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Abstract 

Background: Emerging cell- or tissue-based evidence has demonstrated that opsin 3 (OPN3) mediates a variety of 
pathological processes affecting tumorigenesis, clinical prognosis, and treatment resistance in some cancers. How-
ever, a comprehensive analysis of OPN3 across human cancers is unavailable. Therefore, a pancancer analysis of OPN3 
expression was performed and its potential oncogenic roles were explored.

Methods: The expression and characterization of OPN3 were evaluated among 33 tumour types using The Cancer 
Genome Atlas (TCGA) dataset. Additionally, the OPN3 RNA level and overall survival (OS) in relation to its expression 
level in 33 cancer types were estimated. Based on the analysis above, 347 samples from 5 types of tumours were col-
lected and detected for the protein expression of OPN3 by immunohistochemical assay. Furthermore, the biological 
role of OPN3 in cancers was evaluated via gene set enrichment analysis (GSEA).

Results: The OPN3 expression level was heterogeneous across cancers, yet a remarkable difference existed between 
OPN3 expression and patient overall survival among the 7 types of these 33 cancers. Consistently, a high immunohis-
tochemical score of OPN3 was significantly associated with a poor prognosis among patients with 5 types of tumours. 
Additionally, OPN3 expression was involved in cancer-associated fibroblast infiltration in 5 types of tumours, and pro-
moter hypomethylation of OPN3 was observed in 3 tumour types. Additionally, OPN3 protein phosphorylation sites of 
Tyr140 and Ser380 were identified via posttranscriptional modification analysis, suggesting the potential function of 
Tyr140 and Ser380 phosphorylation in tumorigenesis. Furthermore, the enrichment analysis was mainly concentrated 
in C7orf70, C7orf25 and the “ribosome” pathway by GSEA in 5 types of cancers, indicating that OPN3 might affect 
tumorigenesis and progression by regulating gene expression and ribosome biogenesis.

Conclusions: High expression of OPN3 was significantly associated with a poor clinical prognosis in five types of 
cancers. Its molecular function was closely associated with the ribosomal pathway.
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Introduction
Opsins, a large family of cell surface photoreceptors, were 
first described in the eye and play multiple roles in pho-
totransduction in the visual process [1]. However, some 

opsins not only serve light-dependent functions but also 
play light-independent roles, especially in extraocular tis-
sues. Opsin 3 (OPN3), also known as encephalopsin, was 
first identified as an extraocular opsin [2], which has been 
demonstrated to be associated with light-independent 
functions such as the regulation of melanogenesis and 
apoptosis in epidermal melanocytes [3, 4]. Notably, it 
has been found that functional links between OPN3 and 
tumorigenesis of lung cancer, skin melanoma and clini-
cal prognosis [5–7]. For lung cancers, overexpression of 
OPN3 was shown to promote epithelial-mesenchymal 
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transition and metastasis in lung adenocarcinoma [5]. 
OPN3 was also upregulated among patients with post-
operative recurrence of pulmonary carcinoid tumours 
[6]. Recently, a study found that high expression of OPN3 
was involved in the metastatic phenotype and a poor 
prognosis in acral lentiginous melanoma [7]. Moreover, a 
previous study revealed that OPN3 was associated with 
5-fluorouracil resistance in hepatocellular carcinoma 
cells, as its depletion activated the antiapoptotic path-
way and ultimately influenced hepatocellular carcinoma 
sensitivity to chemotherapy [8]. In addition, OPN3 can 
mediate blue light-emitting diodes to induce autophagy 
in human colon cancer cells and suppress cell growth [9]. 
Collectively, previous findings demonstrated that OPN3 
plays multiple important roles in tumorigenesis, clinical 
prognosis, and treatment resistance in various cancers. 
However, the expression and function of OPN3, which is 
widely expressed in multiple tissues, remain unknown in 
human cancers.

