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Information extraction and knowledge discovery regarding adverse drug reaction (ADR) from large-scale clinical texts are very
useful and needy processes. Two major difficulties of this task are the lack of domain experts for labeling examples and
intractable processing of unstructured clinical texts. Even though most previous works have been conducted on these issues by
applying semisupervised learning for the former and a word-based approach for the latter, they face with complexity in an
acquisition of initial labeled data and ignorance of structured sequence of natural language. In this study, we propose automatic
data labeling by distant supervision where knowledge bases are exploited to assign an entity-level relation label for each drug-
event pair in texts, and then, we use patterns for characterizing ADR relation. The multiple-instance learning with expectation-
maximization method is employed to estimate model parameters. The method applies transductive learning to iteratively
reassign a probability of unknown drug-event pair at the training time. By investigating experiments with 50,998 discharge
summaries, we evaluate our method by varying large number of parameters, that is, pattern types, pattern-weighting models,
and initial and iterative weightings of relations for unlabeled data. Based on evaluations, our proposed method outperforms the
word-based feature for NB-EM (iEM), MILR, and TSVM with F1 score of 11.3%, 9.3%, and 6.5% improvement, respectively.

1. Introduction

Data-driven approach for knowledge extraction from elec-
tronic medical records (EMRs) has gained much attention in
recent years. An EMR repository contains a collection of tacit
knowledge [1] (e.g., professionals’ experiences, know-how)
and explicit knowledge (e.g., diagnosis procedure, patient infor-
mation) in a digital form of structured and unstructured data.
This EMR repository offers insight into significant healthcare
problems: patient mortality prediction [2], patient risk identifi-
cation [3, 4], drug-disease relation extraction [5], and drug-
drug interaction prediction [6, 7]. One of the potential applica-
tions is automatic adverse drug reaction (ADR) identification
from EMRs. The ADR terminology is an unpleasant event
(e.g., symptom, disease, and finding) associated with a medica-
tion given at recommended dosages [8]. Even though ADRs
can be identified by premarketing clinical trials, only partial

ADRs are reported. Postmarketing surveillance with a large
amount of population is necessary for remaining ADR moni-
toring. To this end, there are two multidisciplinary tasks of
ADR surveillance: ADR identification and ADR prediction.
The former task targets on retrieval of unrecognized ADR that
may exist in data but not explicitly described as knowledge,
while the latter one aims to construct a model for predicting
unknown ADR that have not been reported in anywhere.

In earlier research, the statistical co-occurrence method is
broadly employed to quantify the relationship strength
between a drug-event pair. While the method is simple, its
result might present no explicit clinical relevance of a derived
drug-event pair [9] due to disregard relational context that
might express an exact impression in a clinical event such
as a drug treats a symptom or a drug causes a symptom. To
fill in this research gap, many researchers consider surround-
ing contexts around drug and event entities within clinical
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texts and represent such data by either using pattern-based
method [10–15] or feature-based method [16–18]. Conse-
quently, a potential ADR is identified by either training
supervised learning or semisupervised learning [19] model.
However, there are two main difficulties when dealing with
unstructured texts using such learning models. A rare avail-
ability of labeled instances derived by human annotation to
form a gold-standard example is the former problem, and
intractable processing of unstructured clinical texts is the lat-
ter one. Toward the insufficiency of labeled instances, several
studies alleviate this problem by using a sort of heuristics or
rules (distant supervision [20, 21]), that is, mapping a sen-
tence that contains entity pair e1, e2 from knowledge base
and tagging relation label y to such mentioned sentence
to form a training set. For the second problem, a word-
based approach [22–24], the most commonly used method
for text representation, is introduced; however, the method
ignores either grammatical or semantic dependency among
words. Therefore, pattern-based methods [10, 11, 14] are
promoted to either extensive or substitute for word-based
text representation. Recently, distant supervision paradigm
is introduced to overcome hand-labeled data process to
obtain a label of an instance from knowledge base [20, 21].
For example, knowledge bases consist of the following
drug-event relations (“ramipril-allergy,” “ADR”) and (“aspi-
rin-fever,” “IND”), so-called entity-level relation. By distant
supervision, we can derive automatic labeled data of an asso-
ciated sentence with such drug event, for example, “His rami-
pril were discontinued due to allergy and added to list in our
medical records,” “ADR,” and known as instance-level rela-
tion. Therefore, multiple-instant learning (MIL) paradigm
[25] is introduced into the classifier builder process to handle
such two-level relations.

This paper introduces ADR identification framework by
aiming to classify an entity-level relation of a drug-event pair.
Our work differs from prior related works in the following
aspects: (i) we propose key phrasal pattern-based bootstrap-
ping method for characterizing ADR and IND, (ii) we intro-
duce alternative parameter learning of a generative model,
and (iii) we perform enhancement of the proposed method
by incorporating transductive learning method.

The rest of this paper is organized as follows. A brief lit-
erature review and fundamental knowledge are given in Sec-
tion 2. Then, Section 3 introduces problem formulation and
our proposed framework. Section 4 presents the experimen-
tal results. Finally, the conclusion is discussed in Section 5.

2. Background

2.1. Adverse Drug Reaction Identification from Unstructured
Texts. Recently, narrative notes in EMRs have been demon-
strated as a promising data source and widely utilized for
improving detection of patients experiencing adverse reac-
tions, across drugs and indication areas [10–13, 26]. There
are at least three common subprocesses for dealing with
unstructured texts in EMRs: (i) named entity recognition
(NER) (particularly, named entities of drug and event) and
normalization, (ii) relation generation (drug-event candi-
dates), and (iii) relation classification (ADR identification).

As the first subprocess, the medical NER aims to recog-
nize a clinical term mentioned in EMRs. Another extended
task, the normalization intends to unify a discovered clinical
term into a conventional lexicon based on an identical
semantic meaning or a concept, which can be referred
through UMLS concept unique identifier (CUI) (https://
www.nlm.nih.gov). Many researchers endeavor to deal with
medical NER and normalization by developing computa-
tional tools such as cTAKES (http://ctakes.apache.org),
FreeLing-Med, MetaMap (https://metamap.nlm.nih.gov),
MedLEE (http://www.medlingmap.org/taxonomy/term/80),
tmChem (https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/
Demo/tmTools/tmChem.html), DNorm (https://www.ncbi.
nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/DNorm.html),
GATE (https://gate.ac.uk), or Stanford CoreNLP tool (http://
stanfordnlp.github.io/CoreNLP). From Figure 1, by employ-
ing medical NER and normalization, we can identify two
drugs (i.e., ramipril and bacterium) and five events (i.e.,
allergy, facial swelling, HTN (hypertension), respiratory infec-
tion, and viral infection) from the given clinical texts. Then,
the normalization task replaces a drug term or an event term
with CUI. For example, a drug term ramipril is replaced with
C0072973, or an event term HTN is replaced with C0020538,
which refers to a concept of hypertension disease
(NCI—https://nciterms.nci.nih.gov).

