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Background. Pigmented villous nodular synovitis (PVNS) is a tumor-like proliferative disease characterized by impairment of
daily activities, decreased quality of life, and a high recurrence rate. However, the specific pathological mechanisms are still ill-
defined and controversial. The purpose of this study was to define potential diagnostic markers and evaluate immune cell
infiltration in the pathogenesis of PVNS. Method. The expression profile of GSE3698 was reanalyzed in the Gene Expression
Omnibus (GEO) database. First, differentially expressed genes (DEGs) were identified using the R package “limma” and
analyzed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment. Next, the DEGs were imported into the STRING database and Cytoscape to construct a protein–protein
interaction (PPI) network. Then, cytoHubba and ROC curve analyses were used to determine potential diagnostic biomarkers
of PVNS. Finally, we used CIBERSORT to estimate the proportions of 22 immune cell subtypes in PVNS and analyzed the
correlation between diagnostic markers and infiltrating immune cells. Result. We found 139 DEGs (including 93 upregulated
genes and 46 downregulated genes). TYROBP, FCER1G, LAPTM5, and HLA-DPB1 were identified as potential diagnostic
biomarkers of PVNS. Immune cell infiltration analysis indicated that neutrophils and M2 macrophages might be associated
with the genesis and progression of PVNS. Furthermore, our correlation analysis of diagnostic markers and infiltrating
immune cells found that TYROBP, FCER1G, LAPTM5, and HLA-DPB1 were positively correlated with M2 macrophage
infiltration and that neutrophils, TYROBP, FCER1G, and LAPTM5 were negatively correlated with plasma cell infiltration.
Conclusions. We identified TYROBP, FCER1G, LAPTM5, and HLA-DPB1 as potential diagnostic markers for PVNS and
concluded that immune cell infiltration plays an important role in the genesis and progression of PVNS.

1. Introduction

Pigmented villous nodular synovitis (PVNS) is a relatively
rare, tumor-like proliferative disease in the synovium of
the joint tissue [1]. PVNS favors the knee and hip, mainly
affecting young adults between 20 and 40 years, with an inci-
dence estimated to be between 1.8 per million. Clinically,
PVNS manifests as a locally destructive process, leading to

functional decline and decreased quality of life [2–4]. More-
over, the local recurrence rate is still high even after com-
plete surgical resection, especially for the diffuse type [5]. If
not treated in time, PVNS will lead to joint degenerative
changes, moderate to severe joint deformity, and cortical
bone destruction. Eventually, patients will require total joint
arthroplasty or even amputation [6]. Currently, the primary
therapeutic approach is surgical resection of the entire
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pathological synovial tissue to decrease joint pain and
destruction, followed by postoperative chemotherapy to
reduce the risk of recurrence [7]. However, it is still contro-
versial whether PVNS is an inflammatory reaction or a neo-
plastic hyperplasia disease [8, 9]. Considering the high
recurrence rate, extremely aggressive invasion, and destruc-
tion caused by PVNS, it is crucial to elucidate the molecular
mechanisms, understand the underlying pathological mech-
anisms, and identify novel early diagnostic markers.

Previous studies have shown that the proportions of T
cells, natural killer (NK) cells, and natural killer T (NKT)
cells are significantly increased in the peripheral blood of
PVNS patients. In addition, a significant increase in osteo-
clastogenesis and macrophage activation was observed in
the local synovial membrane [10]. Additional studies have
also suggested that macrophages and macrophage-like cells
are involved in the occurrence and development of PVNS
[11]. West et al. [12] showed that a minority chromosome
involving the colony-stimulating factor 1 (CSF1) gene
ectopic in synovial tissue resulted in the accumulation of
monocytes and macrophages. These observations indicated
that infiltrating immune cells might play an essential role
in the pathological processes of PVNS. Therefore, it is criti-
cal to evaluate whether there is immune cell infiltration in
PVNS and determine the intrinsic differences in infiltrating
immune cell types for PVNS from an immune system per-
spective, which could help elucidate the potential mecha-
nism of disease and suggest possible novel immunotherapy
targets. With the rapid development of science and technol-
ogy, innovative bioinformatic approaches have been devel-
oped that offer a powerful platform to look for potential
diagnostic markers and evaluate immune cell infiltration
[13]. CIBERSORT is a popular analytical tool that utilizes
gene expression-profiling datasets to assess the expression
of immune cells and analyze various immune cell propor-
tions in the synovial tissue of PVNS and osteoarthritis
(OA) [14]. At present, CIBERSORT has been widely used
for research in myocarditis [15], breast cancer [13],
atherosclerosis-related cardiovascular diseases [16], and
many other conditions. However, to our knowledge, no
studies on the use of CIBERSORT to analyze immune cell
infiltration in PVNS have been reported thus far.

