3 In mammals,
important daily activities such as sleep/wake cycles and
metabolic homeostasis are governed by the endogenous
circadian clock.4–6

Available data suggest that the major mechanism of the
molecular clock is a transcriptional negative feedback loop
containing CLOCK (or NPAS2), BMAL1, PERIOD (PER), and
CRYPTOCHROME (CRY). The CLOCK (or NPAS2)-BMAL1

heterodimer activates transcription of the negative elements,
PER and CRY, as well as circadian output genes, through
E-box enhancer elements.3–8 As PER levels increase in the
cytoplasm, PER associates with CRY, the complex enters the
nucleus to shut down transcription driven by CLOCK-BMAL1
complex. Thus, temporal accumulation and degradation rates
of PER predominate in determining the timing of the negative
feedback loop. There is one more regulatory feedback loop, in
which RORs activate the transcription of BMAL1 and CLOCK,
whereas Rev-Erbs repress BMAL1, CLOCK and NPAS2
through retinoic acid-related orphan receptor response
element (RORE; Figure 1).9–11

In MEFs, CLOCK, BMAL1 and CRY1 are similarly abun-
dant, which is different from liver where BMAL1 is far less
abundant than the other two. CRY2, PER1 and PER2 are less
abundant than the other core clock proteins. The levels of
PER1/2 (the limiting component in the negative complex) to
BMAL1 (the limiting component in the positive complex) are
almost 1:1. The combined levels of PER1 and PER2 are only
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about half of those of CLOCK and BMAL1, implying that
CLOCK-BMAL1 would be twice as abundant as PER-CRY, a
negative complex.12 This finding suggests that the ratio between
the negative and positive complexes must be important for the
molecular oscillator and rhythm generation, and PER seems to
be rate-limiting for the rhythms.7,12,13

Some clock-controlled genes are transcription factors such as
albumin D-box-binding protein, RORa and REV-Erba, which
regulate cyclic expression of other genes.14 D-box-binding
protein binds to D-boxes (TTA (T/C) GTAA), whereas RORa
and Rev-Erba bind to the Rev-Erb/ROR binding element, or
RRE [(A/T) A (A/T) NT (A/G) GGTCA]. Approximately 10%
of the transcriptome displays robust circadian rhythmicity.15,16

The adenosine monophosphate (AMP)–activated protein
kinase (AMPK) is a serine/threonine protein kinase that
works as a central sensor of metabolic signals.17 AMPK is
activated by adenosine triphosphate (ATP) exhaustion, which
causes an increase in the AMT/ATP ratio.18 Once activated,
AMPK switches on catabolic pathways to produce ATP while
simultaneously shutting down energy-consuming anabolic
processes.

AMPK is a heterotrimeric protein kinase consisting of a
catalytic (a) subunit and two regulatory (b, g) subunits. The
N-terminus of the subunit contains a typical serine/threonine
protein kinase catalytic domain. The C-terminal half of the a
subunit contains a region of approximately 150 amino-acid

residues at the extreme C-terminus required for association
with the b and g subunits, whereas a region immediately
downstream of the catalytic domain appears to have an
inhibitory function.19 The b subunit has two conserved
domains located in central and C-terminal region.
C-terminal region is required to form a functional a b g
complex that is regulated by AMP, whereas the central domain
is recognized for a glycogen-binding domain.20,21 The g
subunits (g1, g2 and g3) contain variable N-terminal regions
followed by four tandem repeats of a 60-aa sequence termed as
a CBS motif.22 The g subunit contains four CBS domains,
which bind AMP or ATP.23,24

AMPK activated by increases in adenosine diphosphate
(ADP) and AMP signals that the energy state of the cell is
compromised. It is active when phosphorylated at T172 on the
catalytic (a) subunit. Activation of AMPK by liver kinase B1–
mediated25 or calcium–calmodulin-dependent protein kinase,
kinase b-mediated26 phosphorylation is increased in the
presence of high ratios of AMP/ATP or elevated intracellular
calcium, respectively. Binding of ADP and AMP to the g
subunit cause conformational changes that inhibit T172
dephosphorylation and cause further allosteric activation.17

AMPK has been recognized as a key regulator of mamma-
lian metabolic function. Nutrient-regulated diurnal phosphor-
ylation of AMPK substrates in rat livers27 makes AMPK
an attractive candidate contributor to peripheral clock
entrainment. Biochemical and bioinformatics studies have
established the optimal amino-acid sequence context in
which phosphorylation by AMPK is likely,28,29 which has
facilitated prediction of novel substrates.