Pancancer analysis is able to examine the genes whose 
mutation is conducive to oncogenesis, as well as the 
expression of the similarities and differences between dif-
ferent cancers [10]. Thus, it is important for pancancer 
analysis to assess the association with clinicopathological 
features and prognosis and to explore potential molecu-
lar functions. Pancancer analysis was realized after the 
birth of some tumour databases, such as The Cancer 
Genome Atlas (TCGA) [10]. In this study, the expres-
sion and characterization of OPN3 in different human 
cancers, as well as its association with clinical progno-
sis and potential functional roles was the focus. Its gene 
expression level and survival analysis were first evalu-
ated among 33 tumour types by TCGA data, and further 
OPN3 aberrations were analysed across tumour types. 
Furthermore, the expression of OPN3 was performed to 
verify the association between OPN3 expression level 
and clinical prognosis by immunohistochemical staining 
in cancer tissues, in which there was a significant differ-
ence between OS and different OPN3 expression levels 
from the TCGA dataset. Finally, the molecular mecha-
nism of OPN3 was investigated in the TCGA dataset 
using the gene set enrichment analysis (GSEA) method.

Materials and methods
Data collection
The gene expression data and related clinical overall sur-
vival information for 33 tumour types were collected 
from TCGA datasets (https:// portal. gdc. cancer. gov/). In 
addition, the Chinese Glioma Genome Atlas (CGGA) 
dataset (http:// www. cgga. org. cn/ index. jsp) and Database 
of Hepatocellular Carcinoma Expression Atlas (HCCDB, 
http:// lifeo me. net/ datab ase/ hccdb/ home. html) were 
used to validate the expression and characterization of 

OPN3 in glioma and hepatocellular carcinoma, respec-
tively [11, 12]. Our cohort was composed of 5 types of 
tumours from the Affiliated Hospital of Guizhou Medical 
University. Haematoxylin and eosin (H&E)-stained sec-
tions were reviewed and evaluated, and samples fulfilling 
criteria for the appropriate diagnoses of various cancers 
were selected for study. Archived formalin-fixed paraffin-
embedded (FFPE) blocks were cut to make 4 μm sections 
for immunohistochemistry (IHC) staining. The study was 
approved by the Ethics Committees of Affiliated Hospital 
of Guizhou Medical University.

OPN3 gene expression and survival analysis
OPN3 gene expression in the 33 kinds of cancers from 
TCGA data was analysed using the Gene Expression 
Profiling Interactive Analysis (GEPIA) browser (http:// 
gepia. cancer- pku. cn/) [13], and TIMER (http:// timer. 
comp- genom ics. org/) [14]. Kaplan–Meier (KM) sur-
vival curves combined with a log-rank test were used to 
test the differences in prognosis between the high- and 
low-expression OPN3 groups (according to the median 
expression value of OPN3) using the survival R package 
[15]. OPN3 gene differential expression and overall sur-
vival analyses in the glioma from CGGA dataset were 
analysed using the Kaplan–Meier plotter online tools of 
CGGA (http:// www. cgga. org. cn/ analy se/ RNA- data. jsp). 
Additionally, the pancancer analysis of OPN3 variations 
and DNA methylation profiles were assessed by the cBio 
Cancer Genomics Portal tool (http:// cbiop ortal. org) [16] 
and UALCAN (http:// ualcan. path. uab. edu/) [17], respec-
tively. TIMER was also used for the analysis of tumour-
infiltrating immune cells, including cancer-associated 
fibroblasts [18].

Gene set enrichment analysis
Gene Ontology molecular function (GO_MF) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analyses of 
TCGA data were conducted using the LinkedOmics data-
base platform (http:// www. linke domics. org/ login. php) 
[19, 20]. GO terms and KEGG pathways with P < 0.05 and 
FDR < 0.25 were considered remarkably enriched.

