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ABSTRACT
Motivation: Researchers developing biomarkers for cancer prognosis from 

quantitative gene expression data are often faced with an odd methodological 
discrepancy: while Cox’s proportional hazards model, the appropriate and popular 
technique, produces a continuous and relative risk score, it is hard to cast the estimate 
in clear clinical terms like median months of survival and percent of patients affected.  
To produce a familiar Kaplan-Meier plot, researchers commonly make the decision to 
dichotomize a continuous (often unimodal and symmetric) score. It is well known in 
the statistical literature that this procedure induces significant bias.

Results: We illustrate the liabilities of common techniques for categorizing a 
risk score and discuss alternative approaches. We promote the use of the restricted 
mean survival (RMS) and the corresponding RMS curve that may be thought of as an 
analog to the best fit line from simple linear regression.

Conclusions: Continuous biomarker workflows should be modified to include the 
more rigorous statistical techniques and descriptive plots described in this article. All 
statistics discussed can be computed via standard functions in the Survival package 
of the R statistical programming language.  Example R language code for the RMS 
curve is presented in the appendix.

INTRODUCTION

In clinical gene expression studies, one objective of 
model building and analysis is to clearly summarize the 
prognostic value of a candidate biomarker. Quantitative 
biomarkers are usually measured on a continuous scale and 
a researcher would like to present the relationship between 
low and high risk sets and survival time outcomes.

We analyzed 195 publications (Supplemental Table 
1) that used the ovarian cancer data from The Cancer 
Genome Atlas (TCGA) [1] listed on nih.cancergenome.
gov as of January 20, 2015 and found 39 papers (Table 
1) whose focus was ovarian cancer (versus pan-cancer 
or methodological papers), used the mRNA expression 
array data and presented a Kaplan-Meier (K-M) survival 
estimate.

We observed that genomic data survival plots are 
frequently based on a continuous score (29/39, 74%) 
which must be dichotomized to assign patients to risk sets. 
The most prevalent method is to simply divide the patients 

into two evenly sized groups (16/29, 55%). Some articles 
used arbitrary cut points selected during the analysis with 
no statistical justification given (10/29, 34%).

Unfortunately, it has been known that unadjusted 
stratification leads to over-optimistic inference [2] and it 
may be the source of poor reproducibility [3]. In particular, 
searching out the cutpoint that maximizes differences 
between survival curves is known to be anti-conservative 
[4] and simply choosing the median without investigating 
the functional relationship will lead to poor inference [5]. 
We point interested readers to accessible editorials on the 
need for categorization [6], as well as the dangers [2] and 
underlying assumptions [7].

We expect that many investigators have 
unintentionally overlooked these important statistical 
points. It remains relevant as our literature review also 
uncovered two recent methods articles [8] [9] that promote 
unadjusted search algorithms as a default option. In one 
article [8], 118 Wald-type tests significant at p < 0.01 
were subjected to more robust testing against a bootstrap 
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reference; 44% (52/118) of the Wald tests were not 
significant, underscoring the point that without further 
investigation these approaches overstate the confidence of 
the study conclusions. This is not a failure of p-values and 
the log-rank or Wald tests, but a failure of the application.

One reason for pursuing dichotomization is the 
difficulty in presenting an attractive survival curve 
figure familiar to our clinical collaborators. While Cox’s 
regression model [10] is appropriate for continuous 
data, the meaning of ``a 2.0 hazard ratio (Cox model p 
< 0.05) per one standard deviation of RMA normalized 
expression” is rarely transmuted into months and 
years, clinical terms, of survival. Further, as Contal and 
O’Quigley [4] note, dichotomization loses information 
if the true relationship between hazard and expression 
is (log) linear; few studies we reviewed employed the 
relevant functional relationship diagnostics like martingale 
residual plots [5].

In this work, we will review the options facing the 
investigator presented with a continuous marker and a 
survival response. To accommodate the need to pursue 
both regression and a survival plot, we propose adapting 
the restricted mean survival statistic to form a curve 
analogous to a linear regression’s familiar ``best-fit line.” 
We illustrate the use of these plots and their flexibility in 
a series of worked examples. Throughout, we write for 
the perspective of a non-expert survival analysis end user 
who likely knows survival analysis by recipe but may be 
an expert at more sophisticated algorithms used in cross-
validation and marker development.

