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Abstract
Transmembrane protein GARP binds latent TGF-β1 to form GARP:(latent)TGF-β1 complexes on the surface of several cell 
types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-β1. Blocking TGF-β1 activa-
tion by Tregs with anti-GARP:TGF-β1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated 
regressions of murine tumors, indicating that Treg-derived TGF-β1 inhibits anti-tumor immunity. TGF-β1 exerts a vast array 
of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two 
important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-β1 mAbs 
would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no sys-
temic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly 
susceptible Il22r−/− mice treated with anti-GARP:TGF-β1 mAbs. To examine the effects of GARP:TGF-β1 blockade on Ig 
production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions 
of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed 
in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-β1 or 
genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacte-
rial infection or protein immunization in mice. Anti-GARP:TGF-β1 mAbs, currently tested for cancer immunotherapy, may 
thus restore anti-tumor immunity without severely impairing other immune defenses.

Précis
Immunotherapy with GARP:TGF-β1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory 
responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers.

Keywords  GARP · TGF-β1 · Monoclonal antibody · Intestinal bacterial infections · Citrobacter rodentium · Protein 
immunization

Introduction

Transforming growth factor-β1 (TGF-β1) is a potent immu-
nosuppressive cytokine that plays an important role in the 
maintenance of immune tolerance [1, 2]. Most cells, includ-
ing immune cells, produce TGF-β1 in a latent, inactive form, 
in which the mature TGF-β1 dimer is non-covalently associ-
ated with the latency-associated peptide (LAP) [3, 4]. Only 
a few cell types are able to activate the cytokine, by releas-
ing mature TGF-β1 from LAP and allowing its binding to 
the TGF-β receptor. Dendritic cells and epithelial cells can 
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activate latent TGF-β1 deposited in the extracellular matrix 
via binding of integrins αVβ8 or αVβ6, respectively, to RGD 
motifs in LAP [5, 6]. We and others showed that Tregs, B 
cells, and platelets activate latent TGF-β1 presented on their 
surface by a transmembrane protein called GARP [7–9].

Activation of TGF-β1 from GARP:(latent)TGF-β1 com-
plexes on Tregs requires integrin αVβ8 [10]. We recently 
developed monoclonal antibodies against GARP:TGF-β1 
complexes that block TGF-β1 activation and immunosup-
pression by human and mouse Tregs [11, 12]. We showed 
that anti-GARP:TGF-β1 mAbs overcome resistance to PD1/
PD-L1 blockade and induce immune-mediated regressions 
of tumors in mice. In addition to blocking Treg immu-
nosuppression and restoring anti-tumor immunity, anti-
GARP:TGF-β1 mAbs could exert unwanted side effects, 
owing on one hand to their ability to block TGF-β1 acti-
vation from non-Treg GARP-expressing cells, and on the 
other hand to the pleiotropic functions exerted by TGF-β1 
in immunity, including adaptive immunity. Notably but non 
exclusively, TGF-β1 is known to induce switch to IgA pro-
duction in B cells, and differentiation of naïve CD4+ T cells 
into TH17 effectors in presence of IL-6 or into peripheral 
Tregs (pTregs) in presence of IL-2 [13-15]. TH17, pTregs 
and IgA-producing B cells are adaptive immune effectors 
playing important roles in the establishment and mainte-
nance of balanced immune responses at epithelial barri-
ers. The use of blocking anti-GARP:TGF-β1 mAbs for the 
purpose of cancer immunotherapy could therefore perturb 
immunity against bacterial infections in the intestine.

Citrobacter rodentium is a natural murine bacterial patho-
gen causing intestinal infection, inflammation, and disease 
that closely resembles disease caused by enteropathogenic 
Escherichia coli and enterohemorrhagic E. coli in humans. 
Oral gavage of C. rodentium in WT mice causes infection 
and inflammation limited to colon and caecum, which are 
rapidly controlled by the immune system, preventing severe 
intestinal disease [16, 17]. Production of IL-22 is required 
to protect the host against development of severe colitis [18]. 
In the early phase of infection, IL-22 is produced by innate 
immune cells such as group 3 innate lymphoid cells. The 
cytokine is crucial to limit bacterial expansion, notably by 
inducing production of RegIIIβ and RegIIIγ antimicrobial 
peptides by epithelial cells [19, 20]. In later phases, IL-22 
is also produced by CD4+ T cells, including TH17 cells. In 
addition to TH17 cells, adaptive immune responses against 
C. rodentium, which are required to clear the infection [21, 
22], also imply TH1 cells and B cells producing pathogen-
specific IgGs.