As the next subprocess, the generating of drug-event can-
didates is performed using the windowing technique [27–29].
A drug-event pair tends to form a relation if they are located
in the same sentence, the same section, or more practically in
the same window size n. In general, this boundary detection
(BD) task aims to detect the beginning and the ending points
within given texts that a drug and an event tend to be seman-
tically related. The challenges of BD task [30–32] have arisen
based on a boundary of interest and a domain of given texts.
Many previous works define a potential boundary of a drug-
event candidate within the same sentence, and the sentence
boundary detection (SBD) in clinical texts is recognized as
challenge with noise prone. One of the major issues is usage
ambiguity of a period or a full stop (“.”). Typically, the period
has several possible functions, such as a sentence boundary
marker, a floating–point marker (e.g., “0.08,” “40.5mg”), a
marker for a numeric bullet of an enumerated list, or a sepa-
rator within an abbreviation (e.g., “y.o.,” “h.s.”). Other punc-
tuation marks such as a colon (“:”) increase the complexity of
SBD as well. Additionally, the grammatical dependency is a
potential method for improving a window-based relation
generation because it considers more specific semantic
dependency of the surrounding contexts.

Lastly, the generated lists of drug-event candidates are
identified as ADR or IND using supervised, semisupervised,
or unsupervised learning methods. The potential works on
ADR identification from unstructured texts are summarized
in Table 1. A statistical association is one of the pioneer
works to identify ADR by considering the co-occurrence of
a drug and an event in a specified window size n to form asso-
ciation hypotheses, and then, the 2× 2 contingency table is
computed for hypothesis testing. Despite the method is sim-
ple, it disregards semantic dependency among surrounding
contexts that might express real clinical evident. On the other
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Mr.[⁎⁎Known_patient_lastname_6543⁎⁎] is a pleasant 89 yo Results from NERs, Normalization and Relation Generation
M with history HTNe on ramiprild and recent bactrimd [Relation Candidates][Drugs] (d)
use for respiratory infectione who presented to the (1) Bactrim (C0591139)
[⁎⁎Hospital1_4⁎⁎] emergency department. (2) Ramipril (C0072973)
... Ramipril-Allergy
Although exceedingly rare, some viral infectionse may [Events] (e) Ramipril-HTN
cause facial swellinge; although this patient has had (1) Allergy (C3539909)
signs of a respiratory illness the clinical scenario is more (2) Facial swelling (C0151602) [Actual Relations]
consistent with angioedema secondary to medication use. (3) HTN (C0020538) ADR
His ramiprild and bactrimd were discontinued and added (4) Respiratory infections (C0035243) IND
to his allergye list in our medical records. (5) Viral infection (C0042769)
...

Bactrim-Allergy
Bactrim-Respiratory infections

Ramipril-HTN
Ramipril-Allergy

(a) (b)

Figure 1: An example of narrative notes from a discharge summary in an EMR system is shown in (a). The possible outcomes derived by
NERs, normalization, and relation generation of drugs and events from the given texts are displayed in (b). Both drugs and events are
unified by UMLS CUI. For privacy concerns, confidential information is concealed using deidentification as [∗∗…∗∗].

Table 1: A list of previous studies on ADR identification from unstructured text.

Data source Literature Year Size
Label

number
Labeling
method

NER Method

Supervised learning

EMR

Aramaki et al. [10] 2010 3012 notes A, O (2) H CRF Pattern-based

Sohn et al. [11] 2011 237 notes A, O (2) H cTAKES Pattern-based, DT C4.5

Henriksson et al. [26] 2015 400 notes A, I, O (3) H CRF Word embedding, RF

Casillas et al. [12] 2016 n/a A, O (2) H FreeLing-Med Pattern-based, SVM, RF

Literature Peng et al. [16] 2016
18,410
abstracts

A, O (2) H, DS
Dictionary,
tmChem,
DNorm

Feature-based, SVM

Social media

Segura-Bedmar et al. [33] 2015
84,000

messages
A, I (2) DS GATE

Shallow linguistic kernel,
distant supervision

Nikfarjam et al. [17] 2015
8800 blog
sentences,
3200 tweets

A, I, O (3) H CRF Word embedding, CRF

Jenhani et al. [18] 2016 80,000 tweets A, O (2) R, ODIN
Dictionary,
Stanford
CoreNLP

Rule-base, feature-based,
DT, SVM, LR, NB

Liu et al. [34] 2016
1800 blog
sentences,
500 tweets

A, O (2) H MetaMap
Feature-based, tree kernel-
based, ensemble method

Semisupervised learning

EMR
Taewijit and

Theeramunkong [13]
2016

1.5M
sentences

A, I (2) DS MetaMap
Distant supervision,

OpenIE [35], pattern-based

Literature Kang et al. [36] 2014
1644

abstracts
A, O (2) H Peregrine

Hierarchical graph-based,
shortest path

Social media Liu and Chen [37] 2015 400 sentences A, I, O (3) H MetaMap Dependency tree, TSVM [38]

Unsupervised learning

EMR Wang et al. [39] 2009 25,074 notes None None MedLEE Co-occurrence

Literature Xu and Wang [14] 2014 119M sentences None None Parse tree Pattern-based, ranking

Social media Feldman et al. [15] 2015 0.1~1M messages None None
Dictionary,
pattern

HPSG-based parser,
postprocessing of
relation merging

Labels: A =ADR; I = IND; O = other (ADR cause, ADR outcome, non-ADR, negated ADR, others); labeling method: DS = distant supervision, H = human;
R = rule-based.
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hand, a pattern-based method [14, 15] is manifested that
achieves more accurate clinical relation extraction because
it relies on cues or trigger words that usually implies a seman-
tic relation. Although, a pattern-based method is more effi-
cient than the window-based method, a set of predefined
patterns or redundant pattern filtering by a human is
required. In our previous work [13], a pattern-based method
has been proposed to utilize labels weakly suggested by a set
of simple rules, (distant supervision) and pattern distribution
has been investigated for characterizing ADR relations. Dif-
ferent from [10–12, 18, 37], a pattern-based method is
acquired as feature representation and machine learning
methods such as support vector machine (SVM), decision
tree C4.5 (DT), random forest (RF), or naïve Bayes (NB)
are well-established as a classifier. Kang et al. [36] deploy a
graph base and applies the shortest-path preference to ADR
identification. With regard to the efficacy of word embedding
[40] in NLP, Henriksson et al. [26] examine the distributional
semantic model derived by word-embedding method for
NER, concept attribute labeling, and relation classification.
In their work, a high dimension on semantic space of each
word is used as a feature for model learning. The distribu-
tional semantic model is shown to improve the classifier per-
formance for all tasks. In another work, Nikfarjam et al. [17]
apply the word embedding in a similar manner. However, to
generalize semantic space, the authors employ a clustering
method on such semantic vectors.

