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Background: Brassica oleracea var. acephala, commonly referred to as kale, is a well‐documented plant species, a
food crop but well recognized for its capacity to endure and manage the accumulation of heavy metals. In this
research, the phytoremediation potential of kale was evaluated based on cadmium intake, utilizing three dis-
tinct kale varieties originating from Bosnia and Herzegovina. All kales were grown in controlled conditions,
with different concentrations of cadmium (Cd), a known strong pollutant found in small concentrations in soil
under normal environmental conditions. After the root length analysis and cadmium atomic spectrometry, we
utilized quantitative PCR (qPCR) and cycle threshold (Ct) values to calculate the expression levels of five genes
associated with Cd heavy metal response: Mitogen‐activated protein kinase 2 (MAPK2), Farnesylated protein 26
and 27 (HIPP26, HIPP27), Natural resistance‐associated macrophage protein 6 (RAMP6), and Heavy metal accu-
mulator 2 (HMA2).
Results: The atomic reader's analysis of rising cadmium concentrations revealed a proportional decline in the
length of kale roots. The gene expression levels corresponded to cadmium stress differently among varieties,
but mostly showing notable up‐regulations under Cd stress, indicating the strong Cd presence within the plant.
Conclusions: This study demonstrated differences in gene expression behavior among three B. oleracea varieties
from Bosnia and Herzegovina, indicating and filtering the Cd‐resistant kale, and kale varieties suitable for phy-
toremediation. For the first time, such a study was conducted on kale varieties from Bosnia and Herzegovina,
analyzing the impact of cadmium on the growth and resilience of these species.
1. Background

Brassica oleracea, a kale variety from South Asia, renowned for its
health benefits, including antioxidants and anti‐cancer properties, is
rich in vitamin C and soluble fiber, alongside cabbage and broccoli.1

Its high indole‐3‐carbinol content aids DNA repair and inhibits cancer
cell growth, while the Brassicaceae family's abundance in carotenoids,
proteins, and glucosinolates strengthens its defense against fungi and
pathogens.2,3

B. oleracea species are found everywhere except for Antarctica, but
the biggest diversity of these plants is found in the Mediterranean
area.4 In animals, including rats and pigs, this plant abolishes thyroid
function as they provide more side effects of iodine (I) deficiency, or
sulfadimethoxine (SDM) ingestion.5 Brassica oleracea var. acephala is
a daily diet food in many countries as it provides many health benefits
and all parts of this plant such as stems, and roots are consumed.2 It is
already confirmed that B. oleracea species are cadmium‐tolerant
plants, known to belong to the Brassica genus of phytoremediators,2

as it can accumulate heavy metals in their tissues, without any visible
symptoms.6,7 In the periodic system of elements, there are 90 natural
elements, out of which 53 of them are classified as heavy metals,8

examples include cadmium (Cd), fluorine (F), and lead (Pb).9 Specifi-
cally, cadmium poses a significant concern due to its propensity for
long‐range atmospheric dispersion within the Earth's atmosphere and
its known toxicity to the human body.10 Heavy metals cannot be
destroyed or degraded as they are present in Earth’s crust.11 In plants,
toxic heavy metals and even excess essential heavy metals may result
in chlorosis, malnutrition, and diminished development. However,
some of these plants and other organisms can accumulate heavy met-
als, despite heavy metal toxicity.12 This phenomenon is known as phy-
nesylated
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toremediation, and it usually happens when plants and microorgan-
isms eliminate and degrade heavy metals. Phytoremediation is not
always effective but at least it is less harmful than using chemical treat-
ments such as membrane filtration, soil washing, and physical
treatments.13

To date, multiple genes are associated with heavy metals, demon-
strating correlations with exposure to cadmium. Most commonly, the
gene known as Heavy Metal Accumulator 2 (HMA2), is responsible
for encoding the Heavy Metal Accumulator 2 protein and regulating
the homeostasis of zinc (Zn) and cadmium (Cd) ions.14 Additionally,
there is evidence of HMA2 demonstrating a strong correlation with
the expression of the Antioxidant 1 (ATX1) and HIPP26 (also known
as Farnesylated protein 6 – FP6) genes, as revealed through an in silico
investigation conducted by Šutković et al. in 2016.2 Subsequently, the
same researcher showcased the viability of an in silico prediction by
validating the predicted proteins in vivo, establishing a connection
between YSL3 and Cd stress.7 Mitogen‐activated protein kinase 2
(MAPK2), alternatively recognized as extracellular signal‐regulated
kinase 2 (ERK2), has been demonstrated to play a role in numerous cel-
lular pathways, including cell proliferation and its activation occurs in
response to various stimuli such as hormones and growth factors
(GF).15 The participation of Farnesylated protein 26 (HIPP26) in cad-
mium homeostasis within B. oleracea cultivar has been previously
demonstrated.16 Additionally, both HIPP26 and HIPP27 exhibit up‐
regulation in Arabidopsis thaliana under conditions of cadmium and
zinc stress,17 as well observed in Brassica Juncea.18 Similarly, in Bras-
sica napus L, HIPP27 has been identified as a gene associated with cad-
mium tolerance.19

