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Newborn screening for genetic disorders: Current status and
prospects for the future
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ABSTRACT
Newborn screening (NBS) is a public health service aimed at identifying
infants with severe genetic disorders, thus providing effective treatment
early enough to prevent or ameliorate the onset of symptoms. Current NBS
uses biochemical analysis of dried blood spots, predominately with time-
resolved fluorescence immunoassay and tandem mass spectrometry, which
produces some false positives and false negatives. The application of enzy-
matic activity-based testing technology provides a reliable screening method
for some disorders. Genetic testing is now commonly used for secondary or
confirmatory testing after a positive result in some NBS programs. Recently,
next-generation sequencing (NGS) has emerged as a robust tool that enables
large panels of genes to be scanned together rapidly. Rapid advances in NGS
emphasize the potential for genomic sequencing to improve NBS programs.
However, some challenges still remain and require solution before this is
applied for population screening.
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INTRODUCTION

Newborn screening (NBS) is the process by which infants
are tested for genetic disorders, most of which are consid-
ered to be severe, with significant morbidity and mortality.
The purpose of NBS programs is to detect infants before
symptoms manifest. Treatment is available, so interven-
tion can be provided early enough to reduce the potential
disabilities or death, allowing affected children to live
healthier lives. The history of NBS began with phenylke-
tonuria (PKU) screening in the early 1960s, which achieved
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much success.1 However, a new question has been raised
subsequently: Which disorders should be detected? In
1968, commissioned by the World Health Organization,
Wilson and Jungner2 developed criteria to assess the value
and appropriateness of NBS programs, some of which
were modified. With the Wilson and Jungner criteria as
a guideline, new disorders were gradually added into the
screening panels, which vary greatly between regions,
mainly depending on local prevalence. However, domi-
nated by single-disease screening, NBS expanded slowly
and failed to meet the needs of population screening
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due to obvious limitations including low efficiency and
high false positive/negative results. A revolutionary turning
point came in the 1990s with the introduction of tandem
mass spectrometry (MS/MS), which makes it possible to
screen for a large number of inherited metabolic disor-
ders (IMDs) simultaneously in a single assay, improving
the efficiency of NBS enormously and expanding the NBS
panel.3 Enzymatic activity-based testing technology also
provides a reliable screening method for some disorders.
Recently, with advances in next-generation sequencing
(NGS), genomic testing technologies have emerged as pow-
erful tools to identify more disorders, especially serious
conditions that cannot be diagnosed with traditional tests,
presenting potential applications for NBS in the foresee-
able future. However, numerous challenges still remain and
need to be addressed. In addition, the development of new
and improved therapeutics has also led to inclusion of new
diseases in NBS programs.

SPECIFIC METABOLIC TESTING-BASED
NBS

Single-disease screening

In 1963, Professor Guthrie et al. reported a bacterial inhi-
bition assay for the detection of phenylalanine to screen for
PKU, pioneering the history of NBS.1 Later, the inclusion
of congenital hypothyroidism (CH) in NBS programs was
made possible by the development of radioimmunoassay in
1974.4 Guided by the Wilson and Jungner criteria, NBS
programs gradually add other certain disorders into pan-
els, which differ among regions. One of the most probable
reasons might be associated with the local prevalence of
particular disorders. However, attempts to expand the pan-
els seemed to be difficult. They were based on the paradigm
of detecting one disorder in one assay. Few disorders
were added into NBS programs until the 1990s, and they
most commonly included galactosemia, congenital adrenal
cortical hyperplasia, glucose-6-phosphate dehydrogenase
deficiency, maple syrup urine disease, homocystinuria, and
cystic fibrosis.5 Among them, screening for PKU and CH,
with high prevalence, was commenced in many countries,
resulting in greatly improved outcomes. In recent years,
scientific advances have led to a better understanding of
genetic disorders and the availability of improved thera-
peutics, allowing the inclusion of some new diseases in
NBS panels. For example, the fast approval of drugs related
to Duchenne muscular dystrophy (DMD), subsequent with
more available options for the treatments, allowed many
NBS programs to provide new assays to screen for DMD,6,7