Here, we examined whether anti-GARP:TGF-β1 mAbs 
could perturb innate or adaptive immune responses at 
mucosal barriers, using oral gavage of C. rodentium in WT 
or highly susceptible Il22r−/− mice as a model of intestinal 
bacterial infection. We also examined whether the absence 

of GARP:TGF-β1 complexes would alter T cell- or B cell- 
responses against protein immunization in mice carrying 
Treg-, B cell- or platelet-specific deletions of the Garp gene.

Methods

Mice

All mice were bred at the SPF animal facility of the 
UCLouvain. Cell type-specific Garp KOs and WT litter-
mates were obtained by crossing Lrrc32tm1.1Hfuj mice with 
B6.129 (Cg)-Foxp3tm4(YFP/icre)Ayr/J, or Tg(Pf4-icre)Q3Rsko, or 
Cd79atm1(cre)Reth/EhobJ mice. Il22ra1−/− (Il22r−/−) mice were 
generated at the de Duve Institute [23]. Mice were main-
tained in an SPF animal facility at temperatures between 20 
and 24 °C, HR between 40 and 65%, and day–night cycles 
of 12 h–12 h. All animal studies were performed in accord-
ance with national and institutional guidelines for animal 
care, under permit number 2017/UCL/MD/019 from the 
UCLouvain.

Antibodies

Clone 58A2 is a monoclonal mouse IgG2a antibody that 
binds mouse GARP:TGF-β1 complexes and blocks active 
TGF-β1 production by mouse cells in vitro [12]. Three to 
four biweekly intra-peritoneal (i.p.) injections of 250 µg 
of 58A2 mAb in combination with anti-PD1 were previ-
ously shown to exert anti-tumor effects in tumor-bearing 
mice [12]. Here, mice received two weekly i.p. injections 
of 400 µg of 58A2. Clone 1D11 is a monoclonal mouse 
IgG1 antibody that neutralizes active TGF-β [1, 2, and 3] 
(BioXcell).

C. rodentium infections

C. rodentium strain DBS100 (kindly provided by M. Cha-
maillard, Pasteur Institute, Lille, France) was cultured over-
night in LB media at 37 °C. Concentration of bacteria in the 
cultures was assessed by measuring absorbance at 600 nm 
and converting into colony-forming units (CFU). Inoculation 
of C. rodentium (109 CFU in 200 µl of PBS) was performed 
by oral gavage in 3-month-old mice. One day before infec-
tion and 6 days after, 400 µg of anti-GARP:TGF-β1 (clone 
58A2) or anti-TGF-β (clone 1D11) mAbs were injected i.p.. 
Mice were monitored daily for weight change, and sacrificed 
at the time point indicated in the figures, or if weight loss 
was > 20% by comparison today 0.
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Protein immunization

To measure Ig responses, 3-month-old mice were injected 
i.p. with 100 μg ovalbumin (OVA, Sigma) or 30 μg Cholera 
Toxin B subtype (CTB, Enzo Life Science) emulsified in 
100 μl of Imject® Alum solution (Thermofisher) on day 
0, and 100 μg OVA or 30 μg CTB in PBS on day 9. Mice 
were bled on day 16 to measure OVA- or CTB- specific Igs 
in the serum. As indicated in the figures and their legends, 
some mice received 400 µg of anti-GARP:TGF-β1 i.p. on 
day -1 and 6. To measure TH cell responses, 3-month-old 
mice were injected sub-cutaneously (s.c.) with 100 μg OVA 
emulsified in 100 μl of Complete Freund’s Adjuvant (CFA, 
Thermofisher) on day 0, then sacrificed to collect spleens 
on day 14.

Tissue collection and Histology

Colons were collected after sacrifice. Five mm-long ter-
minal fragments were used for RT-qPCR analyses. For 
histological analyses, colons were placed in a Swiss roll 
shape, soaked in 10% formalin for 24 h then embedded into 
paraffin. 7 µm-sections were stained with hematoxylin and 
eosin. Histopathological scoring was adapted from previ-
ous reports [24, 25], by measuring lymphocyte infiltration, 
goblet cell- and crypt- damage, and colonic hyperplasia to 
attribute a colitis score (0: no colitis; 1: scattered inflam-
matory cells in the lamina propria, less than 25% of Goblet 
cell depletion, less than 25% of crypt thickness increase; 2: 
increased numbers of inflammatory cells in the lamina pro-
pria, less than 50% of Goblet cell depletion, less than 50% 
of crypt thickness increase 3: confluence of inflammatory 
cells extending into the submucosa, less than 75% of Goblet 
cell depletion, less than 75% of crypt thickness increase; 
4: transmural extension of the infiltrative inflammatory cell 
severe colitis, 100% of Goblet cell depletion, 100% of crypt 
thickness increase).