IHC analyses of OPN3 expression
Details about the methods and further the semiquanti-
tative assessment followed previous reports [7]. Briefly, 
4 μm sections with different types of tumour tissues were 
dewaxed and rehydrated according to standard methods. 
Antigen retrieval was conducted with retrieval solution 
(ethylenediaminetetraacetic acid [EDTA], pH 9.0, ZLI-
9069 from ZSGB-BIO, Beijing, China) for 4 min using a 
pressure cooker.  H2O2 (PV-9000; ZSGB-BIO) was applied 
to block endogenous enzyme activity, and the samples 
were subsequently incubated in a serum-free blocking 
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solution (ZLI-9056; ZSGB-BIO). Then, the primary anti-
body against OPN3 (MD4034-100; Medical Discovery 
Leader (MDL), Beijing, China) was diluted 1:300 at 4 °C 
overnight, followed by treatment with the UltraView Pol-
ymer DAB Detection Kit (Ventana/Roche) according to 
the recommended manufacturing protocol.

OPN3 expression on all stained slides was scored by 
two independent investigators. The semiquantitative 
assessment method was conducted by using percent-
ages of 3 + (strong), 2 + (moderate), 1 + (weak), and 0 
(negative) staining of tumour cells for each sample. The 
overall score was calculated by the percentage of positive 
tumour cells (3 × x % + 2× x % + 1 × x % = total score) to 
equal a range of 0-300 [21].

Statistical analyses
R version 3.6.1 and GraphPad Prism (version 8.0) soft-
ware were used for statistical analysis. Continuous vari-
ables are presented as the mean ± SD or median with 
interquartile range (IQR) when distribution was skewed. 
The analysis of variance to compare means of two or 
more than two groups was performed by t tests or one-
way ANOVA with Tukey’s post-test analysis of variance. 
The Mann–Whitney (two groups) test was used to com-
pare the nonparametric distributions. Survival analyses 
were conducted via the Kaplan–Meier method. A univar-
iate Cox regression model was applied to assess adjusted 
hazard ratios (HRs) and 95% confidence intervals (CIs) 
for outcomes. Statistically significant differences were 
considered when P < 0.05 (***P < 0.001, **P < 0.01, * 
P < 0.05).

Results
Pancancer analysis of OPN3 expression and survival 
analysis in various cancers
The differential expression of OPN3 gene in 33 cancer 
types was compared using TCGA data, which found that 
the TPM (Trans Per Million) value of OPN3 RNA level 
was higher in 8 types of cancers including BLCA (Blad-
der Urothelial Carcinoma), BRCA (Breast invasive car-
cinoma), CESC (Cervical squamous cell carcinoma and 
endocervical adenocarcinoma), CHOL (Cholangiocar-
cinoma), ESCA (Oesophageal carcinoma), HNSC (Head 
and Neck squamous cell carcinoma), LIHC (Liver hepa-
tocellular carcinoma), STAD (Stomach adenocarcinoma), 
compared with adjacent normal tissues (Fig. 1A), whereas 
downregulating in those cancers of COAD (Colon ade-
nocarcinoma), GBM (Glioblastoma multiforme), LUSC 
(Lung squamous cell carcinoma), PCPG (Pheochromo-
cytoma and Paraganglioma), READ (Rectum adenocar-
cinoma) (Fig. 1A). After adding the normal tissue in the 
GTEx (Genotype-Tissue Expression) dataset as controls, 
the expression difference of OPN3 was assessed between 

the normal tissues and cancer tissues. As presented in 
Fig. 1B, OPN3 had significantly high expression in most 
cancer types, including BRCA, COAD, LAML (acute 
myeloid leukaemia), OV (ovarian serous cystadenocar-
cinoma), PAAD (pancreatic adenocarcinoma), READ 
(rectum adenocarcinoma), THYM (thymoma), UCEC 
(uterine corpus endometrial carcinoma), CESC, LUAD 
(lung adenocarcinoma), SKCM (skin cutaneous mela-
noma) and UCS (uterine carcinosarcoma), while OPN3 
was expressed at low levels in LGG (brain lower grade 
glioma) and TGCT (testicular germ cell tumours). Col-
lectively, these data suggest that the expression of OPN3 
at the RNA level was heterogeneous across human 
cancers.