In this review, we will discuss the comprehensive studies on
the catalytic activity of AMPK regulating circadian rhythms
that affect behavior, energy metabolism and gene expression.
We seek to further explore the connection among circadian
rhythms, AMPK and metabolism.

A CONNECTION BETWEEN CIRCADIAN RHYTHMS AND

AMPK

AMPK activation has recently been linked to regulation of the
circadian clock, which couples daily light and dark cycles to
the control of physiology in a wide variety of tissues and the
hypothalamus through tightly coordinated transcriptional
programs.30 Several master transcription factors are involved
in orchestrating this oscillating network.

THE ROLE OF AMPK IN THE PHOSPHORYLATION AND

DEGRADATION OF CRYPTOCHROME

In mammals, the maintenance of circadian clock function
depends on clock genes and their protein products in
autoregulatory transcriptional feedback loops. In an autore-
gulatory feedback, the cyclic translation of Per and Cry
messenger RNA leads to cyclic levels of PER and CRY proteins.
These proteins form complexes and accumulate in the nucleus
where they inhibit expression of their genes by acting on
CLOCK-BMAL1 heterodimers.4
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Figure 1 Feedback loops control the mammalian circadian clock.
Mechanism of the molecular clock is a transcriptional negative
feedback loop containing CLOCK, BMAL1, (PERIOD) PER and
CRY. The CLOCK-BMAL1 heterodimer binds to enhancer E-box
located in the promoter region of Per and Cry genes to activate
their transcriptions. After translation, PERs and CRYs perform
nuclear translocation and inhibit CLOCK-BMAL1, resulting in
decreased transcription of their genes. There is other regulatory
feedback loop. CLOCK-BMAL1 also induces the expression of Rev-
Erbs and RORs, and in turn RORs activate the transcription of
BMAL1 and CLOCK, whereas Rev-Erbs repress BMAL1 and CLOCK
through retinoic acid-related orphan receptor response element
(RORE) binding.
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AMPK was shown to regulate the stability of the core clock
component CRY1, which acts as energy sensors and can
convert nutrient signal to circadian clocks. This process is
performed by phosphorylation of CRY1-Ser 71, which stimu-
lates the direct binding of the F-box and leucine-rich repeat
protein 3 (FBXL3) to CRY1, targeting it for ubiquitin-
mediated degradation.31

The importance of CRY stability for determining the speed
of mammalian clocks became apparent when the most
prominent mutants identified in each of two forward genetic
screens for circadian rhythm perturbation in mice where alleles
of the E3 ligase component FBXL332 that catalyzes the
polyubiquitination of CRY1 and CRY2 and thus stimulates
their proteasomal degradation.33

Previous studies showed that FBXL3 interacts with CRY1
and CRY2, promoting the degradation of both proteins by the
ubiquitin/proteasome system, thus contributing to period
length determination. Mutation of FBXL3 (C358S or I364T),
a component of a SKP1–CUL1–F-box (SCF) E3 ubiquitin
ligase complex, results inB26-h period phenotypes in mice,
indicating that FBXL3 has an important role in circadian
period determination.34–36 However, overexpression of CRY1
protein does not lead to period alteration,37 suggesting that the
FBXL3 mutation might affect additional clock components.

Thus, loss of AMPK signaling in vivo stabilizes CRYs and
disrupts circadian rhythms, consistent with the hypothesis that
this pathway contributes to the metabolic control of light-
independent peripheral circadian clocks. Given that AMPK is a
central regulator of metabolic processes, the rhythmic regula-
tion of AMPK has implications for the circadian regulation of
metabolism. Genetic alteration of circadian clocks either
ubiquitously38 or in a tissue-specific manner39 elicits
dramatic changes in feeding behavior, body weight, running
endurance and glucose homeostasis, each of which is also
altered by manipulation of AMPK.40–45 The abilities of AMPK
to mediate circadian regulation and of CRY1 to function as a
chemical energy sensor suggest a close correlation between
metabolic and circadian rhythms (Figure 2).