Natural resistance‐associated macrophage protein 6 (RAMP6) is
part of metal transporter proteins that are capable of transporting biva-
lent metal ions such as Fe2+ and Mn2+ into cytoplasm and are present
in many organisms. It is found that RAMP6 transports excess Cd ions
intracellularly in A. thaliana and it enables plants to develop normally
with inadequate nutrients such as Mn2+.20,21 B. oleracea species is
widely employed as a plant model organism due to its ease of rapid
growth, requiring minimal equipment.22

In light of the previously mentioned information, recognizing that
specific kale varieties excel as phytoremediators, it becomes crucial to
distinguish species with lower accumulation potential from those
without. Essentially, some varieties acknowledged for phytoremedia-
tion may pose risks to human health, underscoring the importance
of identifying such species.

Therefore, the goal of this study is to assess the capacity of domes-
tic kale varieties (Brassica oleracea var. acephala) to withstand cad-
mium stress and identify the most tolerant and accumulative
varieties to cadmium. In that sense, this study explores the phytoreme-
diation potential of two local kale varieties and compares it to that of a
hybrid kale from Bosnia and Herzegovina.
2. Methods

2.1. Seed germination and root analysis

The domestic seeds of Brassica oleracea var. acephala varieties uti-
lized in this study were procured from the Herzegovina region, while
the hybrid variety was acquired from a local agricultural market, as
Table 1
List of variants from geographical region.

Name of the variant Geographical coordinates Label

Mostar, Blagaj 43◦25 North, 17◦88 East, BiH KM
Stolac, Dubrava 44◦82 North, 18◦57 East, BiH KS1
Brassica oleracea L. − Bonanza F1 Italy K23

Note: BIH (Bosnia and Herzegovina).
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shown in Table 1. The seedlings were grown using Tap of paper
method. Up to 30 seeds were treated with different concentrations
of cadmium (50, 100, 200, and 500 μM) and incubated for 5 days at
27 °C in a growth chamber (NUVE GC400) where they were exposed
to light for 16 h a day. When plants reached their sufficient growth
they were removed carefully from the paper and root length was mea-
sured with a ruler. After the root length measurement, the numbers,
indicated in centimeters, were entered for statistical analysis. All sam-
ples were stored at −80 °C prior RNA isolation.23 In addition to the
seeds cultivated in petri dishes, a larger quantity of plant material
was requisite for atomic absorption spectrophotometry (AAS). Conse-
quently, the seeds were also cultivated in soil under distinct cadmium
concentrations (control – distilled water, 100 µM, 250 µM, 500 µM,
and 1000 µM of CdCl2) within a growth chamber, with 10 seeds per
pot. This incubation period extended for 10 days at a temperature of
27 °C, with daily exposure to light for 16 h.

For the data presentation, derived from the root assay analysis, a
descriptive statistics method was employed, resulting in a bar graph.
Utilizing Tukey's multiple comparisons test, it was demonstrated that
there is a noteworthy distinction in the mean root length across all
concentrations examined in the study (p < 0.05), as illustrated in
Fig. 1.

2.2. Atomic absorption spectroscopy (AAS)

For the detection of cadmium concentrations in kales, different
wavelengths of electromagnetic (EM) radiation were utilized,24 using
a Shimadzu Flame atomic absorption spectrophotometer (model
AA7000F), based on the protocol explained by Girgin et al. in 2022.25

2.3. RNA isolation and quality control

RNA isolation and DNase treatment were performed with Mon-
arch® Total RNA Miniprep Kit protocol (NEB #T2010). According
to the kit manufacturer, two main steps were performed. The first step
was that the whole plant tissues were lysed, and the second step was
that RNA was purified in which DNase treatment was performed leav-
ing no traces of DNA.26 The RNA concentration, quality and purity
were calculated using a Thermofisher Multiskan GO µDrop spectropho-
tometer. In addition, agarose gel electrophoresis was used to evaluate
the integrity and quantity of RNA samples as the RNA fragments are
separated based on their size.27

2.4. Primer design and quantitative real-time PCR (qPCR)

The primer sequences were designed according to the protocol pub-
lished in 2020, by Šutković et al.7 The housekeeping gene used was
Ubiquitin 2 (UBQ2), according to the study conducted by Brulle
et al. in 2014.28 All primer sequences are presented in Table 2.