Bacteria and CFU counts

Fresh fecal samples were collected, weighed, and homog-
enized in cold sterile PBS (1 ml/100 mg of feces). Bacte-
rial DNA was extracted using QIAamp DNA Stool Mini 
Kit (Qiagen). Copy numbers of the C. rodentium Espb gene 
were measured by qPCR with the following primer set: 5′- 
CGT​CAG​CAG​CCT​TTT​CAG​CTA -3′, and 5′- ATG​CCG​
CAG​ATG​AGA​CAG​TTG -3′ and in 20 µl reaction volumes 
containing Takyon Master Mix (Eurogentec) using StepO-
nePlus device (Thermofisher) with standard Thermal cycling 
parameters (95 °C for 3′; 50 cycles of 95 °C for 10’’ and 
60 °C for 60″).

Livers were collected, weighed and homogenized, and 
titrated in PBS. Series of liver homogenate dilutions were 

spread on LB semi-solid culture medium and incubated at 37 
℃ overnight. Bacterial colonies were counted to determine 
CFUs and normalized to the weight of the livers.

Mixed lymphocyte cultures

15 days after immunization with OVA in CFA, spleens were 
collected and CD4+ T cells were sorted by MACS (Milte-
nyi Biotech) with anti-mouse CD4+ beads. 2 × 105 CD4+ 
cells were seeded with irradiated syngeneic adherent cells 
pulsed with OVA. Adherent cells were obtained by coat-
ing 1 × 106 splenocytes in a 96-well flat-bottomed plate for 
1.5 h, then removing non-adherent cells by washing with 
PBS, and pulsed with OVA (50 µg/ml) for 2 h, before irra-
diation (30 Gy from a 137Cs source). After 96 h of mixed 
lymphocyte culture, supernatants were collected to measure 
cytokines.

RNA extraction and RT‑qPCR

Colonic tissues were disrupted with the Tissue Lyser (Qia-
gen), total RNA was isolated using Nucleospin Mini Col-
umns (Macherey Nagel), and reverse transcribed into cDNA 
(Thermofisher). qPCR was performed in a StepOnePlus 
device (Applied Biosystems) in 20 µl reaction volumes 
containing Takyon Master Mix (Eurogentec), cDNA, and 
primers. Thermal cycling parameters were either fast con-
ditions (95 °C for 3′; 50 cycles of 95 °C for 3’’and 60 °C 
for 30’’) or standard conditions (95 °C for 3′; 50 cycles of 
95 °C for 10’’ and 60 °C for 60’’) depending on the ampli-
con size. The b-actin gene (primers obtained from Euro-
gentec; forward strand: 5′-ATT​GCC​GAC​AGG​ATG​CAG​
AA-3′; reverse strand: 5′-GTC​ATA​CTC​CTG​CTT​GCT​
GA-3′; Taqman probe: 5′-TCA​AGA​TCA​TTG​CTC​CTC​CTG​
AGC​-3′) was used to normalize relative gene expression. 
Primers were obtained from Eurogentec or IDT. The tar-
get genes included Il17a (forward: 5′-GCT​CCA​GAA​GGC​
CCT​CAG​-3′; reverse: 5′-CTT​TCC​CTC​CGC​ATT​GAC​A-3′; 
Taqman probe: 5′-ACC​TCA​ACC​GTT​CCA​CGT​CAC​CCT​
G-3′), Ifng (forward: 5′-TCA​AGT​GGC​ATA​GAT​GTG​GAA​
GAA​-3′; reverse: 5′-TGG​CTC​T GCA​GGA​TTT​TCA​TG-3′; 
Taqman probe: 5′-TCA​CCA​TCC​TTT​TGC​CAG​TTC​CTC​
CAG-3′), RegIIIb (forward: 5′-CTA​CTG​CCT​TAG​ACC​
GTG​CTTTC-3′; reverse: 5′-GAG​TCT​TCA​CAT​TTT​GTC​
CCT​TGT​C-3′; Taqman probe: 5′-GTG​AAG​TTG​CCC​TAT​
GTC​TGC-3′), RegIIIg (forward: 5′-GAG​TGG​AGC​AAT​
GCT​GAT​GTG​ATG​-3′; reverse: 5′-GGG​ATC​TTG​CTT​GTG​
GCT​AGG -), Il6 (forward: 5′-CAG​AGT​CCT​TCA​GAG​AGA​
TAC​AGA​AA-3′; reverse: 5′-TCC​AGC​TTA​TCT​GTT​AGG​
AGA​GCA​TT-3′), Il4 (forward: 5′-GAA​CGA​GGT​CAC​AGG​
AGA​AGG-3′; reverse: 5′-GGA​CTC​ATT​CAT​GGT​GCA​
GCTTA-3′; Taqman probe: 5′-CCT​CAC​AGC​AAC​GAA​
GAA​CAC​CAC​AG-3′) and Il22 (forward: 5′-GCT​GCC​CGT​
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CAA​CACCC-3′; reverse: 5′-CTG​ATC​CTT​AGC​ACT​GAC​
TCCTC-3′; Taqman probe: 5′- TGA​GGT​GTC​CAA​CTT​CCA​
GCA​GCC​A-3′).