2.2. Distant Supervision and Multiple Instance Learning. The
main objective of distant supervision is to alleviate the prob-
lem of hand-labeled training which is time-consuming, rare,
and expensive/costly by relying on knowledge base. Such
knowledge base is reliable, cheap, and ubiquitously available.
Distant supervision is first introduced by Craven and
Kumlien [20]. In their work, the term weakly labeled data is
presented for biomedical relation extraction fromMEDLINE.
Lately, Mintz et al. [21] propose an interchangeable para-
digm, distant supervision, to extract relation from Freebase.
Their assumption relies on “if the two entities participate in
a relation, any sentence that contains those two entities might
express that relation.” The distant supervision has been
applied recently for relation extraction problem [41–45] by
mapping relations of any couple entities from knowledge
bases (e.g., Freebase, YAGO) to a sentence in a large-scale text
corpus (e.g., New York Times). Similarly, in previous works
on application for emotion classification from social media
(i.e., tweets, microblog text) [46–48], the authors make use
of distant supervision to map lexicon emoticons or smilies
from knowledge bases (i.e., Wikipedia, Weibo) to large-scale
noisy texts. In medical domain, distant supervision for ADR
identification [33, 49] is leveraged to automatically assign
adverse reaction relation by mapping drug-event pair from
knowledge bases to each health-related texts. The work of
Yates et al. [49] utilizes SIDER as knowledge based on English
tweets and posted messages from breast cancer forum, and
Segura-Bedmar et al. [33] deploy SpanishDrugEffectDB data-
base on Spanish health-related texts.

As mentioned in the previous section, applying distant
supervision on text corpus mostly encounters the two-level

relation concept and the entity-level and the instance-level
relations. This mapping procedure may trigger noisy labeled
data [50, 51], andMIL paradigm [25] is widely used as a solu-
tion [41, 42, 52, 53] for such wrongly labeled data problem.
Fundamentally, MIL is aimed at handling the situation that
training labels are associated with sets of instance examples
rather than individual examples [54]. The concept of MIL
considers two levels of data, namely bag- and instance-level
relations. Let X be an instance space, Y be a set of labels,
where Y = −1, +1 , and x1, y1 , x2, y2 ,… , xn, yn be
a training set, where xi ∈X is an instance and yi ∈Y is a
known label of xi; usually, the supervised learning is to train
a classifier function f X →Y . On the one hand, a given
training set in MIL consists of bags and bag labels as
B1, y1 , B2, y2 ,… , Bn, yn , where Bi = xi1, xi2,… , xim

is a set of multiple instances, xij ∈X , and yi ∈Y is a label
of bag Bi and m can be different across a particular bag,
the goal of MIL is to learn f 2X →Y . For ADR identifi-
cation problem, bag- and instance-level relations in MIL
are equivalent to the entity- and the instance-level rela-
tions of drug-event relation by distant supervision,
respectively.

2.3. Transductive Learning. In semisupervised learning, as
varieties of the prediction method, the three parameters are
(i) predictive model, (ii) single model or collaborative model,
and (iii) test instances handling model. As the first parame-
ter, recent works [55–57] have proposed various predictive
models, such as generative models [22, 58], low-density sep-
aration models [59], and graph-based models [60]. For the
second parameter, at least two alternatives, namely self-
training [61, 62] or cotraining [63], can be applied to assign
a label to an unlabeled instance by either one single predictive
model or multiple ensemble predictive models. The last
parameter concerns with how to handle test instances, where
two choices are (i) to manipulate the test instances separately
from the unlabeled instances (inductive learning) or (ii) to
treat them as unlabeled instances in the training step (trans-
ductive learning). Regardless of any choice for the above
three parameters, semisupervised learning requires a few
labeled instances for constructing an initial model, triggering
complexity in the acquisition of such initial labeled data. The
main idea of transductive learning is to take advantage of the
information from unlabeled data during training time, while
inductive learning ignores such information even though
they are available [19].

3. Methods

This section presents the proposed ADR identification
framework to overcome the shortcomings of the existing
research: (i) the lack of domain experts for instances labeling
and (ii) intractable processing of large-scale unstructured
clinical texts. Our proposed framework contains the three
main tasks (Figure 2). First, a set of drug-event candidates
is generated from EMR texts. A silver-standard data and
unseen data preparation are the next process. Finally, we
explore alternative parameter learning schemes of generative
models to identify potential drug-event relations.
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To solve the first issue, we assign a label to an unlabeled
instance by exploiting facts in knowledge bases (i.e., SIDER
and DrugBank) and consider two labels, ADR and IND, as
classification outputs. While distant supervision can supply
a label to an unlabeled instance by simply looking up from
knowledge bases, the labeled data set by this method is
formed as MIL problem which training labels are associated
with sets of instance examples rather than individual exam-
ples. As for the latter issue, applying phrase-based method
and dependency representation may improve the model per-
formance. In our work, the main idea is that a sentence
regarding harmful (ADR) or beneficial (IND) clinical events
can be simplified into the three key elements, a drug, a key
phrasal pattern, and an event, and dependency among such
three elements has significance. Such key phrasal pattern
implies a semantic relation between any pair of drug and
event entities. We have employed key phrasal pattern-based
method for ADR identification in our previous work [13].

The method exhibits the high precision; notwithstanding its
drawback is low recall rate due to a limit to the number of
key phrasal patterns and the utilization of simple models.
In this work, we extend such key phrasal pattern-based
method with more sophisticated models, which is expected
to be able to retain the high precision and improve retrieval
performance. The EM, an iterative method, is incorporated
with Markov property assumption to draw conditional prob-
ability distribution of pattern-based feature (dEM). Finally,
we leverage unlabeled data through the transductive learning
as semisupervised learning to enhance the performance of
the proposed framework. For performance evaluation, we
construct EM with independent assumption through NB
(iEM) as the baseline and also compare our proposed
methods to multiple advanced methods; multiple-instance
support vector machine (MISVM), multiple-instance naïve
Bayes (MINB), multiple-instance logistic regression (MILR),
and transductive support vector machine (TSVM). The

(2) Automatic data labeling
(silver-standard data and unseen data labeling)

(3) Relation classification
(ADR identification)

Distant 
supervision

Transductive learning

MIL
iEM

Supervised learning

MIL
dEM

Transductive learning

MIL
dEM

Baseline Proposed method I Proposed method II

Knowledge bases

Labeled data (DL)
(d, p, e, y)

Unlabeled data (DU) 
(d, p, e)

EMRs (texts)Medical ontology 

Seed preparation

NEs (d, p, e)(d, e, y)

Pattern-based 
feature extraction

NER

SBD

(1) Relation generation
(drug-event candidates)

Parsing

NEs

SBs

Parse trees

Silver-standard data
(known drug-event pairs)

Unseen data
(unknown drug-event
pairs) 

Output: the unseen data are labeled.
(d, p, e) (d, p, e, y);

Drug-event pairs (d, e)
with their relation (y)

Drug-event candidates 
(d, p) with their pattern (p)

{ADR, IND}y

Figure 2: Our ADR identification framework consists of the three main tasks. (1) In the relation generation, drug-event pairs (d, e) are
extracted from a corpus together with their patterns (p) using named entity recognition (NER), sentence boundary detection (SBD), and
parsing. (2) In the automatic data labeling, distant supervision assigns a relation label (y) to each drug-event pair (d, e) obtained from the
relation generation with its pattern p if such relation exists in knowledge base. The silver-standard data set is labeled data in the
experiment. Here, two types of output data sets are a set of labeled data (DL), composed of (d, p, e, y) extracted from a corpus (EMR
texts), where the labels (y) are defined for the drug-event pairs (d, e) in the knowledge base, and a set of unlabeled data (DU), composed
of (d, p, e) extracted from a corpus, where the labels do not exist for the drug-event pairs (d, e) in the knowledge base. (3) In this relation
classification, this work proposes three types of generative models with independent/dependent expectation-maximization (EM) model
(iEM/dEM): (i) transductive learning with iEM (baseline), (ii) supervised learning with dEM, and (iii) transductive learning with dEM.
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multiple numbers of parameters such as pattern types,
pattern-weighting models, and initial and iterative weighting
relation labels for unlabeled data are investigated throughout
three alternative MILmodels: iEM with transductive learning
setting (baseline), dEM-supervised learning, and dEM with
transductive learning.