The qPCR amplification was performed on the Step One Plus sys-
tem by Applied Biosystems®. The reaction was prepared using the
Luna®Universal Probe One‐Step RT‐qPCR Kit and cycling conditions
were set according to the Luna Kit protocol.29 Only the results whose
melt curve generated a single peak were used, which means that only
one product (gene of interest) was produced in the reaction.

Melt curve analysis was performed to validate the specificity of the
reaction by checking for primer dimers or nonspecific amplifications.
Data are presented graphically where the Y‐axis in graphs represents
2^‐ΔΔ Ct which analyzes the relative changes in gene expression.30,31
3. Results

The average root length of each kale is observed in Fig. 1. The
length of the root becomes shorter with the increase of CdCl2 concen-
trations. In the control group, the length ranged from 2.54 cm to



Fig. 1. Comparison between the average root of domestic and hybrid kales grown with different CdCl2 concentrations. Asterisks indicate the mean values that are
significantly different between the treatments and control (*p < 0.05).

Table 2
Primers used in this study.

Primer name Sequences (50->30)

F-HMA2 TTCTGTCATCGTGCCGTCAA
R-HMA2 GAGTGTTGCTCCCACGGTTA
F-MAPK2 GGGCTGCCAAAGGACTTACT
R-MAKP2 GTCTTGTCACCGGTAGGACC
F-RAMP6 GCGATATCTCTCCTCGGTGC
R-RAMP6 AAGCTTCCTTGATGCCGGTT
F- HIPP26 TCTTTACACCTCCACTTTCCCT
R- HIPP26 CCACCGTCTGCAACTGTTTG
F-HIPP27 GTTCCAGGCACTCTTCTCCC
R-HIPP27 CGGTGACTTTGCTGACTCCT
F-UBQ2 TATTCGTGAAGACGCTGACG
R-UBQ2 TATTCGTGAAGACGCTGACG
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3.73 cm, while in 1000 µM CdCl2 it ranged from 0.54 cm to 0.86 cm.
All kales were treated with Cd five times. The results also indicate that
there was no significant difference in root growth between the ana-
lyzed kales because the p‐values are not greater than 0.05 (data not
shown). However, in all kales, based on Tukeys multiple comparisons
test (p < 0.05), there was a significant difference in the mean root
length between controls and the treated 250 µM, 500 µM and
1000 µM CdCl2 concentrations.

There is clear increase in plant Cd levels with the increasing CdCl2
concentrations, in all kale varieties, as seen in Fig. 2. However, there is
a slight exception, as the concentration of 1000 µM Kale S1 is lower
than the concentration of 500 µM Kale S1.

The qPCR analysis, involving 3–5 replicates, assessed the expres-
sion levels of five specific genes: HMA2, RAMP6, MAPK2, and HIPP26,
HIPP27, The results are presented in a column with 2‐ΔΔct located in
Y axis, indicating exact results of all genes being expressed, as seen
in Figs. 3, 4 and 5. In most of the cases there was a noticeable elevation
in gene expression levels with increasing concentrations of Cd with all
genes, whereas after 500 µM concentration, a decrease in gene expres-
sion was observed. For example, HMA2 exhibited a decline in expres-
sion, starting at 500 µM and finishing at 1000 µM CdCl2 concentrations
in Kale S and Kale M, whereas in Kale 23 HMA2 exhibited an increase
in expression from 100‐1000 µM, as seen in Fig. 3. The expression of
the Mitogen‐activated protein kinase 2 gene (MAPK2) in Kale M and
Kale S1 showed up‐regulation with the increase of CdCl2, however,
in Kale 23 it was a different case. A reduction in the expression of
3

MAPK2 in Kale 23 is visible, with relative expression levels decreasing
from 1.4 in the control group to 0.34 in the presence of 500 µM CdCl2.
The expression of RAMP6 in all kale varieties exhibited a consistent
pattern of increase in response to rising CdCl2 concentrations.
However, there is a slightly lower expression of RAMP6 in Kale 23,
at a concentration of 1000 µM CdCl2 it is lower if compared to
500 µM CdCl2. The expression of HIPP26 exhibited distinct patterns
in domestic varieties compared to the hybrid Kale 23. Specifically, at
250 µM CdCl2, there was an average increase in relative expression
of 0.6 compared to the control. However, this increase rapidly
declined at concentrations of 500 µM and 1000 µM, with Kale M
showing a slightly less steep decrease.