RESULTS

The TCGA study of ovarian cancer collected gene 
expression array data on over 500 tumor samples divided 
into discovery (n=234) and validation sets (n=269). Using 

Figure 1: Representative martingale residual diagnostic plots with smoothed mean estimators using data simulated 
under A. linear, B. categorical, and C. quadratic models. Only the categorical model is appropriate for dichotomization and display via 
Kaplan-Meier estimate. 
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the Affymetrix platform data, we note a total of 12,042 
gene-level measurements available for analysis. Each 
measurement is a continuous feature which is assumed 
to have a mounded log-normal distribution. The units 
of expression are arbitrary without a specific curve to 
register fluorescent intensity to RNA quantity. At issue is 
whether any one of these gene expression measurements 
is a good predictor for ovarian cancer progression-free 
survival (PFS). As our focus is to highlight the analysis of 
continuous expression markers, we will ignore the issue 
of known clinical prognostic variables throughout this 
section. We consider the multiple comparisons problem 
as ancillary for our analysis, it remains a serious issue in 
high-dimensional data analysis. 

Concordance/discordance between linear, 
median-split and non-linear models

A typical first screen is to select genes that have 
a univariate association with PFS. Of the 12,042 genes, 
some 1,111 (9%) have significant univariate Cox model 
score tests (p < 0.05). The average significant hazard 
ratio in the deleterious direction is HR=1.4 (95% of the 
significant set are between 1.07-2.57) and HR=0.73 (0.34-
0.90) in the protective direction. As we summarize in 
Table 2, the clinical magnitudes are close to 2.5 months 
(the small size is not unexpected given these are single 
gene models). To produce a survival curve plot, we might 
stratify each gene at its observed median creating equally 
sized high and low risk groups. If we do so, we may be 
dismayed to discover that for 511 (46%) of these, the 
Kaplan Meier curves will show no significant difference 
(log-rank test p > 0.05). 

We recapitulated this loss of significant effect in 

Table 2: Frequency of significant linear (Cox regression), categorical (median-split Kaplan-Meier and log-rank test) 
and non-linear models in TCGA data.
Method Months PFS

Continuous 
Cox Model

Kaplan-
Meier

# of 
genes

RMS 
Dynamic 
Range

D Median 
split KM

Non-linear  
Cox Model Interpretation

ns ns 10455 0.68 0.85 5% Not significant.
p<0.05 p<0.05 511 2.66 2.89 6% Both methods identify differences.
p<0.05 ns 600 2.36 1.38 4% Effect lost when considering KM analysis.

ns p<0.05 476 1.47 2.46 14% Effect is not significant. KM sees a difference.  
False positive or non-linear.

RMS: Restricted mean survival, PFS: Progression-free survival, KM: Kaplan-Meier, ns: Not significant

Table 1: Summary of literature review of articles citing TCGA ovary data.
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simulated data (Supplemental Table 2) assuming n=100 
samples, a standard normal covariate, linear effect and 
exponential failure time; at HR=1.35, the Cox model has 
80% power, the median split’s log-rank test has power 
63% and will miss 25% of the significant continuous 
models. At HR=1.41, the Cox model has 90% power 
while the log-rank’s 72% power and misses 21% of the 
significant models. 

This apparent discrepancy and loss of power is 
attributable to the fact that dichotomization at the median 
has averaged out good signal coming from the Cox 
regression’s log-linear model for the hazard. Conversely, 
we might consider the set of non-significant Cox model 

results and apply the median-split method. If we do so, 
we will find 476 genes (4%) which appear to have been 
missed by the Cox model. It turns out that these genes 
have weak linear model signals and their importance may 
be inflated by the dichotomization. 

