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Myeloid-derived suppressor cells (MDSC) represent a heterogeneous population of
immature myeloid cells. Under normal conditions, they differentiate into macrophages,
dendritic cells, and granulocytes. Under pathological conditions, such as chronic
inflammation, or cancer, they tend to maintain their immature state as immature
myeloid cells that, within the tumor microenvironment, become suppressor cells and
assist tumor escape from immune eradication. MDSC are comprised of two major
subsets: monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC).
Monocytic myeloid cells give rise to monocytic cells, whereas PMN-MDSC share
similarities with neutrophils. Based on their biological activities, a two-stage model that
includes the mobilization of the periphery as myeloid cells and their activation within the
tumor microenvironment converting them into suppressor cells was previously suggested
by D. Gabrilovich. From the migratory viewpoint, we are suggesting a more complex
setup. It starts with crosstalk between the tumor site and the hematopoietic stem and
progenitor cells (HSPCs) at the bone marrow (BM) and secondary lymphatic organs,
resulting in rapid myelopoiesis followed by mobilization to the blood. Although
myelopoiesis is coordinated by several cytokines and transcription factors, mobilization
is selectively directed by chemokine receptors and may differ between M-MDSC and
PMN-MDSC. These myeloid cells may then undergo further expansion at these secondary
lymphatic organs and then home to the tumor site. Finally, selective homing of T cell
subsets has been associated with retention at the target organs directed by adhesion
molecules or chemokine receptors. The possible relevance to myeloid cells is still
speculative but is discussed.

Keywords: CCR5, CCR2 chemokines, cancer, myeloid derived suppressor cells, chemokine
INTRODUCTION

The tumor microenvironment (TME) is the environment around the tumor that includes sounding
blood vessels; immune cells; fibroblasts; soluble mediators, such as cytokines, chemokines, and
growth factors; and extracellular matrix (ECM). Among the immune cells that enable tumor escape
from immune eradication are myeloid-derived suppressor cells (MDSC). These are a heterogeneous
org October 2020 | Volume 11 | Article 5575861
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population of cells that consists of myeloid progenitor cells and
immature myeloid cells (IMCs). Under nonpathological
conditions, these IMCs differentiate into monocytic cells that
later become macrophages, dendritic cells (DC), and mature
granulocytes. However, under stress and during chronic
inflammation, particularly cancer, they tend to response to
“emergency signals” (1, 2), and as a result, their maturation
into fully differentiated cells is inhibited while retaining their
suppressive activity (3–7). Their mechanism of action includes
secretion of Arginase 1 (encoded by ARG1) and inducible nitric
oxide synthase (iNOS, also known as NOS2) as well as an
increase in their production of nitric oxide (NO) and reactive
oxygen species (ROS) [for a recent review, see (8)]. MDSC also
express immune checkpoint inhibitors, among them PD-L1 and
also PD-1 (9). Along with this, very recently it has been reported
that targeted deletion of PD-1 from MDSC induces highly
effective antitumor immunity (10). Altogether, these render
MDSC immune suppressive, in particular of effector T cells,
which enables tumor escape from immune eradication (3–7). It
is, thus, believed that these cells play a major role in enabling
tumors to escape their elimination or blockade, which could be
beneficial for cancer immunotherapy (11).

Myeloid cells, as other bone marrow (BM)-derived cells, are
generated from hematopoietic stem and progenitor cells (HSPCs) in
a process termed myelopoiesis and then are mobilized from the BM
to the blood. HSPCs also migrate from the BM to secondary lymph
nodes and spleen (12). At these organs, the presence of myeloid cells
has also been recorded [reviewed in (13)]. Recently, it has been
reported that under “emergency” conditions occurring during stress,
inflammation, and cancer diseases, the retinoic acid–related orphan
receptor (RORC1/ROR/g) orchestrates emergency myelopoiesis by
suppressing negative (Socs3 and Bcl3) and promoting positive (C/
EBPb) regulators of granulopoiesis as well as the key transcriptional
mediators of myeloid progenitor commitment and differentiation to
the monocytic/macrophage lineage (IRF8 and PU.1) (2). This may
suggest that, under emergency conditions, myelopoiesis and rapid
extension of myeloid cells may also take place at secondary
lymphatic organs and spleen and, by so doing, allow massive
accumulation of these cells at tumor sites (2) [(see also reviews in
((1) and (14)) (Figure 1)].