3.1. Problem Formulation. We firstly present the formal
definition of distant supervision and then formulate the
problem using MIL concept. Let K denote knowledge bases
regarding ADR and IND that are obtained from SIDER
(http://sideeffects.embl.de) and DrugBank (https://www.
drugbank.ca), T be a set of seeds, where T ⊆K , and Y is
a set of labels, where Y = ADR, IND ; the data set of seeds
T in knowledge basesK or an entity-level set can be defined
as T = t1, y1 , t2, y2 ,… , tN , yN , where ti = di, ei is
a seed, ti ∈ G is 2-dimensional entities space which consists
of a drug entity di and an event entity ei that are defined
in K , yi ∈Y is a label corresponding ti, and N is a total
number of seeds. Therefore, the data set of seeds can be
derived as T = d1, e1, y1 , d2, e2, y2 ,… , dn, en, yn . For
instance, the drug ramipril associates with the adverse
event allergy and the drug ibuprofen is used to treat the
event arthritis as a symptom which is supposed to exist
in K . We can derive a data set of seeds to be a source
of distant supervision as T = ramiprild , allergye, ADR ,
ibuprofend , arthritise, IND . These seeds are entity-level
data that are used as knowledge for later processes.

Let C be a clinical-record corpus from MIMIC (https://
mimic.physionet.org), which contains a set of discharge sum-
mary sentences S . We transform each sentence into the three
key elements, that is, a drug entity d , a key phrasal pattern
entity p , and an event entity e , while semantic of such
simplified texts is retrained. Given x j = dj, pj, ej is a tuple
obtained from an input sentence and x j ∈ℋ is 3-
dimensional entity space, in order to automatically generate
labeled examples using distant supervision, the goal is to
obtain a mapping function f ℋ→Y that relates a drug-
event pair of dj, ej to a relation label yi, where di, ei, yi
exists in T , dj = di, and ej = ei. Finally, we can derive a set
of labeled data DL = d1, p1, e1, y1 , d2, p2, e2, y2 ,… ,
dn, pn, en, yn , namely, an instance-level data set, whereas
n is a total number of mapped sentences.

For example, the sentence “His ramipril were discontin-
ued due to allergy and added to list in our medical records.”
is supposed to exist in the corpus C . Then, the transformed
sentence x1 using a dependency tree can be simplified into
the three key elements of a drug d1 = ramiprild , a key
phrasal pattern p1 = be‐discontinue‐due‐top , and an event
e1 = allergye , where a key phrasal pattern is applied in
either the syntactically lemmatized lexicon or surface lexicon
(e.g., was-discontinued-due-to), and can be employed as
either word or phrase form (discuss later in Section 3.3.1).
From the mapping function f ℋ→Y , we can project such
sentence x1 to a seed ramiprild , allergye, ADR in T and
transfer corresponding labels ADR to the sentence x1. There-
fore, we can derive a labeled data by distant supervision as
ramiprild , be‐discontinue‐due‐top, allergye, ADR ∈DL.

As another example, a sentence “The allergy improved
despite ongoing treatment with ramipril.” is also supposed
to exist in the corpus C . The transformed sentence x2 is
ramiprild , improved‐despitep, allergye . In the similar

manner, we can use the mapping function f ℋ→Y to
assign the corresponding label of the entity pair ramiprild
and allergye. Therefore, the derived labeled data is
ramiprild , improved‐despitep, allergye, ADR ∈Dℒ. How-

ever, the sentence x2 might not express the correctly
clinical event of adverse reaction. This is known as the
noisy label and need to to be handled by a particular tech-
nique such as MIL.

In MIL concept, bag- and instance-level relations are
equivalent to the entity- and the instance-level relations of
drug-event relation derived by distant supervision, respec-
tively. Regarding the definition in Section 2.2, X is an
instance space, Y is a set of labels, where
Y = ADR, IND , the labeled data set DL can be rewritten
in the form of MIL as DL = B1, y1 , B2, y2 ,… , Bn, yn ,
where Bi = xi1, xi2,… , xim is a set of multiple sentences
which all sentences in a bag Bi correspond to the same drug
d and event e , n is the number of bags, andm is the num-
ber of sentences in a bag and can be varied across a different
bag. On the one hand, unlabeled instances (DU) are formed
as a group of bags in the similar way but without a label as
DU = B1 , B2 ,… , Bn . Our goal is both to train an
instance classifier function f X →Y in the instance–space
paradigm fromDL only (supervised learning) and attempt to
infer the accurate label for each instance in theDU set during
the training process (transductive learning). The bag label,
eventually, can be derived from an aggregation function of
the instance level, and the model assessment is investigated
through the model performance of the entity level. Regarding
noisy data labeling from distant supervision, the collective
assumption and standard assumption with logical-OR aggre-
gation for the bag label judgment are rather improper. The
relaxed version of the MIL standard assumption is used in
our proposed framework by assuming that the positive and
negative bags are able to contain a mixture of either positive
or negative instances, but the probability of at least one pos-
itive instance should be the maximum for the positive bag
and vice versa. Consequently, to learn bag classifier
f 2X →Y , the estimated bag label from an instance classi-
fier can be computed using (1), where yi is a label of a bag i
(the entity-level label), yij is a label of the instance-level and
possibly different for each sentence instance j within the
same bag i, and n is the total number of sentences in the bag.

p yi∣Bi = max
j∈ 1,… ,n

p yij∣xij 1

Generally, the training data are not sufficient for param-
eter training. In order to learn such classifier function
f X →Y , we make use of the iterative EM technique with
transductive learning setting to estimate the posterior proba-
bility p y∣x through the two parameters, that is, prior prob-
ability p y and class-conditional density p x∣y , of the
generative model.
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3.2. Medical Named Entity Recognition and Relation
Candidate Generation. Figure 3 displays information extrac-
tion from sentences in the MIMIC corpus, with the output of
drug-key phrasal pattern-event tuples as candidates of ADR
or IND relation. This process involves NER, SBD, and
parsing. Here, the MetaMap [64] is used for NER, our in-
house program for SBD (https://github.com/makoto404/
MIMIC_SBD), and Stanford CoreNLP’s OpenIE for parsing.
After extracting relation candidate tuples (entity1, predicate,
entity2), we select only the tuples that include drug name and
event name as entity1 and entity2 or vice versa. The output is
in the form of (a drug, a key phrasal pattern, and an event).