THE ROLE OF AMPK IN THE PHOSPHORYLATION OF

CASEIN KINASE I

CKI represents a unique group within the superfamily of
serine/threonine-specific protein kinases that is ubiquitously
expressed in eukaryotic organisms.46 The molecular weight of
mammalian CKI isoforms (a, b, g1, g2, g3, d and e) varies
from 37 kDa (CKI a) to 51 kDa (CKI g 3). There are highly
conserved sequences within their kinase domains in all CKI
isoforms, but differ significantly in the length and primary
structure of their N-terminal (9–76 aa) and C-terminal
non-catalytic domains (24 aa up to more than 200 aa).47,48

Casein kinases are important modulators of circadian clock
function in mammals. A naturally occurring mutation in
hamsters (Tau) that causes a long circadian period was
determined to be a hypomorphic allele of casein kinase I
epsilon (CKIe).49 In addition, genetic disruption or
pharmacological inhibition of CKIe and/or casein kinase I

delta (CKId) alters both cellular and behavioral circadian
rhythms in mice. Casein kinases, preferentially phospho-
rylate serines located within negatively charged amino-acid
sequence motifs and several serines in PER2 (which are
conserved in PER1) have been identified as targets of CKI
phosphorylation.50 CKI-mediated phosphorylation of PER
proteins is a primary determinant of their stability and
circadian period.51

AMPK induces a phase advance of circadian expression of
clock genes by degrading PER2 through phosphorylating CKIe
Ser389. AMPK phosphorylates Ser389 of CKIe, resulting in
increased CKIe activity and degradation of PER2, leading to
shortened period length (Figure 2).52

PER proteins are progressively phosphorylated and disap-
pear over a circadian day. Numerous studies using biochemical
and genetic approaches showed that CKId/e phosphorylates
PER in vitro and in cultured cells.41–43 Phosphorylation of PER
affects its cellular location and stability.9,43–45 In Drosophila,
genetic studies have demonstrated that double-time, an
ortholog of CKId/e, is required for normal phosphorylation
and turnover of dPER, and for behavioral circadian
rhythms.46,53 However, in mammals, the known mutations
in CKIe or CKId, including null mutations,51 do not
substantially disrupt the molecular oscillator and circadian
rhythms to the extent seen in Drosophila mutants carrying
the dbtP or dbtAR allele.51,53,54 This suggests that the two
mammalian enzymes are at least partially redundant, or there
are other kinases that can compensate for the loss of CKId/e.
In mutant mammals carrying mutations in CKIe or CKId,
PER still oscillates in abundance and phosphorylation.
Interestingly, a CKId null mutation produced more severe
phenotypes than did a CKIe null mutation, suggesting that
they may not be equally redundant.51 In mammalian cells, as
in Drosophila, the dominant-negative form of CKI shows that
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Figure 2 The regulation of AMP-activated protein kinase (AMPK)
on CRY1 and CKId/e in circadian clock. AMPK phosphorylates
CRY1, leading to its interaction with FBXL3. This process promotes
the degradation of both proteins by the ubiquitin/proteasome
system, thus contributing to period length determination. AMPK
also phosphorylates Ser389 of CKIe, resulting in increased CKIe
activity and degradation of PER2, which lead to shortened period
length.
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general reduction of CKId/e activities results in slower
oscillating of circadian rhythms.

Like in Drosophila, the phosphorylation of mammalian PER
by CK1d/e stimulates its degradation. In mammals, the CK1d/
e binding domain and phosphorylation sites of PER proteins
have been identified.19 Phosphorylation of PER by CK1d/e
leads to conformational changes and masking of a nuclear
localization signal.23 However, CRY proteins form a complex
with PER and CK1d/e and protect PER from degradation
that leads to nuclear accumulation of the CRY–PER–CK1d/e
complex.19,23 This complex inhibits the transcriptional activity
of the DNA-bound BMAL1–CLOCK complex, thus the
transcription of CRY and PER. It is thought that phospho-
rylation of different PER proteins by CK1d/e has additional
effects on the regulation of each PER protein. Furthermore,
CK1d/e is able to phosphorylate BMAL1 and CRY proteins
thereby modulating the functions of these clock proteins.20

THE ROLE OF AMPK ON SIRT1-MEDIATED REGULATION

IN CIRCADIAN CLOCK

The regulation of gene expression that characterizes circadian
physiology is involved in dynamic changes in chromatin
transition.55 Activation of clock-controlled genes by CLOCK:
BMAL1 is associated with circadian changes in histone
modifications at their promoters. CLOCK itself has a role as
an enzyme with histone acetyltransferase activity, specifically
targeting H3 K9/K14 in the chromatin and also non-histone
targets, such as its own partner BMAL1.56 The histone
acetyltransferase activity of CLOCK is counterbalanced by
silent information regulator 1 (SIRT1), a member of the
sirtuin family of nicotinamide adenine dinucleotide-dependent
histone deacetylases.57,58 SIRT1 is a nuclear protein implicated
in critical metabolic and physiological processes.