Chemokines are a subgroup of chemotactic cytokines that are
well associated with chemo-attraction of various leukocytes,
either from the BM to the blood (mobilization); from the
blood to sites of inflammation, autoimmune sites, tumor sites,
etc.; and from tissues and blood to the lymph nodes (21–23). The
current review focuses on elaborating a sequential multistep
model for characterizing their myelopoiesis, mobilization,
recruitment, retention, and biological function. In this model,
the migratory properties of myeloid cells from BM (and perhaps
also from secondary lymphatic organs) to the blood
(mobilization), is likely to be directed by specific chemokine
receptors (Figure 1). The model that we are suggesting does not
contradict the two-stage model of Gabrilovich (11), but adds
several steps that are associated with the migratory properties of
these cells. For example, the first step in Dr. Gabrilovich’s model
corresponds to activation of myelopoiesis, mobilization to the
Frontiers in Immunology | www.frontiersin.org 2
blood, and migration of myeloid cells to the tumor sites as
suggested in our multistep model as different steps.
MDSC SUBTYPES

MDSC are comprised of two major subsets: monocytic MDSC
(M-MDSC), and polymorphonuclear MDSC (PMN-MDSC). In
FIGURE 1 | The mobilization and migration of myeloid cells to the tumor site
as a multistep event The mobilization and migration of myeloid cells to the
tumor site is a multistep event in which cytokines, chemokines, and
transcription factors released from the tumor site reach the blood and,
thereafter, the BM and LNs and direct the different steps in myeloid cell
differentiation and migration. The first step (Step I) is rapid myelopoiesis of
myeloid cells at the BM and secondary lymphatic organs (LNs and spleen)
and is directed by several cytokines, among them interleukin-17A (IL-17A), G-
CSF, GM-CSF, TNFa, and others. Recently, the key role of the retinoic acid–
related orphan receptor (RORC1/ROR/g) in directing myelopoiesis in LNs has
been observed (2). The subsequent step (Step II) includes the mobilization of
myeloid cells to the blood and is directed by specific chemokine receptors:
CCR2 for monocytic myeloid cells (15) and CCR5 for the polymorphonuclear
myeloid cells (16) via CCR2 key ligand CCL2 and the CCR5 key ligands:
CCL3, CCL4, and CCL5 (Step II). Homing to the tumor site is likely to be
directed by many chemokines and chemokine receptors and is likely to have
low specificity (Step III). Step IV includes the retention of these cells at the
tumor site and, thus far, has been mostly studied for T cells (17–20). For
myeloid cells, it is still speculative.
October 2020 | Volume 11 | Article 557586
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human, M-MDSC are defined as CD11b+ CD14+ CD15−HLA-
DRlow/− cells. Due to the low or absent HLA-DR expression, M-
MDSC can be distinguished from monocytes. Human PMN-
MDSC are characterized as CD11b+ CD14−CD15+ HLA-DR−
or CD11b+CD14−CD66b+ (24).

In mice, M-MDSC are defined as CD11b+Ly6G−Ly6Chigh

and share phenotypical and morphological characteristics with
monocytes. PMN-MDSC are described as CD11b+Ly6Ghigh

Ly6Clow cells and resemble neutrophils (24).
M-MDSC and tumor-associated macrophages (TAMs) share

many features (25). Thus, it is believed that, at the tumor site, M-
MDSC may become TAMs. The question of whether PMN-
MDSC may also become mature granulocytes is still an open
question. There are two lines of evidence that support this
hypothesis: 1. Tumor-associated neutrophils and G-MDSC
represent similar functional states of cells originating from the
same cell type and induced within a tumor host. 2. Neutrophils
isolated from a normal tumor-free host substantially differ from
tumor-associated neutrophils or G-MDSC obtained from a
tumor-bearing host [reviewed in (26)].

