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Background. A growing body of evidence suggests that both auricular acupuncture and transcutaneous auricular vagus nerve
stimulation (taVNS) can induce antinociception and relieve symptoms of migraine. However, their instant effects and central
treatment mechanism remain unclear. Many studies proved that the amygdalae play a vital role not only in emotion modulation
but also in pain processing. In this study, we investigated the modulation effects of continuous taVNS at acupoints on the FC of
the bilateral amygdalae in MwoA. Methods. Thirty episodic migraineurs were recruited for the single-blind, crossover functional
magnetic resonance imaging (fMRI) study. Each participant attended two kinds of eight-minute stimulations, taVNS and sham-
taVNS (staVNS), separated by seven days in random order. Finally, 27 of them were included in the analysis of seed-to-voxel
FC with the left/right amygdala as seeds. Results. Compared with staVNS, the FC decreased during taVNS between the left
amygdala and left middle frontal gyrus (MFG), left dorsolateral superior frontal gyrus, right supplementary motor area (SMA),
bilateral paracentral lobules, bilateral postcingulum gyrus, and right frontal superior medial gyrus, so did the FC of the right
amygdala and left MFG. A significant positive correlation was observed between the FC of the left amygdala and right SMA and
the frequency/total time of migraine attacks during the preceding four weeks. Conclusion. Continuous taVNS at acupoints can
modulate the FC between the bilateral amygdalae and pain-related brain regions in MwoA, involving the limbic system, default
mode network, and pain matrix, with obvious differences between the left amygdala and the right amygdala. The taVNS may
produce treatment effects by modulating the abnormal FC of the amygdala and pain networks, possibly having the same central
mechanism as auricular acupuncture.

1. Introduction

Migraine without aura (MwoA), the most common type of
migraine, is the second-largest neurological disorder affect-
ing the global disability-adjusted lifespan year, causing a
severe burden on the health system and budgets [1]. How-
ever, its conventional medical treatments for migraines are
far from satisfactory [2]. It is essential to find more effective
and safe treatments.

A recent study [3] suggested that the occurrence of
migraine was related to the imbalance of the autonomic
nervous system, and increasing parasympathetic (mainly
including vagal) nerve activity could alleviate the symptoms
of migraine [4]. However, there are only a few indirect ways
to regulate the vagal nerve tension, such as breathing regula-
tion and yoga [5]. It is worth noting that noninvasive vagus
nerve stimulation (nVNS) can directly regulate vagal nerve
activity to treat migraines effectively [6, 7]. It has been
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approved for treating episodic migraines by the Food and
Drug Administration (FDA) of the USA in 2017, reducing
the severity and frequency of headache [8, 9], improving
the quality of life and reducing the cost of treatment [10],
and being well-tolerated [11]. Notably, transcutaneous auric-
ular vagus nerve stimulation (taVNS), a kind of simpler and
effective nVNS [12], may have the same treatment effect
and mechanism as auricular acupuncture [13]. A growing
body of evidence suggests that both auricular acupuncture
and taVNS can induce antinociception and relieve symptoms
of migraine. However, the instant effects and central mecha-
nism of electrical stimulation at auricular points innervated
by the vagal nerve in MwoA are still unclear.

Previous neuroimaging evidences [14-17] suggested that
migraine was associated with abnormal structure and func-
tion of brain regions involved in pain and emotional
processing, such as the prefrontal cortex (PFC), cingulate
gyrus, supplementary motor area (SMA), amygdala, hippo-
campus, insula, precuneus, periaqueductal gray matter
(PAG), thalamus, cerebellum, and et al. Among them, the
vital functions of the amygdalae in migraine have already
attracted many researchers’ attentions [18, 19]. Recent stud-
ies [20-22] demonstrated that the amygdalae were also
involved in pain processing and modulation. A neuroimag-
ing study found that the amygdala was activated during
the headache, and its decreased volume was related to the
frequency of headache attacks [23]. The FC of the left amyg-
dala and left middle cingulate gyrus increased in episodic
migraine compared with healthy controls, and there were
obvious differences between the left amygdala and the right
amygdala [24]. These results suggested that the dysfunction
of the amygdala might be a potential mechanism of MwoA.
However, little has known about the FC of the bilateral
amygdalae and other regions in MwoA patients before and
during taVNS so far.