Next, using the TCGA project, the associations 
between OPN3 expression and the survival status of 
the 33 tumour types were estimated by log-rank tests. 
In seven types of cancers, including BLCA, GBM, LGG, 
LIHC, LUAD, STAD and UVM, Kaplan–Meier survival 
analysis showed that a significant difference in patient 
overall survival was found between the low and high 
OPN3 expression groups according to the OPN3 expres-
sion median value (Fig.  2A), revealing that high OPN3 
expression was associated with shorter overall survival. 
In addition, the effects of OPN3 on disease-free survival 
(DFS) were also tested in seven types of cancers. It was 
found that the OPN3 expression level markedly affected 
the survival index of DFS in LGG, LUAD and STAD 
patients (Fig.  2B), indicating that high OPN3 expres-
sion was associated with poor survival. Considering that 
OPN3 expression and its association with clinicopatho-
logical features and prognosis in lung cancer and mela-
noma have been reported [5, 7], in the next section, the 
characteristics of OPN3 among the other five cancer 
types are the primary focus.

Validation of the OPN3 expression signature in five cancer 
types
To determine the expression signature of OPN3 at the 
protein level, immunohistochemistry (IHC) staining of 
the above five types of cancers (BLCA, GBM, LGG, LIHC 
and STAD) was conducted (Fig.  3). The results showed 
that the protein level of OPN3 was higher in LIHC and 
STAD tumours than in adjacent normal tissues (Fig. 3A-
B), consistent with its RNA expression level, whereas 
OPN3 scores of BLCA were not significantly different 
between tumour and adjacent normal tissues. In terms 
of glioma, the difference among different grades (I- IV; 
LGG: grade II-III, GBM: grade IV) due to a lack of adja-
cent normal tissues was compared. In contrast to grade I 
glioma and LGG, OPN3 was expressed at a higher level in 
GBM (p < 0.0001 and p = 0.001, respectively) (Fig. 3A-B). 
Similar to the results from TCGA dataset, in the samples, 
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Fig. 1 Gene expression of OPN3 in different tumour types or specific cancer subtypes. A In the TCGA project, the expression status of OPN3 in 33 
subtypes of cancers * P < 0.05; ** P < 0.01; *** P < 0.001. B The expression difference of OPN3 in various cancers combined TCGA dataset with GTEx 
dataset. Log2 (TPM + 1) was used for log-scale. * P < 0.05
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based on OPN3 score of median value, prognostic analy-
sis was made between patients with high and low expres-
sion of OPN3 via the Kaplan–Meier method, which 
showed that high IHC score of OPN3 was associated with 
worse overall survival in these cancer types (Fig.  3C). 
Together, these results suggested that the upregulation of 
OPN3 expression was associated with poor disease out-
come in five types of cancers.

Next, Cox regression analysis of prognostic factors for 
OS of BLCA, GBMLGG, LIHC and STAD patients was 
performed (HR = 13.03 [95% CI: 3.76-45.17], p < 0.001; 
HR = 3.15 [95% CI: 1.54-6.43], p = 0.002; HR = 5.26 [95% 
CI: 1.97-14.04], p = 0.001; HR = 5.05 [95% CI: 2.06-12.38], 
p < 0.001, respectively) (Fig. S1), which showed that high 
OPN3 expression was significantly related to worse over-
all survival in these cancer types. Thus, these promising 
findings indicated that OPN3 may be a potential indica-
tor for the assessment of cancer prognosis.