Both types of MDSC express many chemokine receptors,
among them CCR5 and CCR2 (27). Within the TME, a vast
majority of MDSC are PM-MDSC (about 80%) even though they
have a shorter lifetime (11). Both also operate via similar
mechanisms of immunosuppression with a few differences:
Arginase-1 and prostaglandin E2 (PGE2) are preferentially
produced by PMN-MDSC, whereas NO is by M-MDSC [for a
recent review, see (3)]. It is also believed that M-MDSC are more
prominent than PMN-MDSC as they are thought to rapidly
differentiate to TAMs at the tumor site (28–35), whereas PMN-
MDSC play a major role in inducing peripheral T cell tolerance
(3, 11).
THE TWO-STAGE MODEL OF MYELOID
CELLS MOBILIZATION AND FUNCTION

Myelopoiesis during acute infection, stress, or trauma results in
rapid terminal differentiation of myeloid cells. By contrast, in
cancer and chronic inflammation, myelopoiesis is associated
with defective myeloid cell differentiation, which results in the
accumulation and persistence of immature myeloid cells at
cancer sites or chronic inflammatory sites. These cells then
function as suppressor cells and are, therefore, referred to as
MDSC (4, 6–8). Based on the above, D. Gabrilovich et al. suggest
a two-stage model that is based on the biological function of
myeloid cells during cancer and chronic inflammation (11). It
includes the myelopoiesis of these cells in BM, their mobilization
to the blood and secondary lymphatic organs as myeloid cells
(stage I), and later their transition and maintenance as MDSC
(stage II), which mostly takes place at the tumor site (11) or,
respectively, sites of chronic inflammation (36).

In both type of diseases, the rapid myelopoiesis of myeloid
cells at the BM is likely to be directed by several cytokines and
transcription factors, among them interleukin-17A (IL-17A)
ROR1C that induces IL-17A, G-CSF, GM-CSF, TNFa and
Frontiers in Immunology | www.frontiersin.org 3
others (2, 4, 6, 14, 37, 38), whereas maintenance of the
suppressive function is driven by several components that
affect the activities of MDSC at the tumor site, including
interaction with other cells, particularly T cells cytokines,
chemokines, and transcription factors, and the effect of
microRNA released from exosomes (39–41).

The second stage includes two distinct yet partially
overlapping types of signals. The first is associated with the
expansion of the immature myeloid cells and inhibition of their
terminal differentiation, and the second is their pathologic
activation as suppressor cells (42). The first group of signals is
mostly driven by tumor-derived growth factors as well as STAT3,
IRF8, C/EBPb, Notch, adenosine receptors A2b signaling, and
NLRP3 (43) and of microRNA released from exosomes (39–41).
The second type of signal is mediated by factors produced mostly
by the tumor stroma (proinflammatory cytokines, HMGB1) and
includes the NF-kB pathway, STAT1, STAT6, prostaglandin E2
(PGE2), and cyclooxygenase 2 (COX2) as reviewed in (42).

It should be noted that the mechanisms controlling the
suppressive activities may vary between PMN-MDSC and M-
MDSC. The first are short-lived (44), and their activity may
require close cell-to-cell contact with T cells (45), whereas M-
MDSC are long-lived and are likely to give rise to TAMs that,
under the TME milieu, suppress antitumor immune reactivity by
different mechanisms (46).

Despite the clear definition between myeloid cells in the
periphery and MDSC at the tumor site (11), it has been
reported in cancer MDSC in spleen, and secondary lymphatic
organs function as suppressor cells and execute far-reaching
immune suppression by reducing expression of the L-selectin
lymph node (LN) homing receptor on naive T and B cells, and
impair T cell activation also by inhibiting the homing of naïve
CD4+ and CD8+ T cells to LNs (47).
THE RECRUITMENT OF MDSC AT TUMOR
SITES AS A MULTISTEP EVENT
DIRECTED IN PART BY CHEMOKINE–
CHEMOKINE RECEPTOR PATHWAYS