HIPP27 displayed a rise in expression as the CdCl2 concentrations
increased (up to 250 µM), followed by a decrease at 500 µM and
1000 µM CdCl2 concentrations. However, in Kale 23, the expression
of HIPP27 showed variability: it initially decreased at 100 µM, then
experienced a sudden increase at 250 µM and 500 µM, followed by a
further decline at 1000 µM compared to the control.
4. Discussion

The significant decrease of root length with the increase of CdCl2
concentrations is presented in Fig. 1. These findings are in line with
the results reported by Waheed et al. in 2022 32, where the accumula-
tion of heavy metals in Eruca sativa leaves are leading to reduced root
and shoot growth. This phenomenon can be attributed to increased
radical generation and a decreased rate of photosynthesis. Similarly,
Qadir et al. noted in their 2014 study 33 that cadmium (Cd) negatively
impacts photosynthesis rates, nutrient transport, and promotes radical
formation, posing potential harm to plant health. Additionally, similar
results were also reported in the plant Pisum sativum L 34. Compared to
most organs in plants, roots are mostly affected as they are directly in
contact with heavy metals. Heavy metals start disrupting the plants'
growth and metabolism by changing many important processes includ-
ing disrupted water and nutrient balance and reduction in many active
enzymes and chlorophyll.7 In all kale varieties the Cd levels increase in
parallel to the increasing concentrations of CdCl2. However, an excep-
tion is notable in the concentration of 1000 µM in Kale S, dropping
from 81.8 to 52.2 mg/kg Cd. This behavior indicated an inhibition
of Cd uptake at higher concentrations in Kale S1, where a lower
cadmium accumulation can be caused by lower phytostabilization,
and the plant goes into the senescence phase.13



Fig. 2. Atomic analysis Cd concentrations. Vertical lines represent the standard deviation of three replicates of independent experiments.

Fig. 3. The effect of Cd on relative expression levels of HIPP26, HMA2 MAPK2, HIPP27 and RAMP6, and HMA2 genes in Kale 23. The gene was quantified by qPCR
and normalized with the housekeeping gene Ubiquitin transcript. Vertical lines represent the standard error of three biological replicates from relative expression
values of independent experiments.
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The expression levels of five specific genes were evaluated: HMA2,
RAMP6, MAPK2, as well as HIPP26 and HIPP27. The findings are illus-
trated in Figs. 3, 4, and 5. An increase in genetic expression as the
CdCl2 concentrations increased is observed, although in some cases,
the expression of certain genes decreased significantly (if compared
to the control) at the 500 µM and 1000 µM concentrations. For exam-
ple, the expression of HMA2 decreased at 1000 µM CdCl2, possibly due
to the plants reaching a critical mortality threshold at this concentra-
tion, as elucidated by Shahid et al. in 2017 35. Further, HMA2 was
found to drive heavy metals out of cytoplasm in yeast and A. thaliana
by removing oxidants from plant roots 36,37.

In the current research, HMA2 served primarily as a positive con-
trol, since HMA2 up‐regulation was previously strongly correlated to
Cd stress in Brassica oleracea var. acephala 23. Similar findings where
observed in Brassica juncea in 2021, where an up‐regulation HMA2

was significantly noted 38.
In Kale M and Kale S1, the expression of the Mitogen‐activated pro-

tein kinase 2 gene (MAPK2) was up‐regulated with increasing CdCl2
concentrations, but Kale 23 exhibited a different pattern. We observed
a consistent decrease in the expression of MAPK2, where relative
expression levels declined from 1.4 in the control group to 0.34 when
exposed to 500 µM CdCl2 concentrations. This shift in expression could
4

potentially be attributed to mutations that might have arisen in the
MAPK2 primers during the qPCR reaction. In a study involving A. thali-
ana and yeast cells, the L157P mutation introduced during PCR
impacted the results of Cd transportation, leading to down‐
regulation 39. Additionally, there is a potential indication that expo-
sure to elevated concentrations of CdCl2 may trigger a cell death phase
in Kale 23, as shown in Arabidopsis thaliana 40. Research has demon-
strated that MAPK genes play a role in regulating both biotic and abi-
otic stresses 41,42. Natural resistance‐associated macrophage protein 6
(RAMP6), belonging to the metal transporter protein family, is known
for transporting Fe2+ and Mn2+ into the cytoplasm and Cd ions intra-
cellularly in A. thaliana 20,21,43. Based on our research findings, all kale
varieties consistently displayed an increasing expression pattern of
RAMP6 in response to rising concentrations of CdCl2. This implies a
noticeable involvement of Natural resistance‐associated macrophage
protein 6 in the cadmium (Cd) metabolism of Brassica oleracea. How-
ever, it's important to note, based on our examination of existing liter-
ature, that there hasn't been direct confirmation of RAMP60s role as a
Cd transporter in Brassica oleracea. In the context of the Brassicaceae
family, our results align with observations in Brassica rapa, where
the RAMP protein family is associated with responses to Cd stress,
showing up‐regulation in the roots when exposed to cadmium 44.