Association between OPN3 and clinicopathologic variables 
of glioma
As we showed above, at the glioma RNA level, OPN3 
appeared to be downregulated in LGG and GBM com-
pared to normal tissues. Paradoxically, the overexpres-
sion of OPN3 was associated with a poor prognosis in 
LGG and GBM. Additionally, the verification of OPN3 
protein levels was not able to fulfil the lack of normal tis-
sues as controls in glioma. Therefore, the gene expres-
sion difference of OPN3 was compared between gliomas 
of different grades using the CGGA dataset (Fig.  S2). 
In contrast to LGG, the OPN3 gene was expressed at 
a higher level in GBM, which was consistent with the 
expression trend of OPN3 protein levels increasing grad-
ually from grade II (LGG) to IV (GBM) glioma. In addi-
tion, OPN3 expression in grade II-IV gliomas with IDH 
mutation or 1p19q deletion was lower in the CGGA data-
set than in IDH wild-type gliomas (p < 0.005). The results 
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of survival analysis in glioma from the CGGA dataset 
were consistent with those in the TCGA dataset (Fig. S2). 
Together, these results suggested that the upregulation of 
OPN3 expression was associated with clinicopathologi-
cal features and poor disease outcome of glioma. Addi-
tionally, we confirmed OPN3 expression in LIHC using 
the HCCDB dataset. The results showed that tumours, 
in contrast to adjacent normal tissues, had higher RNA 
levels of OPN3 expression in nine out of the ten HCCDB 
datasets (Fig. S3).

Pancancer analysis of OPN3 genetic alteration
Furthermore, OPN3 gene alterations were analysed in 
8 different pancancer and 19 skin cancer datasets from 
the cBioPortal database [16]. It was found that the fre-
quency of gene mutations, including missense mutations, 
truncating mutations, amplifications and deep deletions, 
was 0.5% (Fig.  4A-B) and mainly occurred in cutane-
ous squamous cell carcinoma, basal cell carcinoma and 
melanoma (Fig.  4C). As shown in Fig.  3B, the percent-
age of these samples with a somatic mutation in OPN3 
was 0.1%. Interestingly, OPN3 protein phosphorylation 
sites of Tyr140 and Ser380 were identified via posttran-
scriptional modification analysis (Fig. 4B), suggesting the 
potential function of Tyr140 and Ser380 phosphorylation 
in tumorigenesis.

Additionally, OPN3 DNA methylation levels in five 
types of tumours and normal tissues were assessed 
using UALCAN [17]. In the TCGA cohort, a signifi-
cantly reduced methylation level at the promoter region 
of OPN3 was observed in 3 types of tumours, including 

BLCA, LIHC, and LUAD, comparable to normal tissues. 
These results were consistent with the expression level of 
OPN3 between tumour and normal tissues, as shown in 
Fig. S4.

Additionally, immune infiltration of the cancer micro-
environment was evaluated in diverse cancer types of 
TCGA [18]. An significant positive correlation between 
most cancers and the infiltration value of cancer-asso-
ciated fibroblasts was observed (Fig.  5A), especially in 
TGCT (testicular germ cell tumours), PCPG (pheochro-
mocytoma and paraganglioma), BRCA (breast invasive 
carcinoma), KIRC (kidney renal clear cell carcinoma), 
and LUSC (lung squamous cell carcinoma). Accord-
ing to the quanTIseq algorithm [23], correlation analy-
sis revealed that OPN3 was positively correlated with 
cancer-associated fibroblasts in the above five cancer 
types (Fig. 5B). Additionally, the cancer-associated fibro-
blasts between different somatic copy number alterations 
(sCNAs) of OPN3 were assessed, including “deep dele-
tion”, “arm-level deletion”, “diploid/normal”, “arm-level 
gain”, and “high amplification” (Fig. 5C-D). The “arm-level 
gain” and “high amplification” of OPN3 in BRCA-luminal 
A (lumA), BRCA-luminal B (lumB) and THCA (thyroid 
carcinoma) were significantly associated with the infil-
tration value of cancer-associated fibroblasts (p < 0.05) 
based on the EPIC algorithm [22].