The automatic labeling process using distant supervi-
sion is illustrated in Figure 4. Firstly, each pair of drug
and event d, e from the set of seeds in knowledge bases
is used to extract drug-event pairs from the set of sen-
tences; then, we assign the label corresponding to the seed
label to all sentences that mention such d, e pair. How-
ever, to reduce the ambiguity of the ground truth from
knowledge base supervision, a pair of d, e that is found
to exhibit both of ADR and IND semantic relations is
excluded. Given a set of sentences X , the training set DL
is in the form B1, y1 , B2, y2 ,… , Bn, yn , where
Bi = xi1, xi2,… , xim . In the Block 1 of Figure 4, the first

bag (Bag1) consists of two sentences that correspond to
the same entity-level of drug d1 and event e1. The second
bag (Bag2) contains only one sentence relevant to drug d2
and event e4.

Finally, all sentences that are able to be assigned a label by
distant supervision are referred as the set of labeled data DL
and the remaining data that are not matched by distant
supervision is used as unlabeled data DU.

3.3. Document Representation

3.3.1. Feature Extraction for Clinical Textual Data. To recog-
nize a relation between a drug and an event, our approach
generates a set of relation candidates (drug-event pairs) from
medical records in the form of (drug, pattern, event). Table 2
depicts examples of multiple types of feature extraction and
drug-event candidates. Our work considers two parameters
related to representing such relation candidates. The first
parameter, called relation boundary constraint, defines
potential of using surrounding context for determining
drug-event relations while the second and third parameters,
called syntactic lemmatization and pattern granularity con-
straints, are related to patterns used to detect drug-event rela-
tions, as follows.

Information extraction syntax tree-based (to extract patterns)

Sentence no.
Pattern

no.
Drug (d)

Key phrasal pattern
(p)

Event (e)

S1 A2, A4 C0072973 (ramipril) be-hold-in C0022660 (acute-renal-insufficiency)

S2 B2
C0043031 
(warfarin)

be-initiate-for C0004238 (atrial-fibrillation)

… … … …

Example outputs of feature extraction by NERs, normalization, and information extraction. 
(Medical terms are normalized to CUI)

S1 (input): His outpatient [ramipril]_d was held in the setting of [acute renal insufficiency]_e.

OpenIE–A1: he outpatient [ramipril]_d

he outpatient [ramipril]_d
he outpatient [ramipril]_d

be held in setting
A2: he [ramipril]_d be held in setting of [acute renal insufficiency]_e 
A3: be hold
A4: be_hold_in setting of [acute renal insufficiency]_e 

Phrasal patterns

Dependency
Parsing:

S2 (input): Patient’s home [warfarin]_d was initiated for his [atrial fibrillation]_e. 

OpenIE–B1: Patient’s home [Warfarin]_d be initiate
B2: Patient’s home [Warfarin]_d be initiate for his [atrial fibrillation]_e 

Phrasal patterns

Dependency
Parsing:

His outpatient ramipril was held in the setting

PRP$ NN NN VBD VBD IN DT NN IN JJ JJ NN

nmod:poss
compound

nsubjpass
auxpass det

case
nmod:in nmod:of

case
amodamod

Patient home Warfarin was initiated for his atrial fibrillation

NN POS NN NN VBD VBN IN PRP$ JJ NN
case

nsubjpass
auxpass

nmod:of
case nmod:poss

amod

nmod:poss

compound

of acute renal insufficiency

‘s

Figure 3: The upper block depicts the dependency parsing of two sentences (S1 and S2) and their outputs from OpenIE. The lower table
exhibits their final representations in the form of a relational table. Generally speaking, this syntactic-based analyzer extracts a list of drug-
key phrasal pattern-event tuples from the sentences, where drugs and events are matched with their corresponding CUIs.
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(i) Syntactic lemmatization: for syntactic word forms,
two possibilities are syntactically lemmatized lexi-
cons (L) and surface lexicons (S).

(ii) Pattern granularity: in terms of pattern units, two
options are in word form (W) and phrase form (P).

3.3.2. Pattern-Weighting Models

(i) Bernoulli (binary) document model B : a document
(hereinafter referred to as a sentence denoted by x)
can be represented in the form of a vector each

Table 2: Types of feature extraction for a given sentence. Here, the first character is either L (syntactically lemmatized lexicon) or S (surface
lexicon), and the second character is either P (phrase) or W (word). BOW stands for bag-of-words. CUI C0033487 is a UMLS concept of
propofol. C0031469 is a UMLS concept of phenylephrine. CUI C0020649 is a UMLS concept of hypotension.

Sentences Types Example of feature representation Example of drug-event candidates (d, p, e, y)

On arrival here, propofol
was held due to
hypotension.

L–P C0033487 be-hold-due-to C0020649 (C0033487, be-hold-due-to, C0020649, ADR)

L–W C0033487 be hold due to C0020649 NA

S–P C0033487 was-held-due-to C0020649
(C0033487, was-held-due-to,

C0020649, ADR)

S–W C0033487 was held due to C0020649 NA

BOW
On arrival here, propofol was held due to

hypotension.
NA

Phenylephrine drip
was started for
hypotension.

L–P C0031469 be-start-for C0020649 (C0031469, be-start-for, C0020649, IND)

L–W C0031469 be start for C0020649 NA

S–P C0031469 was-started-for C0020649 (C0031469, was-started-for, C0020649, IND)

S–W C0031469 was started for C0020649 NA

BOW Phenylephrine drip was started for hypotension. NA

Distant 
supervision

Labeled
data

ADR
P (1.00)

IND
P (0.00)

ADR
P (1.00)
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D L + U

Unlabeled 
data

DU

d p e PADR PIND

d p e PADRPIND

d1 p1 e1
d1 p2 e1

0.74 0.26
0.85 0.15

0.84 0.16

…

Pr
ed
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t D

U
(d

, p
, e

)

Iterate until convergence

Au
gm

en
te

d
da

ta
M

IL
-d

EM
le

ar
ne

r

1.00 0.00
1.00 0.00

d3 p2 e4
d3 p4 e4

d4 p1 e6
d4 p3 e6

d1 p2 e2

d2 p8 e2

d4 p1 e6

d3 p2 e4

1.000.00d2 p3 e4

1.00
1.00

0.00
0.00

d1 p1 e1
d1 p2 e1

d3 p4 e4

d2 p8 e2
d4 p3 e6
d1 p2 e2
d2 p5 e2
d2 p7 e2

d2 p5 e2
d2 p7 e2

0.87 0.13
0.79 0.21

0.75 0.25
0.63 0.37

0.13
0.26
0.16

0.87
0.74
0.84

Pattern-based 
feature 
(d, p, e)

(d, p, e, y)
Train DL 

ADR 
or IND

KB seeds
(d, e, y)

(d, p, e, y)

(d, p, e)

(d, p, e, y)Block 1:

Block 2 dEM-based transductive learning
(multiple-instance learning)

DL

Bag1

Bag2

BagM

Bag2

Bag1

Bag3

Bag4

Bag5

Bag6

Figure 4: Block 1 expresses the data labeling using the fact from external sources (KB seeds). TheDL is a data set that a pair of drug and event
entities can be mapped to a set of KB seeds through the distant supervision. Hence, all sentences that correspond to the same drug-event pair
are assigned to the same bag and same label (labeled dataDL) regarding a label of such drug-event pair in a set of seeds from knowledge base.
Finally, suchDL set is used as a training data. Block 2 depicts our proposedMIL-dEMmethod. The label assignment for unlabeledDU data set
(test set) can be obtained from a classifier in the previous process. Lastly, such unlabeled data is incorporated and contributed to estimating
the parameters of a generative model.
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element of which corresponds to a term (i.e., word,
phrase) denoted by w with a value of either 0 or 1
for presence or absence of such term, respectively.

xB = B x, w1 , B x, w2 ,… , B x, wW , 2

where xB presents a sentence x in the form of a
binary vector, B x, wi = 1 when wi is the ith term
in the sentence x (otherwise 0), and wi is a term in
the universe W.