In this study, we first downloaded the original micro-
array dataset from the Gene Expression Omnibus (GEO)
database and identified the differentially expressed genes
implicated in PVNS. In addition, Gene Ontology (GO)
functional enrichment and Kyoto Encyclopedia of Genes
and Genomes (KEGG) were used to investigate the biolog-
ical function of DEGs. Subsequently, the STRING data-
base, Cytoscape, and receiver operating characteristic
(ROC) curves were further used to filter and identify
potential diagnostic biomarkers in PVNS. Moreover, in
this study, for the first time, we applied the CIBERSORT
method to analyze the differences in 22 immune cell sub-
sets in PVNS using gene expression profiles. Finally, we
investigated the relationship between the identified diag-
nostic marker genes and infiltrating immune cells to help
better understand the pathological immune mechanisms
of PVNS.

2. Materials and Methods

2.1. Data Source and Data Preprocessing. We downloaded
the GSE3698 RAW dataset from the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo), which
contained 11 cases of PVNS synovial tissue and 19 cases of
OA synovial tissue. The gene annotation platform of the
GSE3698 dataset was GPL3050. First, the data were prepro-
cessed using the “limma” package of R/Bioconductor [17].
Subsequently, probes were annotated using an annotation
platform file. Probe sets without known annotation, mapped
to multiple Gene IDs, or did not map to any Gene ID were
removed. In cases where a gene corresponds to a plurality
of probe sets, the maximum value was used as the gene
expression value. Eventually, 30 samples and 9647 genes
were processed for subsequent analysis.

2.2. Differentially Expressed Gene (DEG) Identifications. The
R package “limma” was used to screen the differentially
expressed genes, with absolute log2 fold change ðlogFCÞ > 0:5
and P < 0:05 as threshold. Volcano plots were produced using
the R package “ggplot2,” and heat maps were produced using
the R package “pheatmap” for differentially expressed genes.
According to the logFC values, the top 10 genes upregulated
and downregulated were selected to construct the heat map.

2.3. Pathway Enrichment Analyses. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
were performed using Database for Annotation, Visualiza-
tion, and Integrated Discovery (DAVID) tool (version 6.8)
[18]. The GO terms and KEGG pathways with P < 0:05
and count > 1 were considered statistically significant and
visualized through the R package “Goplot.”

2.4. Protein-Protein Interaction (PPI) Network Construction
and Hub Gene Identification. The Search Tool for Retrieving
Interacting Genes (STRING), which contains a database of
known and predicted protein-protein interactions (PPI),
was used to construct PPI networks of differentially
expressed genes (confidence score cutoff = 0:5) [19]. The
gene clusters were then imported into Cytoscape (version
3.9.0.) to visualize the networks [20]. Three analysis methods
were used to screen out the top 13 hub genes, respectively,
namely, Degree, Maximum Neighborhood Component
(MNC), and Maximal Clique Centrality (MCC) in the
Cytoscape plugin cytoHubba [21]. In addition, we looked
for shared Hub genes of selection between three analysis
methods and were visualized by Venn diagrams in R pack-
age “VennDiagram.”

2.5. ROC Curve Verification of Hub Genes. A receiver oper-
ating characteristic (ROC) curve was drawn, and an area
under the curve (AUC) was calculated in R package “pROC”
according to gene expression profile data of hub genes. In
general, we considered AUC values of >0.9 indicated high
diagnostic performance [22].