Martingale residual diagnostics and the functional 
form of the model

We investigated this set further and determined that 
this set does have an unusual number of significant Cox 
regression models with (polynomial) non-linear effects 
(tested via smoothing spline as described in the methods): 

Figure 2: Illustrating the construction of the restricted mean survival (RMS) curve. A. Conditional Cox model survival 

estimates  at quintiles of Z for simulated data. RMS is the area under each curve (AUC) bounded on the right by τ=60 months. 
B. Plotted as a function of the marker percentile, the RMS curve spans the range of estimable mean survival times for this Cox model. 
Plotting characters are added to help the reader identify the estimated survival curve and its AUC between panels.

Figure 3: A. Discrepancy between Cox model and median split is greatest around the sample mode. B. Smoothed density of TCGA193 
signature shows a strong mode. C. The trace, a plot of ordered values, seems to suggest a cut point. D. Smoothed histogram of simulated 
bimodal data (ideal for a cutpoint). E. Corresponding trace plot shows a ``cliff” and not a smooth slope.
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14% of these cases may be genuine signal versus 5% in 
the other cases. 

In general, a martingale residual diagnostic 
(described in detail in the methods) can provide empirical 
evidence for a linear, categorical, or non-linear effect. 
Using exponentially distributed simulated data, Figure 1 
displays three diagnostic plots indicating linear (Figure 
1A), categorical (Figure 1B) and non-linear (Figure 
1C) regression effects using a “running mean” lowess 
smoothing estimate. The lowess estimate does not 
always capture categorical features well; noting that the 
smoothing line in Figure 1B looks much like the linear 
function, focusing on the spread of the data points on 
either side of zero should convince the investigator that 
a step function (a threshold at zero) is a good model. In 
practice, if we determine that any model other than the 
categorical is the best fit, we should avoid using the 
Kaplan-Meier plot. 

RMS curves summarize Cox model estimated 
survival curves

To avoid having to choose between a model that 
fits well and a model that plots well, we propose that 
investigators consider a graphic we call the restricted 
mean survival (RMS) curve that summarizes a fitted Cox 
model. Consider the following simulated data scenario. 
We generated exponential failure times under a log linear 
proportional hazards model and fit a Cox regression model 
to illustrate the use of the covariate-adjusted survival 
curve (Figure 2A). In this figure, the survival curve is 
drawn for four hypothetical patients whose covariate level 
is assumed to be the 20th, 40th, 60th and 80th percentiles. 
As described in the methods section in detail, the area 
under any one curve is the restricted mean survival 
time given the corresponding covariate level. If these 
areas are considered continuously as a function of the 
covariate values, we produce a second plot (Figure 2B) 
that we call the RMS curve. We use plotting characters 
to identify the corresponding points between panels. This 
curve summarizes the effect of the covariate directly as a 
function of survival. 

While the plot appears non-linear, it should be 
noted that RMS curves are based on the same log-linear 
proportional hazards assumptions underlying the Cox 
regression model: the curve is itself a graphical summary 
of the model. Thus the model p-values and summary 
statistics can be displayed with the curve. In the case 
that a non-linear Cox regression model is considered, the 
corresponding RMS curve may be highly non-linear. 

By converting the continuous model into a 
dichotomous one, all patients with high scores (or low 
scores) are given the same estimated survival times. This 
means that patients with extreme values are treated no 
differently from those with intermediate values and those 

patients who happen to fall on either side of the median 
will have dramatically different prognoses even though 
they may have very similar scores. We expect these are 
undesirable properties in a clinical estimate.

The TCGA193 Marker: hazard ratio and median 
split

As a concrete case study, we consider the prognostic 
t-score comprising an individual-specific, two-sample 
t-test based on the expression of two sets of genes (good 
and poor) totaling 193 features developed by the TCGA 
study [1]. We denote this candidate prognostic marker 
TCGA193 and investigate how we might present its 
clinical value. We do not intend our remarks to comment 
on how TCGA193 was developed or initially presented; it 
is a familiar and readily accessible example. Our analysis 
is based on the supplementary data from the updated paper 
Verhaak and colleagues [11].

When scaled to have mean zero and unit standard 
deviation (sd), the TCGA193 score is associated with 
overall survival (OS) in the validation set (n=269) via 
Cox regression. A unit sd change increases the relative 
hazard by 1.27 (95%CI: 1.06-1.53), p=0.011. The clinical 
magnitude of this increase is unclear: what does a 27% 
increase in hazard mean in terms of months of survival?