ELISA

Total serum IgG, IgM, and IgA were measured according to 
manufacturer instructions using IgG, IgM, and IgA ELISAs 
kits (Thermo Scientific). To measure C. rodentium- spe-
cific serum Igs, bacteria were lysed by sonication in PBS, 
C. rodentium proteins were enriched with bacterial protein 
extraction reagent (Thermo Scientific), then coated over-
night at 4 °C (10 µg/ml, 100 µl) prior to incubation with 
various dilutions of mouse sera as indicated in the figures. 
Similarly, to measure OVA- and CTB- specific Igs, OVA 
(15 µg/ml, 100 µl) or CTB (4 µg/ml, 100 µl) were coated 
overnight at 4 °C on microtiter plates. C. rodentium-, OVA- 
or CTB- specific IgGs, IgMs, and IgAs were measured using 
detection antibodies from the IgG, IgM, and IgA ELISA 
kits. Cytokines in culture supernatants were also measured 
by ELISA (murine IFNγ ELISA, R&D Systems; murine IL-
17a ELISA, with antibodies described in [26]). Absorbance 
readings were made at 450 nm, using a 96-well plate spec-
trophotometer with GloMax Discover (Promega).

Flow cytometry

Splenocytes were stained with antibodies against surface 
markers (CD4, B220, CD41, and GARP) in the presence 
of a viability dye (eBioscience) and anti-CD16/32 to block 
FcγRs using a standard protocol. Tregs were stained with 
anti-Foxp3 using the eBioscience™ FOXP3/Transcription 
Factor Staining Kit (Invitrogen). Analyses were performed 
on a FACS LSR Fortessa flow cytometer (DIVA, BD Bio-
sciences) and data were computed using the FlowJo software 
(Tree Star).

Statistical analyses

Statistical analysis was performed with Prism 5 (Graphpad 
Software) using non-parametric tests (Mann–Whitney), 
One-way ANOVA (Bonferroni multiple comparison post-
tests), and Log-rank Test for survival curves. P-value is 
shown if it is lower than 0.5.

Results

Anti‑GARP:TGF‑β1 mAbs do not aggravate intestinal 
disease caused by C. rodentium infection

Infection of wild-type C57BL/6 (WT) mice by oral gav-
age of C. rodentium is efficiently controlled by innate and 

adaptive immune responses, which prevent severe intesti-
nal disease and weight loss [16, 17]. To determine whether 
TGF-β1 blockade could alter this control, we administered 
anti-GARP:TGF-β1, anti-TGF-β, or PBS one day before 
and six days after the oral gavage (Fig. 1a). Whereas the 
anti-GARP:TGF-β1 mAb (clone 58A2) blocks activation of 
latent TGF-β1 at the surface of GARP expressing cells such 
as Tregs [12], anti-TGF-β mAb (clone 1D11) neutralizes 
active TGF-β1, β2, and β3, whichever their cellular source. 
No obvious symptom and no weight loss were observed, and 
all mice survived in all groups, indicating that TGF-β signals 
are not required to prevent severe intestinal disease in WT 
mice (Fig. 1b and supplementary Fig. 1a).