2.6. Immune Cell Infiltration Analysis. First, the GSE3698
expression matrix data and LM22 matrix transform gene
expression were uploaded into R (version 4.1.2); the source
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code of CIBERSORT and the LM22 matrix transform gene
expression were obtained from the CIBERSORTx website
(https://cibersortx.stanford.edu/). Filtered out samples with
P > 0:05 and removed noninfiltrating immune cells. The dif-
ferences in immune cell infiltration between PVNS and OA
samples were obtained in R package “vioplot.” The propor-
tion of infiltrating immune cells in the sample is plotted in
R package “ggplot2,” and the R package “corrplot” draws a
heat map of infiltrating immune cell correlations.

2.7. Correlation Analysis between Diagnostic Markers and
Infiltrating Immune Cells. We performed Spearman correla-
tion analysis between the expression matrix data of diagnos-
tic markers and infiltrating immune cells. Data were
visualized using the ggplot2 package.

3. Results

3.1. DEG Identifications. We identified a total of 139 DEGs
(including 93 upregulated DEGs and 46 downregulated
DEGs) in PVNS synovial tissue compared with OA synovial
tissue, and a volcano plot is shown in Figure 1(a). A heat
map of DEGs is shown in Figure 1(b). In addition, the heat
map for the top 10 genes upregulated and downregulated
according to the logFC values is shown in Figure 1(c).

3.2. Pathway Enrichment Analyses. We further performed
GO and KEGG pathway enrichment analyses on DEGs
using the DAVID database to explore the potential patho-

logical process of PVNS. Functional enrichment analysis
revealed that 44 biological process (BP), 30 cellular compo-
nent (CC), 18 molecular function (MF) (Table S1), and 22
KEGG pathways (Table S2) were statistically significant.
We screened out the top three GO-BP, GO-CC, and GO-
MF pathways and drew a circle plot showing the number
of genes enriched in each GO pathway (Figure 2(a)). The
top three GO-BPs were antigen processing and
presentation of exogenous peptide antigen via MHC class
II, immune response, antigen processing, and presentation
of peptide or polysaccharide antigen via MHC class II. The
top three GO-CC terms were extracellular exosome, MHC
class II protein complex, and lysosomal membrane; the top
three GO-MF terms were MHC class II receptor activity,
collagen binding, and MHC class II protein complex
binding. Figure 2(b) shows the top three KEGG pathways
and the related genes enriched in each pathway. The top
three KEGG pathways were rheumatoid arthritis, asthma,
antigen processing, and presentation.

3.3. PPI Network Construction and Hub Gene Identification.
We uploaded 139 DEGs into the STRING database to con-
struct PPI networks visualized by the Cytoscape software.
The PPI network showed 90 nodes, where each node repre-
sents a DEG, including 25 upregulated genes and 65 down-
regulated genes (Figure 3). The top 13 genome modules
were obtained from the PPI network through three methods:
MCC, MNC, and degree in the cytoHubba plugin of the
Cytoscape software. We screened 8 hub genes (TYROBP,
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FCER1G, LAPTM5, HLA-DPB1, CD74, HLA-DPA1, HLA-
DQB2, PLEK) with upregulated expression by taking the
intersection of genome modules (Figure 4).

3.4. ROC Curve Verification of Hub Genes. We then assessed
the diagnostic sensitivity of the hub genes by ROC curve
analysis. The area under the curve (AUC) for TYROBP
was 0.962 (95% confidence interval (CI): 0.904-1.000)
(Figure 5(a)); the area under the curve (AUC) for FCER1G
was 0.957 (95% confidence interval (CI): 0.890-1.000)
(Figure 5(b)); the area under the curve (AUC) for LAPTM5
was 0.947 (95% confidence interval (CI): 0.851-1.000)
(Figure 5(c)); the area under the curve (AUC) for HLA-
DPB1 was 0.909 (95% confidence interval (CI): 0.796-
1.000) (Figure 5(d)); the area under the curve (AUC) for
CD74 was 0.871 (95% confidence interval (CI): 0.729-

1.000) (Figure 5(e)); the area under the curve (AUC) for
HLA-DPA1 was 0.727 (95% confidence interval (CI):
0.508-0.957) (Figure 5(f)); the area under the curve (AUC)
for HLA-DQB2 was 0.842 (95% confidence interval (CI):
0.694-0.990) (Figure 5(g)); the area under the curve (AUC)
for PLEK was 0.866 (95% confidence interval (CI): 0.704-
1.000) (Figure 5(h)). Based on the high diagnostic value of
AUC > 0:9 [22], we identified TYROBP, FCER1G, LAPTM5,
and HLA-DPB1 as potential diagnostic markers in PVNS.