Based on the above argument, we hypothesized that con-
tinuous taVNS at auricular points could modulate the abnor-
mal FC of the left/right amygdala in MwoA patients. Then,
the voxel-wise FC was analyzed during continuous stimula-
tion, using the left/right amygdala as seeds, respectively.

2. Materials and Methods

2.1. Participants. Thirty episodic migraineurs without aura
were recruited for the single-blind, crossover functional mag-
netic resonance imaging (fMRI) study from the neurology
clinic outpatient of the Second Affiliated Hospital of
Guangzhou University of Chinese Medicine from January
to December in 2018. Each participant attended two fMRI
scan sessions during the eight-minute continuous stimula-
tion at auricular points separated by seven days, one for
taVNS and another for sham-taVNS in random order.
Informed consent was obtained from all participants. This
study protocol was approved by the Institutional Review
Board of the Second Affiliated Hospital of Guangzhou
University of Chinese Medicine.

Similar to our previous study [25], the diagnosis of
migraine was based on the International Classification of
Headache Disorders 2"¢ Edition (ICHD-II) [21, 26], as diag-
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nosed by a specialist working at the neurology outpatient
service.

The inclusion criteria were as follows: (1) aged 18-45
years old, (2) right-handed, (3) at least six months of
migraine duration, (4) having at least one attack per month,
(5) having no prophylactic headache medicine during the
past one month, and (6) having no psychoactive or vasoac-
tive drugs during the past three months.

The participants were excluded if any of the following cri-
teria were met: (1) was caused by other diseases or special
types of migraine, (2) attacked within 48 hours before and
during the scan, (3) had pregnancy or lactation, (4) had
severe head deformity or intracranial lesions, (5) had other
chronic pain diseases, and (6) had the standard score of
self-rating anxiety or depression scale greater than 50.

2.2. Intervention Program

2.2.1. Stimulator. Huatuo auricular vagus nerve stimulators
were from SDZ-II, Suzhou Medical Appliance Factory,
China.

2.2.2. Stimulation Parameters. The stimulation parameters are
as follows: constant voltage, continuous wave, 1Hz, 0.2ms,
and the current intensity below the pain threshold, lasting 8
minutes. taVNS points: CO11 and CO14, left cymba concha
(abundant in vagal afferent fibers). StaVNS points: SF2 and
SF4-5, left scapha (no vagal afferent fibers) (Figure 1) [25, 27].

2.3. Clinical Assessments. The demographic information and
clinical scale data of all patients were collected, including
Migraine Specific Quality-of-Life Questionnaire (MSQ),
Self-rating Depression Scale (SDS), Self-rating Anxiety Scale
(SAS), Visual Analog Scale (VAS), the frequency, and total
duration time of migraine attacks during the past four weeks
preceding the fMRI scans.

2.4. MRI Data Acquisition. All MRI scans were conducted on
a 3.0T Siemens MRI scanner (Siemens MAGNETOM Verio
3.0T, Erlangen, Germany) with a 24-channel phased-array
head coil. All subjects were told to stay awake and remained
motionless during the scan, keeping their eyes closed. Each
scan session lasted approximately 20 minutes. The orders of
MRI scans were as follows: a high-resolution anatomical
image (MPRAGE), an eight-minute resting-state functional
MRI, and an eight-minute continuous real or sham-taVNS
(fMRI was applied during this continuous stimulation period).

T1-weighted MPRAGE was applied with the following
parameters: TR =1900ms, TE =2.27 ms, FOV =256 mm x
256 mm, flipangle=9°, matrix =256 x 256, thickness=
1.0mm, and 176 slices. The eight-minute resting state and
eight-minute continuous real or sham-taVNS fMRI scan
were acquired with the following parameters: TR = 2000 ms,
TE=30ms, FOV=224mmx224mm, flipangle=90°,
matrix = 64 x 64, thickness = 3.5 mm, 31 slices, and 240 time
points.