The median split procedure divides the independent 
validation (n=269) set into a high set (n=135, median 
36.2 months) and a low set (n=134, median 47.5 months); 
the log-rank test between them is significant (p=0.0372). 
Given that the median time to recurrence is 18 months and 
the across-study survival at 60 months is 30.5%, we would 
gauge a range of 11.3 months to be clinically important.

We might report that the Cox model based on the 
binary, median-split score provides a hazard ratio estimate 
of 1.41 (95%CI: 1.02-1.96, model likelihood ratio test 
p=0.0374) where the p-values differ due to numerical 
errors, but this is redundant as the point of the median split 
is to place the marker on a clinical and not relative hazard 
scale; the consistently significant p-values are judging the 
same evidence, so presenting both may be misleading.

Median split is inconsistent with a symmetric, 
unimodal marker distribution

In Figure 3A, we show the smoothed histogram 
(density) of the TCGA193 signature which emphasizes 
that the data are unimodal and mounded around zero. The 
corresponding ``trace plot” (Figure 3B) of the ordered 
marker values might be shown to imply there is a natural 
cut point, however consider that the histogram for ideal 
data for dichotomization should clearly show modes as 
in Figure 3C. The trace plot corresponding to two modes 
(Figure 3D) looks nothing like the unimodal plot; we 
should be looking for sharp jumps in these traces and not 
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a smooth transition across the threshold.
This situation should not be unusual: the extensive 

literature on normalizing gene expression focuses on 
producing a reasonably log-normal distribution and 
the negative binomial distributions assumed to underlie 
RNAseq data are unimodal. For markers that depend on 
multiple genes, or procedures like the prognostic-t (i.e., a 
two-sample t-test), it is likely that a central limit theorem 
applies, compounding the likelihood that a subgroup-
defining threshold will be artificial.

Figure 4A shows the martingale residual plot from 
a Cox regression model [5] which offers one way to 
investigate the functional relationship between the marker 
and the log hazard (an alternative is spline-type modeling, 
[12]). Plotting the marker values by residuals, we use a 

lowess smoother to get a non-parametric estimate of the 
functional form: in this case, a linear effect and not a 
piecewise constant (assumed by the median split) appears 
highly appropriate.

Using the RMS curve

Recalling that we left the continuous, linear Cox 
model described by a HR=1.27 increase per sd, we use 
the RMS curve restricting the estimate at 60 months to 
describe the range of model predictions. This estimate can 
be computed directly in the R survival package [13] and 
self-contained, generic R code examples are given in the 
Supplemental Material.

Figure 4: A. Diagnostic martingale residual plot with a lowess smoother supports a linear effect for TCGA193. B. RMS curve plot 
expresses the clinical time range covered by Cox model estimate in comparison to the conditional median and median-split estimates. C. 
Over quantiles of JAG2, we plot significant RMS curves for PFS but not OS. This demonstrates a potential way to identify informative 
genes for ovarian cancer: genes associated exclusively with PFS may be more likely to be treatment-related.
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In Figure 4B, we can read directly that the highest 
marker values have an expected survival around 32 
months versus 47 for the lowest values. This is similar 
to the median-split (dashed lines), but smooth around 
the median marker values. We also plot the conditional 
median (grey line) and find that it agrees with the mean 
between the 0.60 and 1.00 quantiles of TCGA193 (these 
are likely the most important patients to identify). The 
estimates diverge for lower TCGA193 values where the 
restriction on the RMS curve (at 60 months) is apparent. 
We interpret this to mean that the conditional median (and 
the median split) are over-estimates in this range due to 
particularly long survivors (the maximum observation 
time is 180 months, the maximum observed death time 
is 150 months). The RMS curve then provides a clinical 
check on the estimates by focusing our attention on the 
first 60 months of survival; plotting both the restricted 
mean and the (unrestricted) median appears to be good 
practice.

Given the bell-shaped distribution of TCGA193 
(Figure 3A), it is important to note that a woman whose 
TCGA193 value is -0.22 (48th percentile) and a woman 
with score +0.02 (52nd percentile) will have a difference 
in prognosis of more than 10 months. Again it seems 
undesirable to have such a significant change in prognosis 
for a small change ( < 5%) in score. 