(ii) Multinomial (frequency) document model: a sen-
tence is expressed by a vector of term frequency
TF as

xTF = TF x, w1 , TF x, w2 ,… , TF x, wW

TF x, wi =
f x wi

x
,

3
where xTF is a sentence x in the form of a TF vector,
TF x, wi expresses the normalized frequency of the
ith term wi by the sentence size x , and f x wi is the
frequency that the term wi occurs in the sentence x.
As another option, a document can also be expressed
by a vector of term frequency-inverse document
frequency TFIDF as

xTFIDF = TF x,w1 ⋅ IDF w1 , TF x, w2

⋅ IDF w2 ,… , TF x,wW ⋅ IDF wW

TF x, wi =
f x wi

∣x∣
IDF wi = log

X

x∣x ∈X , B x,wi = 1
,

4
where xTFIDF is a sentence x ∈X (the document
universe), in the form of a TFIDF vector, and
IDF wi expresses the inverse document
frequency, corresponding to the logarithm of the
ratio of the total number of sentences in the uni-
verse X to the number of sentences that contain
the ith term wi.

3.4. Probabilistic Classification Modeling. This section
describes two EM-based probabilistic classification models,
one with independent assumption (iEM) and the other with
dependent representation assumption (dEM).

3.4.1. EM Model with Naïve Bayes Independent Assumption
(iEM). Let X = x1, x2,… , x X be a set of sentences,
xi = wi1, wi2,… ,wi X i

be a sentence that includes xi
terms, and C = c1, c2,… , c C be the set of possible classes.
The probability that the sentence xi has ck as its class
yi = ck can be formulated as

p yi = ck∣xi =
p ck  p xi∣ck

p xi
=

p ck  p xi∣ck
〠 C

k=1p ck p xi∣ck
5

While in most situations, it is possible to obtain the
class p ck simply from the training set, and the generative
probability of xi given a class ck usually suffers with insuf-
ficient training data. As done by several works, the
assumption of independence, usually called naïve Bayes
(NB), can be applied to alleviate this sparseness problem
as expressed in

p xi∣ck = p wi1, wi2,… , wi xi ∣ck = p wi1∣ck ⋅ p wi2∣wi1, ck

⋅ … ⋅ p wi∣xi∣∣wi1, wi2,… , wi xi −1 , ck ≈ p wi1∣ck

⋅ p wi2∣ck ⋅ … ⋅ p wi xi
∣ck = ∏

xi

j=1
p wij∣ck

6

Therefore, theNBtextclassifiercanberewrittenintheform

p yi = ck∣xi =
p ck  ∏ xi

j=1p wij∣ck

〠 C

k=1p ck  ∏ xi
j=1p wij∣ck

7

Here, it is necessary to estimate two sets of parameters,
denoted by θ, of expectation-maximization (EM) algo-
rithm. The first parameter set is the class-conditional
probability of any term wq ∈W given the class ck while
the other one is the probability of the class ck. The param-
eter set is defined by

θ = p t+1 wq∣ck , p t+1 ck 8

In the expectation step (E-step), for each iteration, the θ
parameter of the previous step is applied to re-estimate the
model probability. In our experiment, the convergence
threshold is 10−7 and the maximum number of iterations is
set to 50.

p t yi = ck∣xi =
p t−1 ck  ∏ xi

j=1p
t−1 wij∣ck

〠 C

k=1p
t−1 ck  ∏ xi

j=1p
t−1 wij∣ck

9

For the maximization step (M-step), with a Laplace
smoothing factor λ > 0, the t + 1 th-iteration probability
of p t+1 wq∣ck and p t+1 ck can be estimated from the
tth-iteration probability. The maximum likelihood estima-
tion for NB is simply computed from an empirical corpus
using

p t+1 wq∣ck =
λ +〠 X

i=1N wq, xi p t yi = ck∣xi
λ W +〠W

r=1〠
X

i=1N wz , xi p t yi = ck∣xi
,

10

where W is a total number of terms and any term wz ∈W.

p t+1 ck =
λ +〠 X

i=1p
t yi = ck∣xi

λ C + X
11

The following demonstrates an example of applying the
above formulations with the key phrasal pattern-based
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feature. Given the L–P feature representation of xi =
(C0033487, be-hold-due-to, C0020649) corresponds to rela-
tion tuple di, pi, ei obtained from an input sentence where

the pattern pi be the phrase form, we can estimate
p yi = ck∣xi as expressed in

Another example, given the L–W feature representation
of the same sentence xi = {C0033487, be, hold, due, to,
C0020649}, corresponds to relation tuple di, pi, ei where

the pattern pi is in the word form. We can compute the class
probability of the given texts p yi = ck∣xi as

3.4.2. EMModel with Dependency Representation (dEM).We
introduce a dependency representation as an alternative
model representation that is based on the same intuitions
as the NB model but less restriction regarding the implicitly
strong independence assumptions. This dependency repre-
sentation is an efficient factorization of the join probability
distributions over a set of three random variables wq, wr ,
and ws, where each variable is a domain of possible values,
that is, drug, key phrasal pattern, and event. We extend the
dependency representation with iterative learning by EM
approach in order to align the model assumption to the
natural language and also figure out an unseen random var-
iable using probability estimation based on an existing
prior knowledge. This dependency representation is also
known as Bayesian networks (BN) and the conditional
probability of independent variable given a class proba-
bility can be derived by the chain rule

p xi∣ck = p wiq, wir , wis∣ck
= p wiq∣ck ⋅ p wir∣wiq, ck ⋅ p wis∣wiq, wir , ck

14

Therefore, the BN text classifier can be rewritten in the
form

p yi = ck∣xi

=
p ck ⋅ p wiq∣ck ⋅ p wir∣wiq, ck ⋅ p wis∣wiq, wir , ck

〠 C

k=1p ck ⋅ p wiq∣ck ⋅ p wir∣wiq, ck ⋅ p wis∣wiq, wir , ck
15

According to the core of BN representation, a random
variable is represented by a node in a directed acyclic graph
(DAG), and an edge between any two nodes is presented by
an arrow line which implies a direct influence of one node
on another node. Given a sentence xi with three elements
(wiq, wir , andwis) in the form of a relation tuple (di, pi, ei),
there are three factorized ways (3!) as alternative model skel-
etons of the dependency representation through the chain
rule. We, hence, propose the linear interpolation in order to
weigh and combine the probability estimation from all of
possible dependency representations as defined by

p xi∣ck = p wiq, wir , wis∣ck
≈ γ1 p wiq∣ck ⋅ p wir∣wiq, ck ⋅ p wis∣wiq, wir , ck