2.5. fMRI Data Analysis

2.5.1. fMRI Data Preprocessing. The fMRI data preprocessing
was performed using DPABI 3.0 and SPM 12.0 based on
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taVNS:
Co011, C014
(with vagal fibers)

staVNS:
SF2, SF4-5
(no vagal fibers)

F1GURE 1: The innervations of the auricular branch of the vagal nerve and the points stimulated at the ear. The vagal nerve branch is marked
by green color, the taVNS points by red, and the staVNS points by blue.

MATLAB (The MathWorks, Natick, MA, USA). After
removing the first ten volumes of each participant, the
functional images were corrected for the intravolume
acquisition time delay using slice timing and realignment.
One of the participants was excluded based on the criteria
of displacement >2.5mm or angular rotation > 2.5° in any
direction. Then, all corrected functional data were normal-
ized to the Montreal Neurological Institute (MNI) space
and resampled to a 3mm isotropic resolution. The result-
ing images were further temporally band-pass filtered
(0.01-0.08 Hz) to remove the effects of low-frequency drift
and high-frequency physiological noise. Finally, 24 head-
motion parameters, white matter signals, and cerebrospinal
fluid signals were regressed using a general linear model,
and linear trends were removed from the fMRI data. Spatial
smoothing was also performed before the functional connec-
tion analysis using a Gaussian filter (6 mm full-width half
maximum; full width at half maximum [FWHM)]).

2.5.2. Seed-to-Voxel FC Analysis. The seeds of the left amyg-
dala and right amygdala were defined separately, using the
AAL template (Figure 2) (same to the previous literature
[24]). Then, the amygdalae were resliced with the brain mask
template with 63 x 71 x 63 size. The FC calculation was per-
formed in DPABI (V3.0). The averaged time courses of the
left/right amygdala were extracted, respectively. Next,
Pearson correlation was used to calculate the FC between
the extracted time courses and the time courses of the whole
brain in a voxel-wise manner, respectively. The correlation
coefficient map was then converted into a Fisher-Z map by
Fisher’s r-to-z transformation to improve normality.

Leftam { dala

Right'al

FIGURE 2: The left and right amygdalae were, respectively, generated
based on the AAL template as seeds. Red: the left amygdala; blue: the
right amygdala.

2.6. Statistical Analysis. The intergroup analysis (taVNS vs.
staVNS) of the FC was performed using a paired ¢-test, with
the mean head-motion value (mean FD Jenkinson) as covar-
iate variables. A threshold of voxel-wise p uncorrected and
cluster-level p corrected by familywise error corrected
(FWE) were applied for multiple comparison correction. If
voxel-wise p < 0.001 and cluster-level p < 0.05, the difference
was statistically significant.



TaBLE 1: The demographic and clinical data during the past four
weeks (n=27).

Characteristics (Frequency/mean + SD)
Gender (male/female) 2/25

Age 29.85+8.09
Disease duration in years 9.22+7.26
Frequency per month 1.22+£0.51

Total time per month 18.93 £ 15.61
VAS 42.99 +17.01
MSQ 72.52+9.41

SDS score 45.96 £9.69

SAS score 42.63 £9.87

VAS: Visual Analog Scale; MSQ: Migraine Specific Quality-of-Life
Questionnaire; SDS: Self-rating Depression Scale; SAS: Self-rating Anxiety
Scale. Frequency/total time per month: The frequency/the total time of
migraine attacks during the past four weeks.

Besides, in the baseline resting state and continuous stim-
ulation state, we, respectively, extracted the average z values
of significantly altered clusters of the left/right amygdala
(taVNS vs. staVNS). Then, the differences of the zFC values
were compared using a paired t-test between taVNS and
staVNS in the two states, and p < 0.05 was considered to be
statistically significant [28]. We also explored the association
between the initial clinical assessments and the altered zFC
values (taVNS minus staVNS) in continuous stimulation
state across all subjects after Bonferroni correction.