a lethal progressive X-linked mode of inheritance affecting
approximately 1:5000 live male births worldwide.8 His-
torically, the primary approach to DMD NBS has been
through the detection of creatine kinase enzyme activity

by fluorescence measurement, which led to a higher num-
ber of false positive results. In 2021, Bao et al. established
a NBS system for DMD through assessment of the MM
isoenzyme of creatine kinase (CK-MM) activity by time-
resolved fluoroimmunoassay, with 10 252 male neonates
screened.9 Genetic testing was carried out for four cases
whose CK-MM level was greater than 700 ng/mL and ulti-
mately two cases were diagnosed, an incidence of 1 in
5216. As a result, the feasibility of this method of NBS for
DMD was demonstrated. Although single-disease screen-
ing brings benefits, the process is slow and laborious in
which one metabolite is analyzed in one test for one disor-
der, showing obvious limitations of low efficiency as well
as a large number of false positives/negatives. Given that
screening results could be easily affected by some fac-
tors such as gestational age, birthweight, time of blood
collection, and selection of positive cutoffs,10–12 a second
screening test is usually needed.

Multidisease screening

In the 1990s, the advent of tandem mass spectrome-
try (MS/MS) promoted the rapid development of NBS.3

Compared with traditional screening technologies, MS/MS
allows for simultaneous detection of several diseases in
one dried blood spot (DBS), greatly improving screening
efficiency. Tandem mass spectrometry has emerged as an
effective method in NBS, which currently enables upwards
of 50 IMDs to be identified in one single analysis, including
amino acids disorders, organic acidurias, and mitochon-
drial fatty-acid oxidation. For example, Zhao et al. reported
the NBS outcomes of three million newborns who under-
went MS/MS screening for IMDs in the NBS center of
Zhejiang province from 2009 to 2018.13 Twenty-eight dis-
eases were diagnosed and the overall incidence was 1 in
4187. This study also indicated that incremental cost–utility
ratio for the screened group was CNY−768 428.76/quality-
adjusted life year compared to the nonscreened group
and the benefit-cost ratio was 6.09, which demonstrated
that NBS using MS/MS could be considered cost effec-
tive. Nowadays, the MS/MS method has been expanded to
screen for additional disorders, such as congenital adreno-
cortical hyperplasia, severe combined immunodeficiency
(SCID), lysosomal storage disease (LSD), and sickle cell
disease.14–17 Although MS/MS is a milestone in NBS,
some bottlenecks remain: (1) Screening results are sus-
ceptible to false positive results due to factors including
gestational age, birthweight, nutrition, regional or eth-
nic differences, and medication, resulting in maternal and
family anxiety;18,19 (2) High numbers of false negative
results occur for some disorders such as citrin deficiency,
multiple acyl-CoA dehydrogenase deficiency, methyl-
malonic aciduria and maple syrup urine disease in which
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metabolites are usually normal during the neonatal period
or in the absence of disease, leading to misdiagnosis;20

(3) It is a metabolite test and cannot determine geno-
type; (4) There is another group of common disorders
that are not covered by MS/MS, such as osteogenesis
imperfecta, Wilson’s disease, and disorders of glucose
metabolism.21,22