Gene Set Enrichment Analysis (GSEA) of OPN3 in five types 
of cancers
To further investigate the potential molecular mechanism 
of OPN3 in 5 types of cancers (BLCA, GBMLGG, LIHC, 

BLCA GBMLGG LIHC STAD

Normal Tumor

 ×20

 ×40

BLCA Normal TumorLIHC LGG GBM Normal TumorSTAD
A

B C

Fig. 3 Expression difference of OPN3 protein in 5 tumour types. A OPN3 expression in representative cancer cases from 5 tumour types via 
immunohistochemistry (IHC) staining (× 20, × 40 magnification; Normal: adjacent normal tissues). B The IHC staining score of OPN3 differs 
significantly between tumour tissues and adjacent normal tissues (ANTs) or different grades. C Overall survival analysis of tumour patients with 
different IHC scores of OPN3 (low OPN3 vs. high OPN3) based on the median expression value
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LUAD, STAD), TCGA mRNA-seq data was first meas-
ured by Pearson’s correlation analysis between OPN3 
and its coexpressed genes. The intersection of OPN3 
and the top 500 OPN3-associated genes from the most 
related modules showed 2 genes (C7orf70 and C7orf25) 
closely related to the upregulation of OPN3 expression in 
all 5 types of cancers (Fig. 6A). Additionally, GSEA was 
performed between samples with low and high OPN3 
expression to identify OPN3-related signalling pathways 
using GO and KEGG pathway enrichment analyses. As 
shown in Fig. 6, the notably dysregulated terms were pri-
marily enriched in “structural constituent of ribosome”, 
“ribosome”, partly involved in “spliceosome”, “phago-
some”, and “cell cycle”. Thus, these results may provide 
insights into the cellular biological effects of OPN3, 
which could regulate the ribosome pathway in tumours 
and further affect tumorigenesis and progression.

Discussion
Since it is widely expressed in a variety of human tis-
sues, such as the brain, retina, skin, liver, heart, lung 
and pancreas, OPN3 is also known as panopsin [24, 
25]. Interestingly, OPN3, belonging to the photosensi-
tive opsin family, was unexpectedly expressed in some 
nonphotosensitive tissues under physiological condi-
tions. Recently, its light-independent function has been 
of interest in human extraocular tissues. For instance, in 
human epidermal melanocytes, OPN3 can act as a nega-
tive regulator of melanogenesis in a light-independent 
way by modulating melanocortin 1 receptor signalling 
[3]. Our group demonstrated that without light illumina-
tion, downregulation of OPN3 induces apoptosis of mel-
anocytes through the mitochondrial apoptotic pathway 
[4]. TGFβ2 is able to upregulate the tyrosinase activity of 
melanocytes through the light-independent function of 
OPN3 in a TGFβ2 receptor-independent manner [26]. In 
human tumours, previous studies showed that the OPN3 
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gene was upregulated in lung adenocarcinoma and skin 
melanoma, which was associated with the metastatic 
phenotype and unfavourable prognosis [5–7]. Addition-
ally, another light-independent function of OPN3 was 
that its depletion triggered 5-fluorouracil resistance in 
liver cancer cells via the antiapoptotic pathway [8]. Alto-
gether, OPN3 is associated with tumorigenesis and pro-
gression; however, the expression and role of OPN3 in 
other tumours remain unclear.

In this study, we started with a pancancer analysis of 
OPN3 opsin expression using the TCGA dataset. Then, 
we validated the OPN3 expression signature in several 