IL-22 signaling is crucial in the early phase of host 
defense against intestinal infection. In contrast to WT 
mice, Il22−/− and Il22r−/− mice are highly susceptible to 
C. rodentium infection, which causes severe epithelial dam-
age in the intestine, weight loss, systemic bacterial burden, 
and high mortality in these mice [19, 27]. We thus tested 
whether TGF-β1 blockade with anti-GARP:TGF-β1 mAbs 
would increase the severity of disease in these mice. Mice 
receiving control PBS injections started to lose weight 
8 days after infection and had lost 17 ± 8% (mean ± sem) of 
their initial weight by the end of the experiment on day 15 
(Fig. 1c). Only 30% of the mice survived until the end of 
the experiment (supplementary Fig. 1b). Injections of anti-
GARP:TGF-β1 mAbs did not exacerbate weight loss, which 
was even slightly, although not significantly, less pronounced 
than in PBS-injected mice (11% ± 8%). In line with this, 
more than 65% of mice receiving anti-GARP:TGF-β1 mAbs 
survived until the end of the experiment (supplementary 
Fig. 1b). Histological analyses of colons collected 9 days 
after gavage confirmed epithelial damage and inflamma-
tion, which were not more severe in mice that had received 
anti-GARP:TGF-β1 mAbs (supplementary Fig. 1c). We 
used qPCR to measure C. rodentium numbers in the feces 
at multiple time points after oral gavage (Fig. 1d). After an 
initial drop on day 2, C. rodentium numbers per gram of 
feces started to increase on day 3, to reach a maximum of 
108–1010 on day 9. No significant difference was observed 
in mice receiving anti-GARP:TGF-β1 mAbs (Fig. 1d). We 
also measured C. rodentium CFU in liver homogenates, to 
evaluate systemic bacterial burden on day 9. No significant 
difference was observed in Il22r−/− mice that had received 
anti-GARP:TGF-β1 by comparison to PBS (Fig. 1e).

Taken together, these results indicate that anti-
GARP:TGF-β1 mAbs do not reduce control of bacterial 
proliferation nor does it aggravate the severity of disease 
induced by C. rodentium infection in WT mice or in highly 
susceptible Il22r−/− mice.
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Anti‑GARP:TGF‑β1 mAbs do not modify innate 
and adaptive immune responses to intestinal C. 
rodentium infection

Control and clearance of C. rodentium infection require 
both innate and adaptive immune responses [16, 28]. We 
tested whether anti-GARP:TGF-β1 mAbs could alter 
these responses in the intestines of highly susceptible 
Il22r−/− mice. Mice received C. rodentium by oral gavage 
on day 0, and i.p. injections of anti-GARP:TGF-β1 or PBS 
on days -1 and + 6. Weights were measured daily (Fig. 2a), 
and sera and colons were collected 9 days after gavage.

We first measured intestinal levels of mRNAs encod-
ing molecules implicated in innate responses. High sus-
ceptibility to C. rodentium in absence of IL-22 signal-
ing occurs mostly because IL-22 is required to induce 
expression of antimicrobial peptides RegIIIβ and RegIIIγ 
in colonic epithelial cells [19]. Accordingly, we observed 
that RegIIIb and RegIIIg mRNAs were induced in the 
intestines of infected Il22r−/− mice by comparison to non-
infected mice, but to levels ± 10–100 times lower than in 
infected WT mice (Fig. 2b and supplementary Fig. 2). 
Nevertheless, anti-GARP:TGF-β1 mAbs did not reduce 
RegIIIb and RegIIIg expression in infected Il22r−/− or WT 
mice (Fig. 2b, supplementary Fig. 2 and data not shown). 

Fig. 1   Antibody-mediated blockade of TGF-β1 produced from 
GARP:TGF-β1 complexes does not aggravate intestinal disease 
induced by C. rodentium infection. a Schematic representation of the 
experimental design. Three-month-old C57BL/6 wild-type (WT B6) 
or Il22r−/− mice received i.p. injections of PBS, anti-GARP:TGF-β1 
or anti-TGF-β mAbs 1 day before, and 6 days after oral gavage with 
C. rodentium (C.r). b-c Mice were monitored daily for weight loss. 
Data pooled from 2 to 3 independent experiments. Data points rep-
resent mean weight change per group ± sem. n = number of mice per 

group. Statistical analysis was performed by ANOVA with a Bonfer-
roni post-test. d C. rodentium numbers were evaluated by quantifica-
tion of espB gene copy number in the feces by qPCR. Each line rep-
resents values measured in one mouse. e C. rodentium CFUs in the 
livers collected 9 days after oral gavage. Each data point represents 
the value measured in one mouse. Statistical analysis was performed 
with a Mann–Whitney unpaired t-test. No statistically significant dif-
ference was observed between infected mice treated with PBS or anti-
GARP:TGF-β1 (P > 0,05)
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Similar results were observed for expression of Il6 and 
Il22 itself, taken here as representative of innate immune 
responses (Fig. 2b).