ENZYMATIC ACTIVITY TESTING-BASED
NBS FOR LSDs

Based on the availability of enzyme replacement therapies,
LSDs are candidates for NBS. Chamoles and co-workers
were the first to develop the fluorometric method for anal-
ysis of lysosomal enzyme activities in DBS.23–26 This
method has been adopted by most NBS laboratories
because of easy storage and transportation, as well as high
sensitivity. For example, Kang et al. investigated a large
NBS program for Gaucher disease by fluorometric assay. A
total of 80 855 newborns were screened and three had pos-
itive biochemical results, of which one was confirmed to
have Gaucher disease by genetic testing.27 The validity of
the fluorometric assay is validated; however, it is impossible
to measure the activity of various enzymes simultaneously.
Recently, MS/MS have been applied in LSD screening
programs in many countries, with the advantage of high
specificity and high sensitivity, and the ability to measure
multilysosomal enzymatic activities simultaneously, which
appears to be suitable for carrying out high-throughput
NBS for LSD.28–30 In 2019, Wasserstein et al. reported
the New York pilot NBS program for LSD. A total of
65 605 newborns were screened and 23 were diagnosed,
including one infant with Pompe disease, 15 infants with
Gaucher disease and seven infants with Fabry disease.31 In
2020, Chein et al. reported the first 70 000 newborns screen
by an 8-plex LSD MS/MS assay that included screen-
ing for mucopolysaccharidosis (MPS) I, II, 3B, 4A and
6, plus Pompe, Fabry and Gaucher diseases, emphasizing
the advantage of the MS/MS method for LSD NBS.16 It
has also been suggested that MS/MS assay is validated as
a more specific, powerful, and efficient tool than the flu-
orometric assay, providing a multiplex solution of NBS
for LSDs.32,33 Currently, although measurement of enzy-
matic activities is considered to be the first-tier method
for LSDs screening, either by MS/MS or fluorometric
assay, it has shown a significant number of false posi-
tive results, mainly because of the presence of pseudo
deficiencies.34 Thus, genetic testing is often conducted
in many NBS programs to verify the patients with low
enzyme activity. In addition, recent data have shown that
a second-tier analysis of biomarkers appears to be a pow-
erful tool to reduce high false positive rates associated with
pseudo deficiencies in NBS of Krabbe disease, MPS I, and
MPS II.35–37

GENETIC TESTING-BASED NBS

In recent years, rapid advances in genetic testing have led
to its increasing use in NBS. Genetic testing could pro-
vide specific diagnosis at the molecular level or detect
disorders effectively that could not be identified by current
biochemical or physical assays, thus providing a basis for
genetic counseling and eugenics. Generally, technologies
such as Sanger sequencing, quantitative polymerase chain
reaction (qPCR), and high-resolution melting analysis can
be used for diseases with typical and characteristic clinical
phenotypes, single-gene pathogenicity, or clear pathogenic-
ity sites. Next-generation sequencing, a high-throughput
sequencing technology, which includes panel sequenc-
ing, whole-exome sequencing (WES), and whole-genome
sequencing (WGS) can be used for diseases with atypi-
cal clinical presentations, complex phenotypes, multigene
pathogenicity or unclear pathogenicity sites. Multiplex
ligation-dependent probe amplification also plays an impor-
tant role in genetic disorders characterized by copy-number
variation, such as congenital adrenal hyperplasia, DMD,
and DiGeorge syndrome.

Single-disease genetic screening

Genetic screening for hearing loss (HL)

Approximately 70% of individuals with HL have a genetic
etiology.38,39 Newborn hearing screening has been widely
used in clinical practice. However, it is difficult to identify
neonates with late-onset and progressive hearing impair-
ment or susceptibility to ototoxic drugs. Morton and Nance
were the first to propose that the genetic screening of a
small number of HL-associated genes (GJB2, SLC26A4,
and MT-RNR1) could improve the detection of late-onset
prelingual HL.38 Afterwards, genetic hearing screening
programs have been conducted in many regions, achieving
a tremendously success worldwide. Hao et al. reported a
large-scale newborn deafness genetic screening of 142 417
neonates in Wuhan, China. The variants in GJB2, SLC26A4
and MT-RNR1 genes were assayed using qPCR. In total,
4289 (3.01%) newborns were found to carry at least one
variant, suggesting that genetic screening can improve the
detection rate of HL.40

Genetic screening for spinal muscular atrophy (SMA)

Spinal muscular atrophy is a common autosomal recessive
disorder in humans, caused by the homozygous absence
of the survival motor neuron gene 1, with an incidence
of 1/10 000. The approval of SPINRAZA (nusinersen),
an antisense oligonucleotide drug, allowed SMA to be
included in the Recommended Uniform Screening Panel
(RUSP) in 2018.41,42 Unlike conventional NBS practices,
SMA does not have a specific biochemical analyte; thus
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NBS programs come with genetic assays for SMA screen-
ing and the feasibility has been demonstrated. Chien et al.
reported a NBS program of 120 267 newborns for SMA
using real-time PCR (RT-PCR) combined with droplet
digital PCR (ddPCR) as second-tier testing in Taiwan,
China. Seven of 15 screen-positive infants were finally con-
firmed as having SMA, and the incidence was 1/17 181.43