SIRT1 is also involved in the suppression of many age-
related diseases such as cancer, Alzheimer’s disease and type 2
diabetes.59 At the cellular level, SIRT1 controls DNA repair and
apoptosis, circadian clocks, inflammatory pathways, insulin
secretion and mitochondrial biogenesis.60

The reciprocal play between AMPK and SIRT1 is implicated
in circadian clock and metabolic state through interacting with
each other. AMPK enhances SIRT1 activity through increasing
cellular NAMPT expression and nicotinamide adenine dinu-
cleotide levels, leading to inhibition of CLOCK-BMAL1
complex. AMPK-mediated SIRT1 action also activates the
deacetylation and modulation of the activity of downstream
SIRT1 targets that include the peroxisome proliferator-acti-
vated receptor-g coactivator 1a, PGC-1a and the forkhead
box O1, �O3 (FOXO3a) transcription factors. The AMPK-
induced SIRT1-mediated deacetylation of these targets
explains many of the convergent biological effects of AMPK
and SIRT1 on energy metabolism (Figure 3).61,62

SIRT1 functions as an enzymatic controller of CLOCK
function, transducing signals originated by cellular metabolites
to the circadian machinery. Targeting SIRT1 with small
molecule modulators has been a significant area of interest
for several years. The study on the regulation of AMPK for

SIRT1 is of importance primarily based on the promise that
this approach holds for the discovery of new therapeutic
agents for multiple diseases of aging.63,64

THE INFLUENCE OF AMPK ON CIRCADIAN RHYTHMS

IN METABOLISMS

The role of AMPK on the effects of energy balance by
modulating the palmitate in the hypothalamus
Energy homeostasis of our bodies is under the regulated control
of homeostatic hormones, nutrients and the expression of
neuropeptides that alter feeding behavior in the hypothalamus.

AMPK has an important role in food intake and energy
metabolism because it affects both the central nervous system
and peripheral tissues. Many studies show that the activation
of the hypothalamic AMPK is involved in the stimulation of
food intake and the hypothalamic AMPK activity is increased
during fasting and decreased during refeeding.65–67

Constitutively, active AMPK led to increases in neuro-
peptide Y (NPY) and agouti-related peptide (AgRP) messenger
RNA levels and subsequently caused an increase in the body
weight of mice, whereas AMPK inhibition with dominant-
negative forms of AMPK prevented increased weight gain and
decreased the messenger RNA levels of orexigenic neuro-
peptides.66 NPY gene expression is controlled by numerous
signaling cascades. Phosphatidylinositol 3-kinase (PI3K),
MAPK, mammalian target of rapamycin (mTOR) and
AMPK have all been implicated in the control of NPY gene
expression.

It was found that there is a link between excess palmitate
concentrations and changes in clock genes and orexigenic
neuropeptide messenger RNA levels at the level of a hypotha-
lamic neuron.21 A high-fat diet leads to changes in the
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Figure 3 The mechanism of silent information regulator 1 (SIRT1)
on circadian regulation. The reciprocal play between AMP-activated
protein kinase and SIRT1 is implicated in circadian clock and
metabolic state. AMPK enhances SIRT1 activity through increasing
cellular NAMPT expression and nicotinamide adenine dinucleotide
(NADþ ) levels, leading to inhibition of CLOCK-BMAL1 complex.
AMPK-mediated SIRT1 action also activates the deacetylation and
modulation of the activity of downstream SIRT1 targets that
include the PGC-1a.
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expression of circadian behavior and transcripts such as
CLOCK, BMAL1 and PER2 in the hypothalamus, liver and
fat cells.68 Elevated levels of palmitate, a predominant
saturated fatty acid in diet and fatty acid biosynthesis, alter
cellular function. It is likely that palmitate-induced signal
transduction cascades lead to changes in circadian transcript
expression such as an increase in BMAL1 and CLOCK and a
decrease in PER2 and Rev-Erba through AMPK-mediated
regulation.

Taken together, AMPK might have a role in the palmitate-
mediated regulation of clock genes in addition to regulation of
orexigenic neuropeptide NPY in the hypothalamus.

Interplay between AMPK and metformin
Metformin is an important feedback to the circadian clock in
the peripheral tissues, synchronizing it to the environmental
cues such as food availability.69 Metformin is a commonly-
used treatment for type 2 diabetes whose mechanism of action
has been linked, in part, to activation of AMPK. However, little
is known regarding metformin effect on circadian rhythms.