+ γ2 p wiq∣ck ⋅ p wis∣wiq, ck ⋅ p wir∣wiq, wis, ck
+ γ3 p wir∣ck ⋅ p wiq∣wir , ck ⋅ p wis∣wiq, wir , ck
+ γ4 p wir∣ck ⋅ p wis∣wir , ck ⋅ p wiq∣wir , wis, ck
+ γ5 p wis∣ck ⋅ p wiq∣wis, ck ⋅ p wir∣wiq, wis, ck
+ γ6 p wis∣ck ⋅ p wir∣wis, ck ⋅ p wiq∣wir , wis, ck ,

16

such that the total γ is ∑6
i=1γi = 1

Generally, the linear interpolation method of three ran-
dom variables can be estimated from the combination of
two random variables and individual random variable. Simi-
larly, two random variables are able to approximate from
individual random variable as well. For instance, given two
history terms wiq and wir in a sentence xi, the interpolation

p t yi = ck∣xi =
p t−1 ck ⋅ p t−1 C0033487∣ck ⋅ p t−1 be‐hold‐due‐to∣ck ⋅ p t−1 C0020649∣ck

〠 C

k=1p
t−1 ck ⋅ p t−1 C0033487∣ck ⋅ p t−1 be‐hold‐due‐to∣ck ⋅ p t−1 C0020649∣ck

12

p t yi = ck∣xi =
p t−1 ck ⋅ p t−1 C0033487∣ck ⋅ p t−1 be∣ck ⋅ p t−1 hold∣ck ⋅ p t−1 due∣ck ⋅ p t−1 to∣ck ⋅ p t−1 C0020649∣ck

〠 C

k=1p
t−1 ck ⋅ p t−1 C0033487∣ck ⋅ p t−1 be∣ck ⋅ p t−1 hold∣ck ⋅ p t−1 due∣ck ⋅ p t−1 to∣ck ⋅ p t−1 C0020649∣ck

13
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is comparatively estimated from individual random variable
and two random variables as shown in

p wir∣wiq, ck = β1p wir∣ck + β2p wir∣wiq, ck , 17

such that the total β is ∑2
i=1βi = 1

Another instance, three history terms (wiq, wir ,wis) in a
sentence xi are given; the likelihood estimation as shown in
(18) can be derived similarly as the previous estimator by
interpolation of individual random variable, two random
variables, and three random variable estimators.

p wis∣wiq, wir , ck = α1p wis∣ck + α2p wis∣wiq, ck
+ α3p wis∣wir , ck + α4p wis∣wiq, wir , ck ,

18

such that the total α is ∑4
i=1αi = 1

Finally, we compute p wiq∣wir , ck , p wiq∣wis, ck ,
p wir∣wis, ck , p wis∣wiq, ck , and p wis∣wir , ck with the similar
manner as (17) and calculate p wiq∣wir , wis, ck and
p wir∣wiq,wis, ck using the same way as shown in (18).

In the same manner as the NB model, it is necessary to
estimate the four sets of parameters θ whereas any terms
wq, wr , ws ∈W.

θ = p t+1 wq∣ck , p t+1 wq∣wr , ck , p t+1 wq∣wrws, ck ,

p t+1 ck
19

The iterative learning using EM approach is applied to
estimate the parameter θ. For the E-step, for each iteration,
the θ parameter is applied to re-estimate the model probabil-
ity as shown in (20) and (21). This process will repeat until
convergence. The same setting as the iEM model, the value
of 10−7 for the convergence threshold and the value of 50
for the maximum number of iterations, is applied for dEM
model as well.

p t−1 xi∣ck
≈ γ1 p t−1 wiq∣ck ⋅ p t−1 wir∣wiq, ck ⋅ p t−1 wis∣wiq,wir , ck

+ γ2 p t−1 wiq∣ck ⋅ p t−1 wis∣wiq, ck ⋅ p t−1 wir∣wiq, wis, ck

+ γ3 p t−1 wir∣ck ⋅ p t−1 wiq∣wir , ck ⋅ p t−1 wis∣wiq,wir , ck

+ γ4 p t−1 wir∣ck ⋅ p t−1 wis∣wir , ck ⋅ p t−1 wiq∣wir ,wis, ck

+ γ5 p t−1 wis∣ck ⋅ p t−1 wiq∣wis, ck ⋅ p t−1 wir∣wiq,wis, ck

+ γ6 p t−1 wis∣ck ⋅ p t−1 wir∣wis, ck ⋅ p t−1 wiq∣wir ,wis, ck ,

20

p t yi = ck∣xi =
p t−1 ck ⋅ p t−1 xi∣ck

〠 C

k=1p
t−1 ck ⋅ p t−1 xi∣ck

21

For the M-step, the Laplace smoothing factor λ > 0 is
implemented as well as inNBmodel to avoid zero count issue.

However, with the BN dependency representation, there are
four parameter estimation of the t + 1 th iteration probabil-
ity of p t+1 wq∣wr , ws, ck , p t+1 wq∣wr , ck , p t+1 wq∣ck , and

p t+1 ck , which can be estimated from tth-iteration proba-
bility as expressed in

p t+1 wq∣ck

=
λ +〠 X

i=1N wq, xi p t yi = ck∣xi
λ W +〠W

z=1〠
X

i=1N wz , xi p t yi = ck∣xi
,

22

p t+1 wq∣wr , ck

=
λ +〠 X

i=1N wq, xi p t yi = ck∣wr , xi
λ W +〠W

z=1〠
X

i=1N wz , xi p t yi = ck∣wr , xi
,

23

p t+1 wq∣wr , ws, ck

=
λ +〠 X

i=1N wq, xi p t yi = ck∣wr , ws, xi
λ W +〠W

z=1〠
X

i=1N wz , xi p t yi = ck∣wr , ws, xi
,

24

whereas W is a total number of terms and any term wz ∈W.

p t+1 ck =
λ +〠 X

i=1p
t yi = ck∣xi

λ C + X
25

Then, we can derive p t+1 wr∣ck and p t+1 ws∣ck using
the similar calculation as (22). For the dependency represen-
tations of two random variables w, that is, p t+1 wq∣ws, ck ,

p t+1 wr∣wq, ck , p t+1 wr∣ws, ck , p t+1 ws∣wq, ck , and

p t+1 ws∣wr , ck can be computed by following the similar
approach as (23). Similarly, the estimation of
p t+1 wr∣wq, ws, ck and p t+1 ws∣wq, wr , ck can be obtained
by the same way as shown in (24). Finally, the coefficients γ,
β, and α of interpolation approach are employed in order to
weigh the knowledge from multiple dependency representa-
tions. Algorithm 1 explains pseudocode for iEM model, and
Algorithm 2 expresses our proposed dEM method.

3.5. The Incorporation of Unlabeled Data. In the environment
of insufficient labeled data, SSL is one solution that utilizes an
inexpensive and ubiquitous source of data. The transductive
learning [65], one type of SSL, begins its process with making
use of a limited number of labeled data (DL) to build a rough
model and then aggregated a large number of unlabeled data
(DU) (test set) to revise and improve the model iteratively. In
the experiment, we investigated the three alternative
approaches of initialization and iterative weighting of rela-
tion labels for unlabeled data incorporation.