Kariyawasam et al. used the same method to screen 103 903
newborns in Australia. Nine positive patients with SMA
were successfully identified and the incidence of SMA was
1 in 11 544. In addition, 44% (4/9) patients evolved clinical
symptoms within 4 weeks of life, with hypotonia and weak-
ness initially recognized in the neck.44 It is suggested that
NBS can detect patients affected by SMA before symptom
onset and enable early therapeutic intervention.

Genetic screening for SCID

Severe combined immunodeficiency is an X-linked or auto-
somal recessive disorder, which is the most severe type of
primary immunodeficiency. It has been reported that the
survival rate was at least 90% among infants who received
transplants at 3.5 months of age or younger, regardless of
donor type.45 With high specificity and high sensitivity,
quantification of T-cell receptor excision circles in DBS by
qPCR has emerged as the main method of NBS for SCID.46

In 2008, SCID NBS pilot program was conducted in Amer-
ica. Since then, NBS for SCID has been implemented in
the United Kingdom, France, and China.47–49 Ding et al.
estimated the costs and benefits of NBS for SCID in Wash-
ington State, with 86 600 infants screened. They predict an
additional 1.19 newborn infants with SCID detected pre-
clinically through screening in comparison with those who
would have been detected early through family history,
and 0.40 deaths averted annually. The incremental cost-
effectiveness ratio estimate is roughly $35 000 per life-year
saved and a benefit-cost ratio of 5.31, finding that NBS for
SCID helps improve survival and can be considered cost
effective and cost beneficial.50

In addition, genetic screening for other diseases has been
put into practice, such as X-linked aglobulinemia and
fragile-X syndrome. Although considered to be a tremen-
dously successful public health program, single disease
genetic screening has certain limitations, especially low
efficiency, because a screening test is used for detecting
only a single identified disorder.

Multidisease genetic screening

In comparison with genetic testing, NGS is a massive
parallel sequencing where large panels of genes can be
sequenced simultaneously at a single assay, greatly improv-
ing efficiency. Depending on the sequencing coverage,
NGS methods can include panel sequencing, WES and

WGS. Currently, NGS is used as a second-tier test in
some NBS studies, which means that children with posi-
tive biochemical results or clinical suspicion are sequenced
by NGS to clarify diagnosis, guide care, and assess
prognosis.51 Yang et al. reported a NBS program used with
536 008 newborns to screen for IMDs using MS/MS com-
bined with NGS as second-tier testing in Jiangsu, China.
A total of 194 cases were finally diagnosed with an IMD
among 1033 primary screening positive cases, with 23
types of IMDs identified.52 This study shows that NGS can
make up for the deficiency of MS/MS and reduce the false
positives effectively.

Recently, technological progress and the dramatic reduc-
tion in cost have led to the introduction of NGS in
some NBS laboratories as a first-tier testing. With rela-
tively low cost, strong pertinence, wide coverage, and short
turnaround time, panel sequencing seems to be a pow-
erful tool, although it cannot be used to find some new
genes or special mutations. Campen et al. designed a tar-
geted panel to cover all coding regions of the following
genes associated with disorders screened for in the United
Kingdom: ACADM (medium chain acyl-CoA dehydroge-
nase deficiency), PAH (PKU), TSHR (CH), CFTR (cystic
fibrosis), and HBB (sickle cell disease). The sensitivity was
100% and the specificity was 99.96%. Turnaround time of a
primary report was within a week and the cost was approx-
imately £71.14/sample. This research suggested that panel
sequencing is feasible and cost-effective as a first-tier NBS
program, although the range of variant types related to the
disorder to be screened for was limited in this research.53