3.5. Immune Cell Infiltration Analysis. A violin plot of differ-
ences in immune cell infiltration suggested that 19 types of
immune cell infiltration were present in PVNS samples. At
the same time, the infiltration of monocytes, naive CD4+ T
cells, and M0 macrophages was not detected in PVNS. M2
macrophages (P = 0:017) and neutrophils (P = 0:047) were
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expressed at significantly higher levels in PVNS than in OA
(Figure 6(a)). Figure 6(b) shows the individual sample’s pro-
portion of infiltrated immune cells. A correlation heat map
of the 19 types of infiltrating immune cells revealed that reg-
ulatory T cells had the greatest positive correlation with rest-
ing mast cells (r = 0:88). CD8+ T cells had a positive
correlation with activated CD4+ memory T cells (r = 0:71).
Resting dendritic cells had a positive correlation with activated
mast cells (r = 0:62). M1 macrophages had the greatest nega-
tive correlation with activated dendritic cells (r = −0:68).

Gamma-delta T cells had a negative correlation with CD8+
T cells (r = −0:66) and follicular helper T cells (r = −0:66).
Plasma cells had a negative correlation with neutrophils
(r = −0:64), M2 macrophages (r = −0:58), and CD8+ T cells
(r = −0:56). Naive B cells had a negative correlation
(r = −0:61) with memory B cells (Figure 6(c)).

3.6. Correlation Analysis between Diagnostic Markers and
Infiltrating Immune Cells. A correlation analysis was per-
formed among four diagnostic markers, TYROBP, FCER1G,
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LAPTM5, and HLA-DPB1, and 19 types of infiltrating
immune cells. The results showed that LAPTM5 was posi-
tively correlated with M2 macrophages (r = 0:53, P =
0:0058) and neutrophils (r = 0:43, P = 0:0027) and nega-
tively correlated with plasma cells (r = −0:5, P = 0:0097);
FCER1G was positively correlated with M2 macrophages
(r = 0:54, P = 0:0049) and neutrophils (r = 0:4, P = 0:04)
and negatively correlated with plasma cells (r = −0:58, P =
0:0021); TYROBP was positively correlated with M2 macro-
phages (r = 0:49, P = 0:011) and neutrophils and negatively
correlated with plasma cells (r = −0:47, P = 0:015); HLA-
DPB1 was positively correlated with M2 macrophages
(r = 0:43, P = 0:029) and neutrophils (r = 0:4, P = 0:042)
(Figure 7).

4. Discussion

PVNS is a relatively rare tumor-like proliferative disease of
the knee joint. As the disease progresses, local manifestations
include artificial knee effusions, hemosiderin deposition,
synovial hyperplasia, and bone erosions. Moderate to severe
joint destruction and stiffness due to recurrent hemarthrosis
may also occur [2]. If the articular cartilage is severely
eroded, cortical bone destruction will necessitate total syno-
vectomy, total knee replacement, or even amputation. More-
over, patients typically relapse after discontinuation of
therapy [23]. PVNS progression is usually insidious and
begins many years before the onset of clinical symptoms. It
will cause a substantial economic and psychological burden
to the patient.

The GSE3698 dataset was downloaded from the GEO
database, and 139 DEGs were identified. GO analysis
revealed that these genes were mainly involved in antigen
processing and presentation of exogenous peptide antigens
via MHC class II and the immune response. KEGG analysis
revealed that these genes were mainly involved in rheuma-
toid arthritis, asthma, and antigen processing and presenta-
tion. The above results suggested that inflammation and

immunological reactions might play an essential role in
PVNS. Zhao et al. confirmed that increased immune cell
infiltration and cytokine secretion in PVNS synovial tissue
affected its pathological process [10]. Cao et al. [24] found
that inflammatory factors were significantly upregulated in
PVNS knee synovial fluid. Therefore, our conclusions are
consistent with the above reports.