We next measured intestinal expression of mRNAs 
encoding CD3ε and cytokines produced by helper T (TH) 

cells. As expected, expression of Cd3e, Ifng, and Il17a 
was clearly induced by comparison to non-infected mice, 
whereas that of Il4 was not. Here again, anti-GARP:TGF-β1 
mAbs did not significantly reduce expression of any of these 
T cell marker or TH cell-derived cytokines by comparison 

Fig. 2   Antibody-mediated blockade of TGF-β1 produced from 
GARP:TGF-β1 complexes do not impair innate or adaptive immune 
responses against intestinal C. rodentium infection. Three-month-old 
Il22r−/− mice received i.p. injections of PBS or anti-GARP:TGF-β1 
mAbs 1 day before, and 6 days after oral gavage with C. rodentium. 
Mice were monitored daily for weight loss and sacrificed on day 9, 
to collect colons and sera. a Weight change in individual mice. Each 
line represents one mouse, with individual mouse ID numbers indi-
cated next to the corresponding line. b-c Expression of the indicated 
genes, normalized to b-actin expression, as measured by RT-qPCR in 

colon samples. d C. rodentium-specific IgM, IgG, and IgA, as meas-
ured in 1/100 dilutions of serum samples by ELISA. Data points 
show mean value (technical duplicates) in each individual mouse 
(mouse ID number is indicated within each data point). Horizontal 
bars represent mean ± sem per group. Data is representative of three 
independent experiments. Statistical analysis was performed with 
a Mann–Whitney unpaired t-test. No statistically significant differ-
ence was observed between infected mice treated with PBS or anti-
GARP:TGF-β1 (P > 0,05)
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to control PBS injections (Fig. 2c). Finally, we measured 
C. rodentium-specific IgM, IgG and IgA in 1/100 dilutions 
of sera by ELISA. Most mice had induced high levels of 
C. rodentium-specific IgM, IgG, and IgA, whether or not 
they had received anti-GARP:TGF-β1 mAbs (Fig. 2d). Inter-
estingly, two mice that had received anti-GARP:TGF-β1 
(mice 5 and 6) did not develop strong IgM, IgG, and IgA 
responses against the bacteria. They correspond to mice 
that did not develop severe colitis and weight loss (Fig. 2a) 
and showed only very minor inductions of TH1 and TH17 
cytokine genes in the colons (Fig. 2c). Thus, they appear to 
correspond to mice that did not develop significant infection 
and consequent immune responses upon oral gavage with 
C. rodentium.

Taken together, these results indicate that neither innate 
nor adaptive immune responses against C. rodentium 
in highly susceptible Il22r−/− mice are altered by anti-
GARP:TGF-β1 mAbs. If anything, anti-GARP:TGF-β1 
mAbs tend to protect Il22r−/− mice against severe intestinal 
disease and mortality induced by C. rodentium infection, 
although differences by comparison to PBS controls were 
not always statistically significant (Fig. 1c, supplementary 
Fig. 1b, and Fig. 2a).

Anti‑GARP:TGF‑β1 mAbs do not alter production 
of antigen‑specific IgM, IgG, or IgA following protein 
immunization

Our group previously reported that blocking anti-
GARP:TGF-β1 mAbs impaired switch to IgA production 
in human B cells stimulated in vitro [9]. We thus sought to 
determine whether TGF-β1 production from GARP:TGF-β1 
complexes could regulate Ig production and isotype switch-
ing in non-infectious immunization models that induce 
strong Ig responses in mice. We primed WT B6 mice with 
ovalbumin (OVA) in alum and boosted them in PBS on day 
9. Mice also received PBS or anti-GARP:TGF-β1 injec-
tions 1 day before and 6 days after priming (Fig. 3a). Immu-
nization induced abundant anti-OVA IgM, IgG, and IgA, 
none of which were reduced by anti-GARP:TGF-β1 mAbs 
(Fig. 3b-c).