Fig. 4. The effect of Cd on relative expression levels of HIPP26, HMA2 MAPK2, HIPP27 and RAMP6, and HMA2 genes in Kale S1. The gene was quantified by qPCR
and normalized with the housekeeping gene Ubiquitin transcript. Vertical lines represent the standard error of three biological replicates from relative expression
values of independent experiments.

Fig. 5. The effect of Cd on relative expression levels of HIPP26, HMA2 MAPK2, HIPP27 and RAMP6, and HMA2 genes in Kale M. The gene was quantified by qPCR
and normalized with the housekeeping gene Ubiquitin transcript. Vertical lines represent the standard error of three biological replicates from relative expression
values of independent experiments.
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Recently, a transcriptome analysis data from both leaves and roots in
Brassica juncea, revealed that RAMP expression varies with different
concentrations of Cd treatments, showing tissue‐specific patterns but
predominantly it is up‐regulated in the roots 45.

Research examining the gene expression of HIPP26 and HIPP27 in
Brassica oleracea var. acephala is presently absent. In this study, HIPP26
is observed to undergo up‐regulation in response to Cd stress in domes-
tic kale varieties (Kale S1 and Kale M). Similar studies conducted with
A. thaliana have indicated that HIPP26 expression rises as the intake of
Cd ions increases 46,47. B. oleracea and A. thaliana species are recog-
nized for sharing orthologous genes 48,49. In this regard, our findings
can indicate the potential involvement of HIPP26 in the Cd influx pro-
cess of Brassica oleracea var. acephala..In line with our findings, Zhao
et al. (2023) documented that HIPP27 interacts with Ubiquitin‐
specific protease 16 (UBP16), a recognized Cd regulator, and plays a
crucial role in cadmium detoxification 50. In our study, the expression
5

of HIPP27 displayed variability within the hybrid kale, although it
exhibited comparable patterns to HIPP26 in domestic kale varieties.

Furthermore, it is crucial to highlight that this investigation
affirmed the greater resistance of domestic Brassica oleracea L. var. ace-
phala kale variants to cadmium stress compared to hybrid ones. These
results contribute to additional insights into the molecular mecha-
nisms involved in the processing of heavy metals by B. oleracea L.
var. acephala, affirming its potential capacity for phytoremediation.
5. Conclusion

This research investigation focused on the assessment of three dis-
tinct kale cultivars, comprising two indigenous varieties and one
hybrid strain. Kale exhibits notable resilience to adverse environmen-
tal factors such as atmospheric, aquatic, and soil pollution. Through



J. Šutković et al. Journal of Genetic Engineering and Biotechnology 22 (2024) 100381
the utilization of atomic spectrometry measurements, it was discerned
that Kale S1, characterized as an indigenous wild type kale variety,
exhibits the highest level of resistance to cadmium (Cd) stress. Exper-
imental evidence substantiates that Kale S1 accumulates the least
amount of Cd. Additionally, the outcomes from quantitative poly-
merase chain reaction (qPCR) analyses revealed that a majority of
the target genes under Cd stress exhibited the lowest levels of gene
expressions in both Kale S1 and Kale M.

The hybrid Kale 23, embodies the highest cadmium (Cd) toxicity
among the examined kale varieties, as substantiated by the consistent
findings across all conducted experiments, which indicate its highest
Cd accumulation. Therefore, Kale 23 emerges as a prime candidate
for phytoremediation purposes, given its potential for efficiently
removing Cd from contaminated environments. In contrast, Kale S1
emerges as the most favorable kale choice for human consumption
due to its proven resilience to Cd stress and minimal Cd accumulation.
The methodologies employed in this study can be applied to evaluate
plants with phytoremediation potential. This research is significant as
it represents the first comprehensive evaluation of three kale cultivars
regarding their resistance to CdCl2. Consequently, the presented
approach offers an opportunity to identify and distinguish cabbage
varieties that display enhanced resistance to cadmium, as well as those
with potential utility as phytoremediation plants. Nevertheless, in
order to verify whether the examined kale varieties truly exhibit
strong phytoremediation capabilities, additional testing with other
prevalent heavy metals should be conducted.
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