The generation of myeloid cells and their recruitment to the
tumor site could be viewed as a multistep event, in which the
cross-talk between the tumor site and myeloid cells play a major
role. We are suggesting a four-step event that characterizes the
homing of these cells (step I–IV) and an additional two steps that
aim to focus on two complementary signaling events within the
TME that enable the transformation of myeloid cells into
suppressor cells and maintains their immature state as such
(Figure 1) as follows:

Step I
The first step is myelopoiesis. It could occur in the BM and also
possibly in the LNs and spleen as HSPCs also migrate from BM
to LNs, spleen, and peripheral tissues (12) and undergo
myelopoiesis there (2). Several key cytokines take a major role
in this step, including IL-17A, granulocyte-colony stimulating
October 2020 | Volume 11 | Article 557586
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factor (G-CSF), granulocyte-macrophage colony-stimulating
factor (GM-CSF), and TNFa. All these cytokines are largely
produced at tumor sites, and their blood levels increase during
cancer diseases (48–56). Concurrent myelopoiesis at the BM and
secondary lymphatic organs may allow intensive accumulation
of myeloid cells at the tumor site (1, 2, 14).

Step II
The subsequent step (step II) is the mobilization of myeloid cells
that rapidly proliferated along myelopoiesis from the BM and
possibly secondary lymphatic organs to the blood. It is not yet
clear whether the mechanism by which these cells are mobilized
from the BM to the blood differs from the one by which they are
mobilized from the lymph nodes to the blood. Accumulating
evidence votes for a pivotal role of chemokine–chemokine
receptor interactions at this step (15, 16, 57). Several key
chemokines are largely produced at tumor sites, and their
blood level increases during cancer diseases, among them the
CCR2 ligand CCL2 (58), and CCR5 ligands, in particular CCL5
(59, 60). These soluble mediators are likely to participate in the
inter-talk between the tumor and leukocytes, either within the
tumor site or at the periphery. The CCR2–CCL2 axis is highly
relevant for monocytic and monocytic myeloid cells (15, 57),
particularly in inflammation (15) and cancer (28–31, 33, 34). In
2003, Geissmann, Jung, and Littman reported different migratory
properties for CX3CR1lowCCR2+Gr1+ and CX3CR1highCCR2-
Gr1+ cells, showing that those that are CCR2+ preferentially
home to inflammatory sites, whereas the others go to normal
tissues (57). This links CCR2 to selective homing of monocytic
myeloid cells to inflammatory sites (57). Three years later,
Sebrina et al. demonstrated the pivotal role of CCR2 in
directing the mobilization of Ly6Chigh monocytes from BM to
the blood (15). This study shows that CCR2KO mice display
fewer circulating Ly6Chigh monocytes and, after infection with
listeria monocytogenes, accumulate activated monocytes in BM
(15). This study also shows that the later chemotaxis of these cells
to the inflammatory site is not necessarily CCR2-dependent and
also occurs if using monocytic cells from CCR2 KO mice (15).
Later studies further explore the pivotal role of CCR2 in directing
the recruitment of CCR2+ monocytic cells to the tumor site to
support its development and suppress antitumor immunity (28–
31, 33, 34). More recently, Chang et al. observed in murine
glioma that CCL2 produced by microglia recruited CCR2+Ly6C+
monocytic MDSCs (M-MDSCs) to the tumor site, which is absent
in CCR2KO mice (61). Among the different ligands that bind
CCR2, CCL2 has been thought to be the dominant chemokine. An
additional chemokine that is likely to hold similar properties is
CCL12 (62).