3. Results

3.1. Clinical Results. Twenty-seven patients completed the
study and were included in the data analysis, because the
two participants did not finish the fMRI scan, and one was
excluded for displacement >2.5mm or angular rotation >
2.5” in any direction. The demographics are shown in Table 1.

3.2. fMRI Results

3.2.1. Left Amygdala as Seed. The brain regions with
decreased FC of the left amygdala mainly located in the left
middle frontal gyrus (MFG), left dorsolateral superior frontal
gyrus (SFG), right supplementary motor area (SMA), and
bilateral paracentral lobule during continuous stimulation
of taVNS compared with sham-taVNS (Table 2 and
Figure 3(a)). No significant increased FC was observed.
Since the postcingulum cortex (PCC) and frontal medial
gyrus are important nodes in the default mode network
(DMN) [29, 30] and endogenous pain-inhibitory circuits
[31, 32]. They play a very important role in the migraine
pathogenesis [29-32]. Similar to the previous study [33],
the small volume correction with a threshold of voxel-wise
P <0.001 and cluster-level p < 0.05 was used in ROI analysis.
The direct intergroup comparison revealed more decreased
FC in taVNS compared with the sham, in the bilateral PCC
and the right frontal superior medial gyrus (small-volume
corrected at pp; <0.001) (Table 2 and Figure 3(b)).

Neural Plasticity

During stimulation, there were statistical significances
for the FC in left MFG and SFG, right SMA and bilateral
paracentral lobule, PCC, and right medial superior frontal
gyrus (taVNS vs. staVNS) (t[1,26]=-6.149, p<0.001,
Figure 4(a); t[1,26] =—-4.143, p <0.001, Figure 4(b); t[1,
26] = -3.157, p<0.001, Figure 4(c); t[1,26] = —4.734, p <
0.001, Figure 4(d)), while there was no significant difference
before stimulation (¢ [1, 26] = —1.134, p = 0.267, Figure 4(a);
t[1,26] = —0.765, p = 0.451, Figure 4(b); £ [1,26] = 0.271,p =
0.789, Figure 4(c); t [1,26] = —0.428, p = 0.672, Figure 4(d))
(Supplementary table 1). All the changing trend of these
FC were opposite between taVNS and staVNS.

The FC between the left amygdala and right SMA was
correlated with the frequency (p=0.017 and r = 0.455) and
the total time (p=0.011 and r = 0.482) of migraine attacks
during the preceding four weeks before treatment
(Supplementary table 2 and Figure 5), and there was no
significant association for other FCs.

3.2.2. Right Amygdala as Seed. Compared with the staVNS,
the FC significantly decreased between the right amygdala
and left MFG in continuous taVNS (Table 3 and Figure 6).
The value of the FC between the right amygdala and left
MFG does not correlate with the migraine attacks.

The FC of the right amygdala and the left middle frontal
gyrus had no significant difference before stimulation
(t[1,26] =-0.410 and p = 0.685), with significant difference
during stimulation (¢ [1,26] = —5.789 and p < 0.001) (taVNS
vs. staVNS) (Supplementary table 3 and Figure 7). The
changing trend of the FC was opposite between taVNS and
staVNS.

4. Discussion

In this trial, we explored the altered FC of the bilateral amyg-
dalae in MwoA during continuous taVNS and staVNS. To
summarize, we found that the FCs significantly decreased
during taVNS compared with staVNS between the amygdala
and DMN (bilateral PCC), prefrontal cortex (PFC: left dorso-
lateral SFG, left MFG, and right superior medial frontal
gyrus), pain matrix (right SMA), and sensorimotor network
(bilateral paracentral lobule), with different changes in the
FC between the left amygdala and the right amygdala. More-
over, the value of the FC between the left amygdala and right
SMA was positively correlated with the frequency and total
time of migraine attacks during the preceding four weeks
before treatment. Our research suggests that taVNS at auric-
ular points may modulate the function of the limbic system
and pain-related networks via adjusting abnormal FC of the
amygdalae to treat migraines. We were the first to report
the FC of the bilateral amygdalae during continuous taVNS
at acupoints and staVNS in MwoA.