Recently, Hao et al. have successfully developed a panel
of 465 causative genes for 596 inherited diseases to screen
11 484 babies in eight provinces of China, estimating
an average of 0.95% clinical diagnosis rate of mono-
genetic disorders. The turnaround time of a primary report,
including the sequencing period of < 7 days, was within
11 days.54 Luo et al. also designed a panel of 573 genes
related to severe inherited disorders, and performed NGS
on 1127 individuals who had undergone biochemical NBS.
Four newborns were diagnosed with glucose-6-phosphate
dehydrogenase deficiency biochemically and genetically
while an individual who was diagnosed with free carnitine
deficiency by NGS showed negative biochemical results.
The carrier frequencies of mutations in common genes
causing IMDs in China were also investigated. The top
five genes with the highest carrier frequencies of mutations
were PAH (1.79%), ETFDH (1.23%), MMACHC (1.15%),
SLC25A13 (0.98%), and GCDH (0.80%).55

WES and WGS have also been used in some laboratories in
a diagnosed setting, especially for severely ill patients,56

due to the clear advantage of wide coverage where a
large number of variations can be detected and some new
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pathogenic genes or newly discovered diseases can be
identified. Selecting exactly which disorders to screen for
requires careful consideration of factors such as age of
onset, severity, penetrance, treatability, confirmatory test-
ing, and opportunities for surveillance.57 For example, the
results from WES of 159 newborns, including 127 healthy
newborns and 32 neonatal intensive care units (NICU) new-
borns in the BabySeq project were reported. It revealed a
risk of childhood-onset disease in 15/159 (9.4%) newborns
(including 10 healthy newborns and five NICU newborns)
and actionable adult-onset disease risk in 3/85 (3.5%) new-
borns whose parents consented to receive this information.
Carrier status for recessive diseases and pharmacogenomics
variants was also reported in 88% and 5% of newborns,
respectively.58 Willig et al. performed a retrospective com-
parison of a rapid WGS method (STATseq) and standard
genetic testing in a case series from NICU and pediatric
intensive care units (PICU). It was suggested that 20 of
35 (57%) infants were diagnosed with a genetic disease by
STATseq and three of 32 (9%) by standard genetic testing
(P = 0.0002).59 The current second-generation STAT-
seq allows a time to provisional molecular diagnosis of
26 h with >99.5% sensitivity and specificity of genotypes,
which indicates that STATseq appears to be an appropriate
strategy as a first-tier test for infants in NICU and PICU.60

These results suggest that NGS can detect risk and carrier
status effectively, providing basis for genetic counseling.

However, advantages seem to be lost as the gene panel
becomes larger. Although the challenges of higher cost and
greater time requirements might be addressed in the near
future, other challenges still remain.61 One of the most
formidable challenges is the interpretation of variants of
uncertain significance (VUS). It is difficult to infer the
pathogenicity of genetic variants, especially some rare or
novel variants, which may often occur in general popula-
tion screening. Thus, some variants are reported as VUS
because they cannot be classified as either pathogenic or
benign, which can cause concern for families.62,63 An
additional obstacle is the frequent occurrence of unso-
licited findings – unexpected findings that are unrelated
to the initial reason for testing when applying genomic
sequencing.56 Although criteria have been raised to help
avoid unsolicited findings, they cannot be excluded entirely
and controversy has arisen over which data should be
reported.64,65 Furthermore, storage of a substantial amount
of genetic data has also raised many questions, mainly
including what should be stored, the high cost of storing and
stewarding these data, and the potential risk of disclosure
and breaches of privacy.62,63,66

Despite the increasingly attractive usage of NGS, its imple-
mentation as a general practice is therefore still premature
with substantial challenges to be addressed, and it is

unlikely to – and should not – replace present screening
methods.61,67

SUMMARY

In conclusion, NBS has evolved as a standard component
of preventive public health and its panel is continuously
expanding. Specific metabolic testing technologies based
on DBS still play an important role in NBS. With scien-
tific advances, genetic testing and genomic testing have
emerged as a powerful tool. However, both have their
advantages and disadvantages. For some genetic disorders,
the integrated analysis of metabolic and genetic data will
improve the current NBS efficiency, enabling more affected
patients to receive early diagnosis and treatment, improving
their prognosis.
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