Metformin leads to increased leptin and decreased glucagon
levels.70,71 The effect of metformin on liver and muscle
metabolism similarly leads to AMPK activation either by
liver kinase B1 and/or other kinases in the muscle.72

Metformin blocks mitochondria complex I leading to
increased NADH levels. An increase of NADH leads to
enhanced activity of CLOCK-BMAL1-mediated expression.
Metformin activates liver CKIa and muscle CKIe, leading to
CKI-mediated phosphorylation of PER2.73 Growing results
show the differential effects of metformin in the liver and
muscle and the critical role that the circadian clock has in
orchestrating metabolic processes. Those processes might be
mediated by AMPK activation through metformin.

Circadian clock and metabolic diseases
Circadian rhythms are integral to the normal functioning of
numerous physiological processes. The center of the biological
clock exists in the suprachiasmatic nuclei. In addition to this
central clock, each organ has its own biological clock system,
termed the peripheral clock.

Each cardiovascular tissue or cell, including heart and aortic
tissue, cardiomyocyte, vascular smooth muscle cell and vas-
cular endothelial cell also has intrinsic biological rhythm.74,75

The peripheral clock system within each cardiovascular
organ seems to have significant roles during the progression
of cardiovascular disorders.76 Loss of synchronization
between the internal clock and external stimuli can induce
cardiovascular organ damage. Discrepancy in the phases
between the central and peripheral clocks also seems to
contribute to progression of the disorders.

The important role of CK1d/e as one of the clock proteins is
underlined by the fact that mutations of CK1 or mutations of
phosphorylation sites of their substrates are correlated with
various diseases.

In mammals, similar defects have been described for a CK1e
mutant. Syrian hamsters homozygous for the Tau mutation in

the CK1e gene resulting in an exchange of the conserved
amino-acid residue 178 (R178C) have a shortened circadian
period.10 The reason for this effect could be explained by the
dominant-negative features of this CK1e mutant. CK1eR178C
still associates with PER but its kinase activity is much lower
compared to that of wild-type CK1e. As a consequence, PER is
hypophosphorylated and more stable. Although CK1d partly
compensates the mutant CK1e, the preserved ratio of CK1e
and CK1d binding to PER proteins still leads to
hypophosphorylation of PER, resulting in shortening of the
circadian rhythm in hamsters with Tau mutation.77

In humans, a polymorphism of CK1e at the autopho-
sphorylation site serine 408 in which serine is substituted by
asparagine (S408N) seems to have a protective role in the
development of familiar advanced sleep phase syndrome
(FASPS).77 The lack of this autophosphorylation site results
in an increased kinase activity of CK1e and an elongation of
the circadian rhythm. In addition, substitution of serine
with glycine at amino-acid residue 662 within the CK1e
binding domain of mPER2, which reduces CK1e-mediated
phosphorylation of mPER, is found in FASPS patients.18

Furthermore, the polymorphism V647G of the hPER3 gene
affects the CK1d/e binding site and correlates with delayed
sleep phase syndrome (DSPS).77

CONCLUSION AND FUTURE PERSPECTIVE

The master circadian oscillators in suprachiasmatic nuclei are
principally entrained by the light/dark cycle through the retina
stimulation, while pacemakers in peripheral organs, such as
liver, are reset by food availability, hormone, metabolic and
neuronal signals.

We expect that the communication of nutritional status to
clocks is complex and that additional pathways contribute
in vivo. The ability of AMPK to respond to metabolic
cues and to directly modify circadian clock components
suggests that it may be an important mediator of metabolic
entrainment in peripheral clocks. AMPK-mediated phospho-
rylation of CRYs contributes to metabolic entrainment of
peripheral clocks. Pharmacological activation of AMPK by
intraperitoneal injection of either AICAR (5-aminoimidazole-
4-carboxyamide ribonucleoside)31 or metformin52 also caused
a phase shift of the liver clock in mice, which suggests a
possible ability to entrain the liver clock. These data suggest
that AMPK activation may also have a role in circadian
entrainment of muscle clocks.78

Genetic alteration of circadian clocks either ubiquitously9,79

or in a tissue-specific manner39 elicits dramatic changes in
feeding behavior, body weight, running endurance and glucose
homeostasis, each of which is also altered by manipulation of
AMPK.40–42,44,45

There have been many studies of the link between circadian
rhythms and metabolism in brain and peripheral organs.
The role of AMPK between the circadian clock and meta-
bolism is essential for maintaining metabolic homeostasis and
preventing metabolic disorders. The orchestration of circadian
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rhythms and metabolic regulation is tightly interlocked at both
physiological and molecular levels.
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