Genetic deletion of Garp in Tregs, B cells, or platelets 
does not modify production of antigen‑specific IgM, 
IgG, or IgA following protein immunization

To exclude cell-type-restricted effects of GARP:TGF-β1 
blockade, we performed protein immunizations in mice 
carrying a Treg-, B cell- or platelet-specific deletion of the 
Garp gene. Complete and specific Cre-mediated deletion 
of Garp in the expected cell type is observed in each of 
the three mouse strains, namely Foxp3Cre x Garpfl/fl, Mb1Cre 
x  Garpfl/fl, and Pf4Cre x Garpfl/fl mice (supplementary 

Fig. 3a). All cell-type-specific knock-out (KO) mice have 
serum levels of various Ig isotypes that are similar to those 
found in the corresponding WT littermates (Supplemen-
tary Fig. 3b). Treg-specific Garp KOs and WT littermates 
were immunized with OVA in alum as above. Immunization 
induced similar levels of anti-OVA IgM, IgG, and IgA in 
WT and KOs (supplementary Fig. 4). We also used another 
antigen, cholera toxin B (CTB), to immunize Treg- and other 
cell type-specific Garp KOs and WT littermates (Fig. 4a). 
CTB in alum is also known to induce high levels of antigen-
specific IgM, IgG, and IgA [29, 30]. We confirmed that 
the absence of GARP on Tregs did not modify levels of 
anti-CTB IgM, IgG, and IgA in serum (Fig. 4b-c). Mb1Cre x 
Garpfl/fl and Pf4Cre x Garpfl/fl mice and their WT littermates 
were also immunized with CTB in alum and levels of serum 
anti-CTB IgM, IgG and IgA 16 days after priming were 
similar in B cell- and platelet- Garp KOs by comparison 
to their corresponding WT littermates (Fig. 4b-c). A trend 
towards slightly reduced anti-CTB IgM was observed in B 
cell-Garp KOs, but this difference was not statistically sig-
nificant (Fig. 4c).

Genetic deletion of Garp in Tregs, B cells, or platelets 
does not impair OVA‑specific TH responses 
following OVA immunization

We examined whether TH cell differentiation is altered in cell 
type-specific Garp KOs upon protein immunization. Garp 
KOs and their WT littermates were immunized with OVA 
in Complete Freund’s Adjuvant (CFA). CFA is known to 
favor potent TH response and notably TH17 responses [31], 
which could be impaired if TGF-β activation is reduced. 
Fourteen days after immunization, splenocytes were col-
lected and re-stimulated in vitro with APCs pulsed with 
OVA to measure IL-4, IFNγ, and IL-17a production in the 
supernatants (Fig. 5a). Splenocytes from all mice immu-
nized with OVA produced abundant IFNγ and IL-17a, but 
no IL-4. Importantly, no difference was observed between 
cell-type-specific Garp KOs and their corresponding WT 
littermates (Fig. 5b-d).

Altogether, our results indicate that TGF-β1 production 
from GARP:TGF-β1 complexes on Tregs, B cells, or plate-
lets does not significantly impact antibody production and 
TH cell differentiation following immunization with protein 
in vivo.

Discussion

Our observations suggest that anti-GARP:TGF-β1 mAbs 
do not alter innate or adaptive immune responses against 
C. rodentium infection in mice. This may be considered 
reassuring with regards to the risk of increased susceptibil-
ity to intestinal infection and inflammation that could be 
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associated with the use of anti-GARP:TGF-β1 mAbs for 
cancer immunotherapy. It also suggests that TGF-β1 derived 
from GARP-expressing cells does not play important role in 
regulating immune responses to bacterial infections at the 
level of mucosal barriers.

Zhang et al. reported that C. rodentium infection down-
regulates expression of TGF-β receptor chains I and II and 
of Smad2 in mouse colons [32]. They suggested that these 
downregulations promote inflammation and contribute to 
disease pathogenesis. Their observations could explain the 
absence of effect of anti-GARP:TGF-β1 mAbs observed 
here in mice infected with C rodentium if TGF-β1 signaling 

was already inhibited by the pathogen and did not participate 
in the immune responses.

Host defense against C. rodentium also involves adaptive 
TH17 responses [28]. TH17 differentiation depends on IL-23 
and TGF-β1. IL-23-deficient (p19−/−) mice treated with anti-
TGF-β1 mAbs developed severe colitis associated with a 
strong decrease of TH17 cells [33]. Backert et al. confirmed 
this observation with a TGF-β inhibitor in STAT3-deficient 
mice highly susceptible to C. rodentium infection [34]. Inter-
estingly, we observed that anti-GARP:TGF-β1 mAbs did 
not alter Il17a mRNA expression in the colons of C. roden-
tium-infected Il22r−/− mice, suggesting that active TGF-β1 