The amygdala played a crucial role in the pathogenesis,
chronicity, and recurrence of migraines [24, 34], not only
in emotion modulation but also in pain processing. Firstly,
animal experiments have proved that the amygdala played
an essential role in the regulation of synaptic transmission
of neurons related to cortical spreading depression (CSD)
and the neuropathic pain in migraine [35]. Secondly,
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TaBLE 2: The functional connectivity results using the left amygdala as a seed in 27 MwoA patients.
Contrast Cluster Brain region Peak T value Peak Z value XMNI coo;dmates 7
Real>sham No brain region above the threshold
178 Left middle frontal gyrus 6.10 4.73 -27 48 30
68 Left superior frontal gyrus 5.22 4.25 21 60 6
18 Right supplementary motor area 5.37 4.34 3 -9 72
Real<sham .
18 Bilateral paracentral lobule 5.00 4.12 -3 -21 75
17 Bilateral post cingulum gyrus* 4.47 3.80 3 -51 27
15 Right frontal superior medial gyrus* 4.59 3.87 3 63 0

*Small-volume correction at ppy < 0.001.
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a The FC results using the left amygdala as seed
Real taVNS< sham-taVNS,FWE corrected,0.001,0.05,63

b The FC results using the left amygdala as seed
Real taVNS< sham-taVNS. Small-volume correction, at FWE p < 0.001

F1GURE 3: The functional connectivity (FC) of the left amygdala in MwoA during continuous stimulation (taVNS vs. staVNS). L: left; R: right;
P: posterior; A: anterior; SAG: sagittal; COR: coronal; TRA: transverse; PCC: postcingulum gyrus; SMA: supplementary motor area; FWE:
familywise error correction. Compared with sham-taVNS, the FC significantly decreased between the left amygdala and left frontal middle
gyrus, left frontal superior gyrus, right SMA, bilateral paracentral lobule ((a) FWE multiple comparison correction, voxel-level p < 0.001
and cluster-level p < 0.05), bilateral PCC, and right frontal superior medial gyrus ((b) small-volume correction, FWE p < 0.001) in taVNS.

migraine patients are often accompanied by negative emo-
tions such as aversion, anxiety, fear, and avoiding pain
behavior, which are closely related to the function of the
amygdala [26, 28]. Finally, there are a large number of fibrous
connections and the FC between the amygdala and pain-
related brain regions [24] and networks [21]. Therefore,

modulating the dysfunctional FC of the amygdala might be
a potential treatment mechanism in MwoA. Meanwhile,
our recent study demonstrated that taVNS can modulate
the resting-state FC between the bilateral LC and left amyg-
dala and certain pain-related brain regions consistent with
the vagus nerve central projections [25]. So, exploring the
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FIGURE 4: The effects on the functional connectivity (FC) of the left amygdala between stimulations and time factors. SMA: supplementary
motor area. A paired t-test was used. If p <0.05, the difference was statistically significant. Before stimulation, there was no statistical
significance for the FC of (a) the left amygdala and left MFG and SFG, (b) right SMA and paracentral lobule, (c) posterior cingulate
cortex, (d) and frontal superior medial gyrus (taVNS versus staVNS). During stimulation, their differences were significant. The intensity
of the FC decreased in taVNS and increased in staVNS (prestimulation vs. during stimulation). Therefore, the trend of the changed FC
was opposite between taVNS and staVNS.

changed FC of the amygdala in the MwoA during continuous Antinociceptive effects of the taVNS were demonstrated
stimulation helps us to understand the mechanism and inter- in numerous animal experiments [36, 37] and clinical studies
vention effects of taVNS. [38-40]. The taVNS may reduce nociception and pain
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FiGure 5: Correlation analysis between migraine attacks and the functional connectivity (FC) of the left amygdala during taVNS. SMA:
supplementary motor area; rsFC: resting-state FC; supp: superior. The FC between the left amygdala and the right SMA was correlated
with the frequency (p = 0.017 and r = 0.455) and the total time (p = 0.011 and r = 0.482) of migraine attacks during the preceding four weeks.