Less is known about the mobilization of polymorphonuclear
myeloid cells from the BM (and perhaps lymphatic organs) to the
blood. Our group found interest in exploring the role of CCR5 and
its ligands in cancer. Individuals with a functional mutation in
CCR5 (deletion of the N-terminal 32 nucleotides) display a high
state of HIV resistance (63). Later, it was found that they also show
low prevalence of cancer diseases, particularly cancer of the prostate
(64). This motivated us to explore the underlying mechanism by
which the absence of CCR5 confers cancer resistance. In so doing,
Frontiers in Immunology | www.frontiersin.org 4
we have used CCR5KO mice and an autologous model of prostate
cancer in immunocompetent mice (16). In this study, we observed
that 1. CCR5 ligands directly support tumor growth via CCR5, and
thus, blockade of CCR5 ligands in a chimeric system in which
CCR5KOmice bearing CCR5+ tumor cells, targeting CCR5 ligands
restrains tumor growth (16). 2. CCR5 drives the accumulation of
MDSC at the tumor site; thus, in CCR5KO mice, the relative
number of GR1+ CD11b+ myeloid cells at the tumor site is very
low, and tumor development is arrested. Reconstitution of these
mice with GR1+ CD11b+ myeloid cells from WT mice (CCR5+)
reconstituted tumor growth (16). Further investigation shows that,
along with tumor development the level of CCR5 ligands that are
largely expressed with the TME, increases in the blood. This leads to
a rapid increase in the expression of CCR5 on myeloid cells at the
BM to a rapid mobilization of CD11b+Ly6GhighLy6Clow myeloid
cells that become PMN-MDSC at the tumor site (16). It has yet to be
studied if limited accumulation of PMN-MDSC at the tumor site in
CCR5KO mice exclusively results from reduction in their
mobilization from the BM to the blood, and/or from secondary
lymphatic organs to the blood, or also due to possible roles of CCR5
in directing the accumulation of these cells at the tumor site. In this
study, we also observed that the CCR5–CCR5 ligands interaction
also potentiates the suppressive activities of PMN-MDSC by
increasing the expression of Arginase 1 and possibly other
mediators that suppress effector T cell function (16). A recent
manuscript used the technology of deleting the genomic locus
incorporating the iCCRs of different chemokine receptors that
have been associated with myelomonocytic cell population
migration, including CCR1, CCR2, CCR3, and CCR5 to show
that tissue-resident myelomonocytic cell populations are
established even in their absence, whereas during inflammation,
CCR2 holds a key role in their targeted recruitment (65). Dyer et al.
have not explored their setup in a cancer disease model.

Step III
The third step (step III) includes the accumulation ofMDSC at the
tumor site and their retention there. In our opinion, this step is
more complex and less understood than most leukocyte subtypes.
The major obstacle is that myeloid cells express many different
chemokine receptors and may, thus, respond to many different
chemokines that are largely expressed at tumor sites. Then, what
causes chemokine receptor specificity? Indeed, many studies show
a significant role of different chemokines in myeloid cell
recruitment to tumor sites (Table 1). Among them, 1. the
CCL15-CCR1 signaling pathway (68, 69), 2. the CX3CL1 -
CCL26 pathway for recruiting M-MDSC (70), 3. the CXCL5/
CXCL2/CXCL1 chemokines were suggested to recruit PMN-
MDSCs to tumor tissue via CXCR2 in murine spontaneous
melanoma model (71), 4. CXCL13-CXCR5 signaling mediates
the migration of MDSCs to tumor tissue (72). Moreover, in
different cancer diseases, poor or good prognosis was associated
with high or low levels of these chemokines (Table 2) [for a recent
review, see (73)]. How could these observations take place with the
predominate role of the CCR5-axis for directing PMN-MDSC
recruitment and the CCR2-axis for M-MDSC selective
recruitment at tumor sites? We are suggesting, within the three-
step model described above, the highly selective step that
October 2020 | Volume 11 | Article 557586
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determines receptor specificity is the mobilization from the BM
and perhaps from the secondary LNs to the blood and that this
step serves as a bottleneck for selectivity in myeloid cell migration.

Step IV
Retention at the tumor site: This step is still speculative and has
been mostly studied for T cells thus far. It suggests that,
tentatively, myeloid cells could be recruited to tumor sites by
many different chemokine receptors, but their retention there is
more specific and may involve a limited number of chemokine
receptors and/or adhesion molecules (74). This option has been
explored thus far only for T cell migration. Key examples are the
retention of CD103+ memory T cells to tissues where they
become tissue resident memory T cells due to the interaction
of CD103 (an aE integrin) that binds a b7 counter integrin (17–
20), the L-selectin serving as a homing receptor for naïve T cells
(75), and the role of the a4b1 integrin in the retention of CD4+ T
cells in the inflamed brain (76). The relevance of this concept to
other leukocyte subtypes is yet to be studied.
POST-TRANSLATIONAL MODIFICATION
(PTM) OF CHEMOKINES AND SELECTIVE
MIGRATION OF PMN-MDSC