Multiple outcomes and RMS curves

We note that multiple RMS curves may be plotted 
together: consider both the OS and progression-free 
survival (PFS) curves for the same gene. We switch 
to gene JAG2, a ligand in the Notch signaling pathway 
highlighted in the original TCGA data paper [1], as a more 
interesting example. In Figure 4C, JAG2 has a significant 
association (Cox p=0.0012) with PFS but not with OS 
(p=0.67). Hazard ratios are scaled to changes in 1sd of 
expression: for PFS, HR=0.77 (95%CI: 0.66-0.90). The 
magnitude of the association is captured by the curve 
and by the summary dynamic range using the 10th and 
90th quantiles: a 0.77 hazard ratio translates to about a 
7.6 month increase in PFS across 80% of the variation in 
JAG2.

This pattern of association (with PFS, not with 
OS) may be a useful way to identify genes associated 
with treatment: primary ovarian cancer treatment is 
uniform (maximal debulking followed by platinum/
taxane adjuvant chemotherapy) while post-progression 
treatment varies (interval/secondary debulking, various 
lines of chemotherapy) in a non-standardized fashion. It 
is likely that whatever genetic effects associated with OS 
are strongly confounded by this unmeasured secondary 
treatment process.

Figure 5: Two example RMS curves for treatment-free intervals under one of two drug regimens after first relapse of 
advanced ovarian cancer within 6-12 months of adjuvant therapy. The shaded regions reflect the expected survival of the top/
bottom 20% of patients showing the clinical value of the marker. It is easy to read the added value of the topotecan regimen.
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Multiple RMS curves and treatment prediction

Ovarian cancer patients frequently relapse and 
undergo multiple lines of chemotherapy. If the initial 
disease-free interval is longer than 12 months, the choice 
is a platinum-based regimen. If the interval is shorter 
than 6 months, the patient is highly unlikely to respond 
to platinum. In between, the treatment is uncertain. For 
illustration, we considered patients who relapsed, who 
were treated with a platinum/taxane regimen (a repeat of 
the primary therapy) or an alternative topotecan regimen, 
and who survived to continue a third line of chemotherapy. 
Response to treatment is measured as the number of 
months from the completion of the therapeutic regimen 
until the next event: a further relapse or death. As a marker 
to select between treatments, we used the apoptosis marker 
described in our previous work [14].

As the apoptosis marker increases, Figure 5 shows 
that response to platinum/taxane treatment increases (solid 
line): the lowest 20% of patients have an expected mean 
of 9.6 months response to therapy while the highest 20% 
have a 22.8 month response. Because of percentile scale, 
it is easy to read that the 1st quartile, median, and 3rd 
quartile marker patients have a mean survival time of 11, 
15, 20 months respectively.

The topotecan marker does the reverse; noting 
that the platinum/taxane treatment is the default, 
we might propose that patients with the lowest 20% 
apoptosis marker level might try topotecan instead: the 
expected benefit is an extra 7.7 months. We might assign 
significance to this result by reporting the p-value from 
adding the interaction term in the Cox regression model 
(likelihood ratio p=0.00768), but a test of the 20% strategy 
can be made directly by permuting the drug class labels 
(platinum/taxane versus topotecan). A gain of at least 
7.7 months was seen in 392 of 10,000 permuted samples 
implying that it is unusual and of statistical interest.

Plotting multiple treatments on the same graph was 
proposed by Janes and colleagues [15] with respect to 
candidate biomarkers and response rates. Following their 
logic, we might read the intersection point (around 40%) 
to be the strategy threshold between the topotecan and 
platinum/taxol treatments.

DISCUSSION

Prognostic biomarkers are an important part of 
precision medicine and their translation relies on flexible 
and interpretable descriptive techniques. We have 
discussed a way to report both a Cox regression model 
and have an attractive plot that accurately summarizes 
the model. This RMS curve can be calculated from 
standard software and can be adapted to fit the clinical 
question under study. While the admonitions against 

dichotomization have a long history, we believe it 
is important to continue to point out that careless 
dichotomization is a serious problem and that there exist 
viable and possibly better alternatives. 