Cytoscape is an open-source software project for inte-
grating biomolecular interaction networks with high-
throughput expression data and other molecular states into
a unified conceptual framework [20]. The cytoHubba plugin
ranks nodes with various algorithms based on network char-
acteristics [21]. In this study, based on three of these algo-
rithms, we identified TYROBP, CD74, PLEK, HLA-DPA1,
HLA-DQB2, LAPTM5, HLA-DPB1, and FCER1G as the
hub genes of PVNS. ROC analysis is a tool for evaluating
model accuracy and has been commonly used for disease
screening, diagnosis, treatment, and prognosis [22]. We fur-
ther predicted the diagnostic value of 8 hub genes using
ROC curves. The results showed that TYROBP, FCER1G,
LAPTM5, and HLA-DPB1 could be used as high-value diag-
nostic markers for PVNS.

TYROBP is a type I transmembrane protein, also known
as DAP12, consisting of a leader peptide, cysteine residues, a
transmembrane fragment of aspartic acid residues, and a
cytoplasmic tyrosine activation motif containing an immu-
noreceptor domain [25]. TYROBP is expressed in immune
cells such as macrophages, monocytes, and osteoclasts [26].
Studies have shown that upregulated TYROBP might pro-
mote osteoporosis through osteoclasts [27]. Given that oste-
oclasts are essential in the pathological development of
PVNS [28], we believe that TYROBP upregulation might
be involved in the pathological progression of PVNS by reg-
ulating osteoclast differentiation. FCER1G is located on
chromosome 1q23 and the gamma subunit of immunoglob-
ulin E (IgE) encoding the crystallizable fragment (Fc) region
[29]. Early studies found that various immune receptor acti-
vation signals transduced by FCER1G were particularly
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important in chronic responses such as autoimmunity and
chronic infection [30]. FCER1G recognizes and eliminates
non-self-antigens in normal immune system states but may
trigger destructive inflammation, immune cell activation,
phagocytosis, oxidative burst, and cytokine release in patho-
logical conditions [31]. Furthermore, Dang et al. [32] discov-
ered that FCER1G might be an ideal candidate for a robust,
universal, and optimal marker of both macrophages and
immune system players. Considering the macrophage accu-
mulation in the synovial tissue PVNS, we believe that high
expression of FCER1G might be involved in PVNS inflam-
mation and immune pathways through macrophages.
LAPTM5, also known as E3 protein, is a lysosomal mem-
brane protein preferentially expressed in immune cells that
interacts with the Nedd4 family of ubiquitin ligases, which
play a role in hematopoiesis by preventing lymphocyte
hyperactivation [33]. LAPTM5 is a positive regulator of the
inflammatory signaling cascade in macrophages, and low
expression of LAPTM5 inhibits the bladder cancer cell cycle
[34, 35]. The above studies indicated that high expression of

LAPTM5 might participate in the cascade regulation of the
inflammatory signaling pathway, regulate the cell cycle,
and stimulate cell hyperproliferation in PVNS. HLA-DPB1,
located in the HLA class II region, is present on the cell sur-
face of antigen-presenting cells. Genetic variants in HLA-
DPB1 are associated with various autoimmune diseases,
including rheumatoid arthritis, Graves’ disease, and multiple
sclerosis [36]. However, whether HLA-DPB1 is associated
with PVNS remains unclear.