tumours by our cohort and other CGGA and HCCDB 
databases. These results revealed that OPN3 expres-
sion is heterogeneous across multiple tumours, which 
suggested that abnormal expression of OPN3 may play 
a role in oncogenesis. In particular, we found that high 
expression of OPN3 in 7 types of cancer tissues was 
remarkably associated with poor prognosis. There-
fore, upregulation of OPN3 may contribute to car-
cinogenesis in human cancers, especially in the seven 
cancer types. Furthermore, the analysis of OPN3 gene 
alterations showed that the frequency of gene muta-
tions was only 0.5% and mainly occurred in cutaneous 
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squamous cell carcinoma, basal cell carcinoma and 
melanoma. The percentage of these samples with a 
somatic mutation in OPN3 was only 0.1%, which indi-
cated that OPN3 might not be a driver gene of initial 
tumorigenesis but could play a vital role in promoting 
tumorigenesis and progression. Moreover, OPN3 pro-
tein phosphorylation sites of Tyr140 and Ser380 were 
identified via posttranscriptional modification analysis. 
Interestingly, previous reports indicated that the C-ter-
minus of OPN3, containing 13 potential sites for ser-
ine/threonine phosphorylation, may be correlated with 
arrestin-mediated receptor internalization [27, 28] and 
may further result in sustained signalling [29]. Thus, it 
is suggested that the potential function of Tyr140 and 
Ser380 phosphorylation may be associated with tumo-
rigenesis. However, this observation merits further 
molecular assays for further exploration of the poten-
tial role of two phosphorylation sites. In addition, a sig-
nificant positive correlation between most cancers and 

the infiltration value of cancer-associated fibroblasts 
was observed. Cancer-associated fibroblasts, as promi-
nent components of the tumour microenvironment, are 
closely linked to the initiation, progression or metasta-
sis of cancer [22, 23]. Thus, OPN3 was closely related 
to enhancing cancer-associated fibroblasts that par-
ticipate in modulating the function of various tumour-
infiltrating immune cells [24, 25].

To our knowledge, however, the molecular function of 
OPN3 in cancer has not yet been reported. Therefore, 
we conducted GSEA to study the molecular mecha-
nisms of OPN3 in carcinogenesis and progression, which 
demonstrated that OPN3 in 5 types of cancers remark-
ably correlates with modules of C7orf70 and C7orf25 
and the “Ribosome” pathway. The C7orf70 gene, also 
called STAT3 interacting protein as a repressor (SIPAR), 
is composed of 2 exons on human chromosome 7p22.1, 
which encodes a 259 amino acid protein [30]. A previous 
study found that SIPAR promotes the dephosphorylation 
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of STAT3 and further affects the progression of mela-
noma through physical interaction with STAT3 [31]. 
C7orf25 (chromosome 7 open reading frame 25) encodes 
12 proteins, but most of these proteins have an unknown 
function. One of these is UPF0415, which may be asso-
ciated with ATP-dependent protein breakdown in the 
proteasome pathway and protein activation [32, 33]. 
Recent studies suggested that the abnormal expression 
of enhancer-associated C7orf25 was involved in unfa-
vourable prognosis of GBM, RNA metabolism and gene 
expression [34, 35]. The ribosome is an essential com-
ponent of the protein translation machinery, and dys-
regulation of its biogenesis (upregulation of biogenesis 
and defection of biosynthesis) may lead to cancer devel-
opment [36, 37]. Thus, OPN3 may affect carcinogenesis 
and progression by regulating the ribosomal pathway in 
cancer.

Taken together, these features suggest that OPN3 is 
involved in a poor prognosis in some types of cancers, 
including BLCA, GBM, LGG, LIHC, LUAD, STAD and 
UVM, mainly by OPN3 gene variations, epigenetic modi-
fication (methylation and phosphorylation) patterns and/
or affecting the infiltration of cancer-associated fibro-
blasts. However, additional work is required to evalu-
ate the molecular mechanism of OPN3 as a promotor in 
tumorigenesis and progression.

Conclusions
In conclusion, we demonstrated that the high expression 
of OPN3 was associated with a poor prognosis in BLCA, 
GBM, LGG, LIHC, LUAD, STAD and UVM cancers. 
Its molecular function was closely associated with the 
C7orf70 and C7orf25 modules and the ribosomal path-
way. Our study revealed the potential role of OPN3 in 
tumorigenesis and its prognostic value, suggesting that 
OPN3 might be a potential prognostic factor in these 
seven cancers.
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