Fig. 3   Antibody-mediated blockade of TGF-β1 produced from 
GARP:TGF-β1 complexes does not modify the amplitude of OVA-
specific Ab responses upon immunization with OVA and alum. a 
Schematic representation of the experimental design. Three-month-
old C57BL/6 mice were treated with mAbs 1 day before and 6 after 
i.p. OVA protein immunization with alum. After 9 days, OVA protein 
in PBS was injected i.p. as boost. Blood was collected on day 16 to 

measure OVA-specific Igs in sera by ELISA. b-c Data points repre-
sent values in individual mice. Horizontal lines indicate mean ± sem 
(n = 6 mice per group). Statistical analysis was performed with a 
Mann–Whitney unpaired t-test. No statistically significant difference 
was observed between OVA-immunized mice treated with PBS or 
anti-GARP:TGF-β1 (P > 0,05). Results shown are representative of 
two independent experiments
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Fig. 4   Genetic deletion of Garp in Tregs, B cells, or platelets does 
not modify CTB-specific Ig responses upon CTB immunization. a 
Schematic representation of the experimental design. Genetically 
modified C57BL/6 mice (3-month-old) were injected i.p. with CTB 
in alum on day 0, and CTB in PBS on day 9. Blood was collected on 
day 16 to measure CTB specific-Igs in serum by ELISA. b-d Data 

points represent values in individual mice. Horizontal lines show 
mean ± sem (n = 5–6 mice per group). Statistical analysis was per-
formed with a Mann–Whitney unpaired t-test (to compare groups of 
CTB-immunized mice treated with PBS or anti-GARP:TGF-β1) and 
p-value is shown if it is lower than 0.5
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released from GARP:TGF-β1 complex does not contribute 
to TH17 differentiation in this setting.

B cells and production of C. rodentium-specific IgGs are 
also required for complete clearance of C. rodentium [22]. 
Following C. rodentium infection, Il22r−/− mice produced 
specific IgG, IgM, and IgA, and this production was not 

altered by administration of anti-GARP:TGF-β1 mAbs. This 
observation was unexpected. Indeed, we previously showed 
that blocking anti-GARP:TGF-β1 mAbs hampered isotype 
switching towards IgA by human B cells in vitro [9], sug-
gesting that B cells could produce themselves the active 
TGF-β1 required for IgA secretion [15, 35]. However, our 

Fig. 5   Genetic deletion of GARP in Tregs, B cells, or platelets does 
not modify OVA-specific TH responses upon immunization with OVA 
and CFA. a Schematic representation of the experimental design. 
Genetically modified C57BL/6 mice (3-month-old) were injected 
s.c. with OVA protein and CFA on day 0. B–c 14  days after OVA-
CFA immunization, spleen cells were collected and CD4+ cells were 
purified by MACS before incubation with adherent stimulating cells 

pulsed with OVA. After 4 days of co-culture, IFNγ and IL-17a pro-
duction were measured by ELISA. Data in all panels are means ± sem 
(n = 5–6 mice per group) and are representative of two to three inde-
pendent experiments Statistical analysis was performed with Mann–
Whitney unpaired t-test (to compare the groups of CTB-immunized 
mice treated with PBS or anti-GARP:TGF-β1) and p-value is shown 
if it is lower than 0.5
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data here in mice showed that anti-GARP:TGF-β1 mAbs did 
not impede the anti-OVA IgA response in vivo. Moreover, 
anti-CTB IgA response was not impeded in any of the cell 
type-specific Garp KOs used, including B cell-specific Garp 
KO. Altogether, these results suggest that the active TGF-β1 
required for IgA switching does not emanate from GARP-
expressing cells, including B cells. This could be true when 
IgA switching occurs in vivo, upon immunization of mice 
with protein antigens. In our previous report using purified 
human B cells in vitro, IgA switching was observed after 
BCR stimulation with anti-IgM in the presence of CpG, anti-
CD40L, and IL-21, but in the absence of any other cell types. 
In such experimental conditions in vitro, GARP-expressing 
human B cells may become a unique, predominant source 
of active TGF-β1 allowing IgA switching, even though they 
may not significantly contribute to switching in vivo.

Anti-GARP:TGF-β1 mAbs were shown to inhibit 
immunosuppression by human and mouse Tregs in vivo 
[11, 12]. Here, we observe no obvious impact of these 
mAbs in a model of bacterial intestinal infection in mice. 
We thus suggest that anti-GARP:TGF-β1 mAbs could be 
used to inhibit immunosuppression by Tregs in patients 
with cancer, without major risks of impairing immune 
responses to bacterial infection at mucosal barriers.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00262-​021-​03119-8.
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