To further explore the pathological process of immune
cell infiltration in PVNS, we performed a comprehensive
assessment using CIBERSORT. It is noteworthy that we used
OA synovium as the control group. A certain degree of
immune infiltration changes was also observed in the OA
synovium. Some studies reported that, compared with nor-
mal synovium, there was no significant difference in M2
macrophages and neutrophils in OA synovium [37, 38].
Our results suggested that the infiltration of M2 macro-
phages and neutrophils was significantly increased in PVNS
synovial tissue compared to OA synovial tissue. Our results
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further suggested that these two types of immune cell infil-
tration might play an essential role in the pathogenesis of
PVNS. Previous studies have shown abnormal proliferation
of macrophages and high expression of macrophage markers
in the pathological process of PVNS [11]. Another study has
shown that synovial tissue in PVNS abnormally secretes
colony-stimulating factor 1, which recruits macrophages
through binding to colony-stimulating factor 1 receptor to
abnormally accumulate and locally form tumor-like masses,
which constitute most of the tumor cell population and pres-
ent as a tumor landscape effect in PVNS synovium [12]. In
addition, the recruited macrophages could be polarized to
the M2 phenotype [39, 40]. It has been reported that
tumor-associated macrophages display an M2 macrophage
phenotype, which can promote tumor growth and angiogen-
esis and invade local tissues. Therefore, we speculate that the
highly infiltrated M2 macrophages in the PVNS synovium
might be involved in mass growth and local bone erosion.
Neutrophils can induce RANKL (receptor activator of NF-
κB ligand) expression and induce osteoclast formation [41,
42]. Several studies have shown that a large number of
osteoclast-type giant cells in PVNS synovial tissue could
affect local bone remodeling, further leading to osteolysis
and cortical bone destruction [10, 28]. Therefore, we believe
that the highly infiltrated neutrophils in the PVNS synovium
might lead to local osteolysis and cortical bone destruction
through osteoclasts. Additionally, we revealed details of the
correlation of immune cell infiltration and found that regu-
latory T cells had the greatest positive correlation with rest-
ing mast cells. CD8+ T cells had a positive correlation with
activated CD4+ memory T cells. Resting dendritic cells had
a positive correlation with activated mast cells. M1 macro-
phages had the greatest negative correlation with activated
dendritic cells. Gamma-delta T cells had a negative correla-
tion with CD8+ T cells and follicular helper T cells. Plasma
cells had a negative correlation with neutrophils, M2 macro-
phages, and CD8+ T cells. Naive B cells had a negative cor-
relation with memory B cells.

The correlation analysis displayed that FCER1G,
LAPTM5, TYROBP, and HLA-DPB1 were positively corre-
lated with M2 macrophages and neutrophils. FCER1G,
LAPTM5, and TYROBP were negatively correlated with
plasma cells. Combined with the above results, these results
suggested that the high expression of FCER1G, LAPTM5,
TYROBP, and HLA-DPB1 might promote the recruitment,
differentiation, and proliferation of macrophages and neu-
trophils and further participate in the occurrence and devel-
opment of PVNS. The effects of plasma cells on PVNS have
not been studied thus far. It has been reported that plasma
cells can produce a large number of cytokines and antibodies
during tumor infiltration [43]. These antibodies could fur-
ther promote antitumor immunity by driving antibody-
dependent cellular cytotoxicity (ADCC), phagocytosis, and
complement activation and enhancing antigen presentation
by dendritic cells [44]. In addition, in this study, we found
that plasma cells were significantly negatively correlated
with neutrophils and M2 macrophages through correlation
analysis. Therefore, we inferred that high expression of
FCER1G, LAPTM5, and TYROBP might weaken the antitu-

mor protective effect of plasma cells by reducing plasma cell
infiltration. Our inferences require further experimental
studies to demonstrate the interaction between the hub
genes and immune cells infiltrated in PVNS.

However, our research has certain limitations. First, the
samples in GSE3698 are unpaired, so more paired sample
data are needed to validate our conclusions. Second,
although the CIBERSORT analysis showed lower estimation
bias than other methods, it was based on limited genetic
data, which might still bias the final results. Third, the func-
tion and immune cell infiltration of the four biomarkers in
PVNS were inferred by bioinformatics analysis. An experi-
mental study with a larger sample size should be performed
to validate our conclusions.

5. Conclusions

In this study, we found for the first time that LAPTM5,
FCER1G, TYROBP, and HLA-DPB1 might be novel diag-
nostic markers for PVNS. In addition, for the first time,
the infiltration of immune cells in the pathological process
of PVNS was identified by CIBERSORT, and we found that
M2 macrophages and neutrophils might be involved in the
immune regulation process of PVNS. LAPTM5, FCER1G,
TYROBP, and HLA-DPB1 were positively correlated with
M2 macrophage and neutrophil infiltration, and LAPTM5,
FCER1G, and TYROBP were negatively associated with
plasma cell infiltration. These abnormally expressed genes
and immune cells might play vital roles in the pathological
process of PVNS. Further exploration of the regulatory
interaction between these genes and immune cells will pro-
vide new clinical diagnostic markers and therapeutic targets
for PVNS.
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