TaBLE 3: The functional connectivity results using the right amygdala as a seed in 27 MwoA patients.

MNI coordinates

Contrast Cluster Brain region Peak T value Peak Z value X v 7
Real>sham No brain region above the threshold
Real<sham 131 Left middle frontal gyrus 5.54 443 -38 45 21

through multiple mechanisms [41, 42], such as adjusting the ~ [47]. Furthermore, its effects on the pain networks will be dis-
autonomic nervous system, suppressing pain neurons, affect-  cussed in detail below.

ing the behavioral pain response, and modulating the pain The most interesting finding was that taVNS is capable
networks. Reducing the sympathetic hyperactivity and  of regulating the endogenous analgesia loop and descending
increasing the parasympathetic activity may help manage  pain inhibitory system. The FCs decreased between the
pain via taVNS [43], with its anti-inflammatory effect = amygdala and SFG, MFG, and superior medial frontal
together [44]. In animal models, VNS could inhibite nocicep- ~ gyrus during continuous taVNS. This is consistent with
tive activation of trigeminal cervical neurons [45] and Fos  the observation from our previous block-designed study
protein expression [46]. In addition, Pena found that the  that taVNS produced widespread fMRI signal decreased in
VNS facilitated the extinction of conditioned fear responses  the bilateral SFG, MFG, and medial prefrontal gyrus on
by promoting plasticity of the amygdala and infralimbic area ~ MwoA [29]. As we all know, the medial frontal gyrus
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FiGure 6: The functional connectivity (FC) of the right amygdala in MwoA during continuous stimulation (taVNS vs. staVNS). SAG: sagittal;
COR: coronal; TRA: transverse; FWE: familywise error correction. Compared with staVNS, the FC of the right amygdala and left frontal
middle gyrus significantly decreased during taVNS (voxel-level p < 0.001 and cluster-level pp < 0.05).
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FiGure 7: The functional connectivity (FC) comparisons of the right amygdala in different states and stimulations. A paired ¢-test was used. If
P <0.05, the difference was statistically significant. Before stimulation, there was no statistical significance for the FC of the right amygdala
and left middle frontal gyrus (taVNS vs. staVNS), but the difference was significant during stimulation. The FC decreased in taVNS and
increased in staVNS (prestimulation vs. during stimulation). Therefore, the changing trend of the FC was opposite between taVNS and

staVNS.

belongs to the medial prefrontal cortex, a key node of the
endogenous analgesia loop, and descending pain inhibitory
system [19]. Meanwhile, the SFG and MFG are parts of the
prefrontal cortex which is of great importance for pain per-
ception and response [28]. Both the amygdala and prefrontal
cortex were essential for the limbic system widely connected
with other nervous systems and participated in pain and
emotional regulation. Neuroimaging studies [24] have
reported that the FCs were damaged in migraine between
the limbic system and pain-related brain areas. Some
researchers [19] even put forward the neurological dysfunc-

tion model of the limbic pain network in migraine, highlight-
ing the importance of the limbic system in the pathological
mechanism of migraine. Notably, migraine patients have
abnormal increases in FC within and around the limbic
system. For example, Wei and colleagues [48] found that
the FC of the limbic system (bilateral amygdala and right
hippocampus) and left middle occipital gyrus (MOG) sig-
nificantly increased in MwoA patients compared with
healthy controls, and the FC between the left amygdala
and MOG was positively correlated with the duration of
migraine. Therefore, limbic system dysfunction plays an
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important role in the occurrence, development, and regu-
lation of migraines. Further study of acupuncture analgesia
[49] found that the amplitude of low-frequency fluctuation
(ALFF) in left insula decreased in patients with chronic
low back pain after acupuncture, and the decrease of aver-
age ALFF was positively related to the decrease of VAS
value, which confirms that regulating the function of lim-
bic system may be one of the mechanisms for endogenous
analgesia. The taVNS could regulate amygdala activity from a
recent study [50] and caused extensive negative activation in
the limbic system [30]. Therefore, we speculated that taVNS
may modulate the function of the limbic system through the
amygdalae, regulating the pain networks, and exerting an
analgesic effect.