An important mechanism of fine-tuning chemokine activity is
PTM of chemokines and their receptors. One of the mechanisms
Frontiers in Immunology | www.frontiersin.org 5
that may show high relevance to CCR5-dependent selective
migration of PMN-MDSC is PTM by CD26 [for a recent
relevant review, see (115)]. CD26 is a cell-bound enzyme
ubiquitously expressed on blood cells, especially on activated T
cells, fibroblasts, and epithelial cells. Two of the three CCR5
ligands, CCL4, and CCL5 are truncated by CD26, which may
selectively reduce CCL4/CCL5 activity on T cells but to a lesser
degree extend PMN-MDSC.
CLINICAL IMPLICATIONS IN CANCER
DISEASES: COULD REDUNDANCY IN
CHEMOKINES BE OVERCOME VIA
MONOTHERAPY?

Thus far, many clinical trials in humans in which single
chemokines or their receptors were targeted for therapy of
inflammatory autoimmunity or cancer failed. Two major
potential reasons could be taken into account: redundancy,
that is, different chemokines with similar properties bind the
same chemokine receptor, and overcompensation by production
of increased levels of targeted chemokine. Two possible
approaches to partially overcome this obstacle is by designing
a compound that would target all ligands of a single receptor or
prefer a receptor blockade over targeting a single chemokine. We
have taken the first approach and generated a chimeric CCR5
soluble receptor study (116) that could effectively inhibit cancer
TABLE 1 | The role of chemokines, cytokines, and other mediators in directing the different steps in myeloid cell migration and function.

Step Mediators References

Step I: Myelopoiesis IL-17A, G-CSF, GM-CSF, TNFa, RORC1, (1, 2, 43, 66, 67)
Step II Mobilization to the blood (and possibly also homing
to the tumor site):

CCR2 ligands (mostly CCL2) for monocytic cells, and CCR5 ligands, preferentially
CCL5 for PMN-MDSC

(15, 16, 57)

Step III: Homing to the tumor site CCL15-CCR1 signaling pathway, CX3CL1 - CCL26 pathway, the CXCR2-
CXCL5/CXCL2/CXCL1 pathway, the CXCL13-CXCR5 pathway

(68–72). Also recently
reviewed in (73)

Step IV: Retention at the tumor site Firm data only for T cells. Yet to be identified for myeloid cells. For T cells: (17–20,
74–76),

expansion of the immature myeloid cells and inhibition of
their terminal differentiation at the tumor site

STAT3, IRF8, C/EBPb, Notch, adenosine receptors A2b signaling, and NLRP3
and of microRNA released from exosomes

(39–41, 43)

Transformation of the immature myeloid cells into
suppressor cells

proinflammatory cytokines HMGB1, STAT1 STAT6, prostaglandin E2 (PGE2)
cyclooxygenase 2 (COX2)

reviewed in (42)
October 2020 | Volu
TABLE 2 | Key chemokines associated with myeloid cell homing and cancer prognosis.

Chemokine Key Target
receptor

Step Association with prognosis in the following cancer diseases Reference

CCL2 CCR2 II
III?

Pancreatic cancer, Bladder cancer, Breast cancer, Lung Adenocarcinoma, Renal cell carcinoma,
Ovarian cancer, Cervical carcinoma

(77–83)

CCL5 CCR5 II
III?