We summarize the recommendations from our 
literature review and illustrations:

• Report the Cox model hazard ratio for the 
marker re-scaled to unit standard deviation so 
that effect sizes can be compared across studies.

• It should be noted that Kaplan-Meier curves 
make minimal assumptions on the form of the 
survival curve, but including ``Cox p-values” or 
hazard ratios implicitly attaches a proportional 
hazards interpretation to the curves.

• Conversely, avoid presenting the conditional 
survival function estimated under proportional 
hazards without careful reasoning about which 
covariate levels to represent. If the curves are 
used, clearly label them as model-based because 
they will appear misleadingly ideal. Avoid 
plotting the censoring marks for these curves. 
A trained eye should detect ``parallelism” due 
to the same support of unique failure times in 
each curve.

• Consider the martingale residual plot to 
develop support for or against a linear model or 
categorization.

• When the true model is linear, dichotomization-
based estimates will be unstable around the 
cutpoint. This error is especially acute when the 
cutpoint is close to the empirical mode.

• Avoid selecting cut points arbitrarily because 
it is unclear how to account for the error in 
selection. Cross-validation [16] may help find 
an unbiased cutpoint, but it will not solve the 
significance problem.

• If a test statistic or p-value search algorithm is 
used, the reported p-value should be adjusted 
[4].

A problem with conditional RMS and the median 
estimates derived from Cox’s regression model is a lack of 
test procedures; this should not detract from the adoption 
of a descriptive and practical point estimate and it should 
not support the use of bad estimators.

While we focus on regression-derived markers or 
prognostic scores, a careful reader will extrapolate that 
many of our observations extend to scores based on linear 
functionals of gene expression space. Our development is 
strongly tied to the analysis of gene expression data and 
our conclusions may not generalize to every application 
of survival analysis.
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MATERIALS AND METHODS

Notation and assumptions

We begin with a typical survival analysis regression 
situation: suppose we observe a random sample 

{(Yi,δi,xi)}_(i=1)^n 
where Yi is a complete survival time when δi=1 

and a right censored time otherwise and xi is a p-vector 
of covariates (i.e., gene expression values, clinical 
features) which may be continuous or categorical.  When 
convenient, we will make reference to the unique ordered 
failure times t(1)< t(2) < … < t(D) and the set of patients 
at risk at time

tj: R(tj) = {i: ti≤tj}.
We assume that the investigator has some procedure 

(say, ζ(.)) that converts xi into a scalar score comprising an 
operationalized biomarker, z_i=ζ(x_i ) a real number.  We 
review approaches to dichotomization and key parts of the 
proportional hazards (PH) model before introducing a new 
tool: the restricted mean survival curve.

Dichotomization procedures

When the observed set of zi is dichotomized into 
two mutually exclusive sets L = {i:zi ≤ μ}and H = {i:zi > 
μ}, these sets can be treated like independent samples and 
separate K-M curves can be estimated in the usual fashion. 
Further, the significance of differences between the curves 
might be quantified by the log-rank statistic.

It has been noted that this procedure may be invalid 
if it does not account for error in the choice of cut point 
(µ̌ ̌). The following are candidate procedures for selecting  
µ̌ and reporting its significance: 

Median-Split. Choose µ̌ to be the sample median. 
The test procedure is the simple log-rank test. If only the 
median is considered, the log-rank is a valid test; but if the 
true model is not dichotomous at the median the choice 
introduces serious bias.

Maximum Split. Consider all possible cutpoints Ck 
and let Sk be the associated log-rank statistic. Referenced 
earlier, various papers show this estimate is anti-
conservative and leads to overconfident inference. µ̌ is the 
Ck corresponding to the maximum |Sk|. The p-value is 
based on the corresponding log-rank test; this is known to 
be anti-conservative.

Contal and O’Quigley. Choose µ̌ as in the 
maximum split procedure. A test statistic that accounts for 
error in the choice of split point is

where D is the number of distinct death times 
[5]. Under the null hypothesis of no effect, Contal and 
O’Quigley [4] showed that Q has a limiting distribution 
related to a Brownian Bridge; the p-value is approximately 
P(Q > q)≈2exp(-2q2) when q > 1. For practical reference, 
values of Q larger than 1.358 or 1.949 are significant at p 
< 0.05 and p < 0.001 respectively. The exact formula is 
given in both references.