Another important finding was that DMN is crucial to
migraine and can be affected by taVNS. The FC decreased
between the left amygdala and bilateral PCC after taVNS
compared with staVNS in our current trial. Similarly, we
found that taVNS decreased the fMRI signal in the bilateral
PCC on MwoA in our previous block-designed study [29].
It is noteworthy that PCC is one core area of DMN closely
related to pain perception response [31] and inhibition
[51]. Neuroimaging studies [52] have found that headache
was associated with a reduced volume of the mPFC. Husoy
et al. [24] also found the FC of the left amygdala and DMN
increased in MwoA, and the increased FC was associated
with the development of headaches. More and more studies
confirmed that abnormal FC between the limbic system
and DMN was related to pain, so regulating their FC could
alleviate pain, which is supported by the results of analgesic
treatment research. Zou [53] suggested acupuncture could
reduce the FC within DMN to a healthy control level in
chronic migraine patients, and the FC between DMN and
limbic system also decreased in chronic pain patients after
cognitive behavioral therapy [54]. Furthermore, Fang [55]
found that compared with staVNS, the FC decreased
between the DMN and limbic system after one-month
taVNS, suggesting that taVNS can regulate the FC between
the limbic system and DMN. Hence, taVNS is a valuable
choice for pain treatment.

Last but not least, taVNS can modulate the pain matrix.
Our result indicated that the FC between the left amygdala
and right SMA decreased after taVNS. It is generally accepted
that the SMA contributes to the pain matrix. Imaging studies
[56] found that there were functional connections between
the amygdala and SMA, indicating that the function of the
pain matrix was related to the amygdala. The pain matrix
and limbic system had high regional homogeneity (ReHo)
[57] in pain. Solstrand [58] indicated that the resting-state
FC (rsFC) of SMA and the amygdala increased in migraine
patients, and the increased rsFC was negatively correlated
with migraine frequency, which revealed that the pain matrix
and limbic system worked together in pain perception and
regulation, and their increased functional activities were
closely related to pain. Fortunately, the abnormally increased
functional activity of the amygdala and the pain matrix can
be reversed by interventions. For example, Shi [57] found
extensive negative activation of brain regions of the limbic
system and the pain matrix after acupuncture. It is worth
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noting that the FC between the amygdala and pain matrix
decreased after taVNS in our study. Therefore, taVNS can
adjust the abnormal FC between the limbic system and the
pain matrix in MwoA patients.

However, there are some limitations in our research.
Firstly, we only studied the instant effects of taVNS; thus,
more studies are needed to evaluate the long-term impact
of taVNS. Secondly, although crossover-control design can
save the sample size and eliminate the influence of the differ-
ences between individuals, it increased the false-positive rate
of the experiment, and randomized controlled studies will be
considered. Thirdly, we just explored the altered FC using the
seed-to-voxel analysis (same to the published article [24])
during taVNS compared with sham-taVNS. It is a very good
idea and very important to explore the effects of taVNS on
the pain matrix using the ROI-to-ROI analysis in the
follow-up study. Finally, the outcome of this small sample
study maybe not enough to be extended to the public, so
larger samples are needed in the future.

5. Conclusions

From the above discussion, we can conclude that continuous
taVNS at auricular points can modulate the FC between the
bilateral amygdalae and pain-related regions in MwoA,
involving the limbic system, DMN, and pain matrix, with
obvious differences between the left amygdala and the right
amygdala. The taVNS may produce treatment effects by
modulating the abnormal FC of the amygdala and pain
networks, possibly having the same central mechanism as
auricular acupuncture.
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