Breast cancer, Glioblastoma, Colorectal cancer, Osteosarcoma, Gastric cancer, Hepatocellular
carcinoma

(59, 60, 84–91)

CCL15 CCR1 III Head and Neck Squamous Cell Carcinoma (HNSCC), Colorectal cancer, Gastric cancer,
Hepatocellular carcinoma, Lung cancer

(69, 92–97)

CCL26 CX3CL1 III Colorectal cancer (98)
CXCL5/CXCL2/CXCL1 CXCR2 III Pancreatic ductal adenocarcinoma, Glioblastoma, Non-small cell lung cancer, Gastric Cancer,

Prostate cancer, Colorectal cancer, Bladder cancer
(99–107)

CXCL13 CXCR5 III Clear Cell Renal Cell Carcinoma (ccRCC), Gastric cancer, HBV-related hepatocellular carcinoma,
Breast cancer, Lymphoma

(108–114),
me 11
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of the prostate in C57Bl/6 mice (16). Then, together with Viktor
Umansky and his team, this study was further extended to a
transgenic model of melanoma showing that indeed the CCR5-
CCR5 ligand axis directs the accumulation of PMN-MDSC at the
tumor site and that CCR5-Ig also effectively inhibited the
development and progression of this disease (117). Others used
blocking mAbs to CCR5 or even one of its three ligands, CCL5,
to inhibit metastasis and improve the survival of tumor-bearing
mice (118, 119) and also enhance anti-PD1 efficacy in gastric
cancer (120). As for humans, Halama et al. recently showed
success in blocking colorectal cancer using a CCR5 small
molecule inhibitor that was previously developed for therapy
of HIV (121). If successful, we think that extension of this
therapeutic approach as a monotherapy or part of a combined
therapy could be further considered.
A FUTURE VIEW OF THE CLASSICAL
TWO-STAGE MODEL IN LIGHT OF
MODERN TECHNOLOGIES

The traditional classification of myeloid cells in the periphery
and MDSC at the tumor site have recently been revised using
several modern technologies, aiming at categorizing single cells
based on their gene signature (single-cell RNAseq) and
expression of cell surface receptors and some intracellular
proteins (mass cytometry, CyTOF). The basic hypothesis is
that, beyond the variety between human and mouse in the
classification of these cells (24), in each species, the gene
signature and cell surface protein expression may vary
depending on the organ from which cells are isolated (BM,
spleen, blood, LNs, tumor site) and may also differ between
tumor types (122–126). These studies are still in early
development but may pave a new direction in scientific
research and its translational implications.
CAN THE MULTISTEP MODEL EXPLAIN
THE PARADOX OF REDUNDANCY IN
CHEMOKINE–CHEMOKINE RECEPTOR
INTERACTIONS AND SELECTIVE
MIGRATION?

MDSC express many chemokine receptors and may, therefore,
potentially migrate in response to each of them (Table 1). The
multistep model suggests that, among the four different steps
(myelopoiesis, mobilization to the blood, recruitment, and
retention) the step of mobilization to the blood is likely to be
Frontiers in Immunology | www.frontiersin.org 6
the more highly selective stage. In this event, CCL2 signals via
CCR2 to allow the effective mobilization of monocytic cells,
including monocytic myeloid cells (15, 57), whereas CCR5 via its
ligands, mostly CCL5, is likely to direct the mobilization of PMN
myeloid cells (16). The last has mostly been studied in our
laboratory and has to be further confirmed by others. It is
conceivable that the CCR2 and CCR5 axes are also involved,
together with other axes in step III of homing to the tumor site
(Table 1). This may explain why CCR2 and perhaps CCR5 are
indeed key drivers in the migratory cascade of myeloid cells.

Among these four steps, not much is known for the last one
(retention) for myeloid cells. For T cells, its selectivity and
specificity are mostly directed by selective adhesion receptors
(18–20, 75, 76). We do not exclude the possibility that a key
adhesion molecule or a key chemokine receptor may direct this
stage, making it a highly selective step as well.
CONCLUSIONS

Based on their biological function, the development of MDSC
includes two major stages: the first starts with myelopoiesis in the
BM and lymphatic organs and the second upon their entry to the
tumor site where they acquire suppressive capabilities and retain
their amateur state of development. Nevertheless, based on their
migratory properties, their generation and migration to the
tumor site could be described as a more detailed multistep
event in which their mobilization to the blood seems to be
chemokine-receptor dependent and also determines the
selectivity of their migration. We have uncovered a key role of
the CCR5 axis in directing the mobilization of PMN-MDSC and
suggest CCR5 blocking as a potential way for monotherapy or
part of combined therapy for cancer diseases.
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