Proportional hazards regression

For the casual survival analysis reader, we define 
S(t; z) to be the bi-variate survival function that depends 
on time and score. Cox’s proportional hazards (PH) 
regression model [10] assumes that the hazard function 
can be factored into a time and covariate component:

.

Using standard software this univariate PH model 
depends only on the estimate ̌ that maximizes a partial 
likelihood (the reader is referred to textbooks, e.g., [5]). It 
follows that for some z0, the hazard ratio h(t;z0+1) / h(t;z0) 
= exp(β), is the relative change in hazard for a one unit 
increase in Z. The units of Z should be reported because 
re-scaling Z will affect . For gene expression, this scale 
is likely un-interpretable and it may be good practice to 
normalize Z to have unit standard deviation. The result 
would be read as the hazard ratio for a one standard 
deviation change in expression.

Conditional Cox model-based survival curves

Under the previous PH model, it follows that the 
survival function is assumed to have the form:

An estimate of SPH(t; z) depends on both , 
computed via partial likelihood, and an estimate of S0(t). 
One estimate of the baseline survival function is based on 
Breslow’s estimator [17] which again depends only on :

forming a non-increasing step function. Link [18] 
described a linearly-interpolated estimate as well as its 
confidence intervals. The conditional survival curve is 
sometimes called the covariate-adjusted survival curve.



Oncotarget36317www.impactjournals.com/oncotarget

This formula means it is possible to compute a 
survival curve for each value of the continuous score. The 
natural problem is that we may choose any value of z that 
we wish including values outside the range of observation. 
These curves may be misleading [19] for an audience that 
expects K-M curves: by construction, for various values 
of z,  will show ``parallelism” (e.g., the curves 
in Figure 1A will never cross and will decrease at the 
same times for all curves) for distinct values of z and they 
cannot show the assumption-free behavior of K-M curves.

Restricted mean survival

The area under a given survival curve SPH(t; z) 
reflects the mean (model-based) survival time for a subject 
with marker value z. The restricted mean survival (RMS) 
time depending on z is

where the restriction time τ > 0 is required to 
account for an excess of survivors. The selection of τ 
is discussed in general in other work [20]. The RMS is 
interpretable as the expected life experienced out of τ units 
of time and therefore reflects the value of the model in 
plain language clinical units of time.

Restricted mean survival curve

To show the impact of continuous biomarkers on 
response rates, Janes and colleagues [15] developed a 
graphical plot that lent itself to comparisons of multiple 
groups for illustrating treatment strategies. Analogously, 
we focus on RMS(z) as z varies to produce a graphable 
curve:

where F(z) is the cumulative distribution function 
(CDF). This curve will be monotone increasing when β 
< 0 and monotone decreasing when β > 0. The case that 
β=0 corresponds to a horizontal line. Because we have 
re-scaled the x-axis to percentiles (using F(z)), marker-
defined subgroups can be identified by selecting a range 
and the area under the RMS curve on this domain is 
proportional to the expected survival of this subgroup.

An estimator of RMS(z) using τ=maxi  Υi δi is:

where t(i), i=1,…,D are the unique ordered failure 
times. This leads to an estimator of RMS(.) using the 
empirical CDF,  and . 

The difference between the maximum and minimum RMS 
values, the dynamic range,

may be a useful statistic that estimates the total 
amount of survival at issue with respect to this marker. The 
minimum and maximum might be replaced by appropriate 
quantiles to avoid misleading tail behavior.

Cox model conditional median plot

Because the estimated conditional survival function 
can be computed for any z, we might also 

estimate the conditional median for each value of z. The 
use of multiple quantiles and curves has been discussed for 
data exploration [19], and we might consider adapting the 
methods above for a median-based curve: 

.
 
Because this estimate does not depend on τ, it 

provides a way to gauge the influence of the restriction. 
Further, the standard statistical intuition about means and 
medians applies as survival times tend to be right-skewed.
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