(i) TpML
: This method is equivalent to the general trans-

ductive learning, in which the label of the test setDU
can be derived by a classifier that is trained on the
DL. Then, the augmented DL with the labeled DU,
so called DL+U, is used for the further iteration.
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(ii) Tp0 5
: The class probability of the DU is equally

assigned to DL and used as an initial probability. In
this approach, the DL+U can be derived earlier and
integrated in training process for the first iteration.
Therefore, in the next iteration, theDU is not strictly
guided by the labeled data. The revision process is
probably the same manner to the previous method
by combining both data set DL+U for the further
iteration.

(iii) Tprandom
: Similarly, the initial probability of DU is

assigned randomly rather than the fixed value of

0.5. The degree of likelihood for each label can be
varied from 0 to 1 whereas the total probability of
ADR and IND labels equals 1.

In order to evaluate our proposed method, three types
of text representation across three parameters of unlabeled
data incorporation are investigated. Finally, our proposed
methods and its enhancement, MIL-dEM-S-S (supervised
learning) and MIL-dEM-T-S methods (transductive learn-
ing), are compared to TSVM and three MIL models,
MISVM, MINB, and MILR, which are implemented in
WEKA [66].

Input:
C = the number of labels
T = the maximum number of iteration

γ1, γ2,…, γ xi
∑ xi

j=1 γj = 1
β1, β2 ∑2

j=1βj = 1
α1, α2,…, α4 ∑4

j=1αj = 1
Output: θ parameter

1 t← 0
2 θ = p t+1 wq, ck , p t+1 wq, wr , ck , p t+1 wq,wr ,ws, ck , p t ck ; ∑ C

k=1p
t ck = 1

3 repeat
4 for i = 1 to n do
5 E–Step:

Estimate model probability: p t yi = ck∣xi (21)
M–Step:

Update class-conditional probability: p t+1 wq∣ck (22)

p t+1 wq∣wr , ck (23)

p t+1 wq∣wr , ws, ck (24)

Update class probability: p t+1 ck (25)
6 t← t + 1
7 until convergence or t = T

Algorithm 2: Pseudocode for our proposed EM with BN-dependent representation (dEM).

Input:
C = the number of labels
T = the maximum number of iteration
Output: θ parameter

1 t← 0
2 θ = p t+1 wq, ck , p t+1 ck ; ∑ C

k=1p
t+1 ck = 1

3 repeat
4 for i = 1 to n do
5 E–step:

Estimate model probability: p t yi = ck∣xi (9)
M–step:

Update class-conditional probability: p t+1 wq∣ck (10)

Update class probability: p t+1 ck (11)
6 t← t + 1
7 until convergence or t = T

Algorithm 1: Pseudocode for EM with NB-independent assumption (iEM).
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4. Evaluation

We assess our proposed method using various parameter set-
tings as shown in Table 3 and evaluate by the hold-out evalu-
ation through the k-fold cross validation whereas k = 5. The
three main measures as defined by (26), (27), and (28), that
is, precision, recall, and F1, are used for model evaluation,
while the positive class in our experiments is ADR label. In
our experiment, we use MetaMap Java API for NER and
Stanford CoreNLP Java API for OpenIE and implement
Python program for EM-based methods. For model compar-
ison, we execute WEKA Java-based software and SVMlight

(http://svmlight.joachims.org), which is implemented in C
programming language, on Mac OS with Intel Core i5 pro-
cessor running at 2.5GHz and 8GB of physical memory.

precision =
tp

tp + fp
, 26

recall =
tp

tp + fn
, 27

F1 =
2 × precision × recall
precision + recall

28

4.1. Data. Our proposed framework is examined on the
unstructured texts from EMRs of intensive care unit which
is derived from MIMIC-III [67]. The data is freely available
at PhysioNet (https://mimic.physionet.org) and is accessed
on Apr 25, 2016 with the version 1.3. The over 58,000 hospi-
tal admissions for 38,645 adults and 7875 neonates are pre-
sented in the data source spanning up to 12 years from
June 2001. In our work, the discharge summary from two
main hospital sections, that is, brief hospital course (BHC)
and the history of present illness (HPI) are preliminary

explored. For data preparation, we employ SBD, stop word
removal, tokenization, NER, and normalization. We con-
sider two semantic types of UMLS CUI regarding CHEM
and DISO for drug and event entities, respectively. As
the results, nearly 1.6 million sentences are extracted and
used as our corpus.

4.2. Results and Discussion. We conduct four main experi-
ments in order to evaluate the effectiveness of our proposed
method: (i) the key phrasal pattern analysis, (ii) the evalua-
tion on the effectiveness of the key phrasal patterns, (iii) the
effectiveness of the pattern-based feature with MIL-iEM
and MIL-dEM, and (iv) the evaluation on overall perfor-
mance with advanced machine learning methods.

4.2.1. Key Phrasal Pattern Analysis. We initially analyze the
discovered key phrasal patterns to investigate the degree of
characterization of relation labels. Given a key phrasal pat-
tern pattern, we compute the pattern score (S) by performing
the conditional entropy (H) inversion and polarity adjust-
ment to visualize the performance of the extracted key
phrasal patterns.

H = −p ADR∣ pattern log2 p ADR∣ pattern
− p IND∣ pattern log2 p IND∣ pattern

S = SIGN 0 5 − p IND∣ pattern × 1 −H

29

From Figure 5, a pattern that is located far from the mid-
dle line (score 0) and closed to the top left or the top right
corners expresses the high effectiveness of semantic discrim-
ination ability relevant relation labels. For example, the key
phrasal patterns “be-hold-in,” “contribute-to,” “be-think,”
and “improve-with” are strongly relevant to ADR label and
“be-add-for,” “be-initial-for,” and “be-on” are rather

Table 3: The list of parameters for assessment.

Parameter group Parameter type Parameter subtype Parameter name Variable name

Document representation

Syntactic lemmatization
Syntactically lemmatized lexicon L

Surface lexicon S

Pattern granularity
Phrase form P

Word form W

Pattern-weighting models

Bernoulli Binary B

Multinomial
TF (term frequency) TF

TFIDF (TF-inverse
document frequency)

TFIDF

Model assumption
Independent assumption EM with naïve Bayes iEM

Dependency representation
assumption

EM with Bayesian network dEM

Model decision method
Soft decision making S

Hard decision making H

Learning method

Supervised learning SL

Transductive learning
Initial weight method
for unlabeled data

Supervised model TpML

Equal probability Tp0 5

Random probability Tprandom
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associated to IND. Opposite to the key phrasal patterns, “be”
and “be-with” are presented near the middle line in the graph
that indicates the fuzziest patterns.

Additionally, the figure clearly illustrates that the pat-
terns relevant to ADR are more efficient than the pattern rel-
evant to IND, the small number of ADR patterns are located
nearby the original point, and most of the ADR patterns are
placed with spread distance. On the one hand, patterns rele-
vant to IND are presented to dense at the location which is
nearly zero score and zero frequency. Table 4 presents the
example of the sentences that are relevant to key phrasal pat-
terns and pattern direction. Finally, the key phrasal patterns

with a pattern score over than the threshold are selected for
the further process.

4.2.2. Evaluation on the Effectiveness of the Pattern-Based
Feature. The comparison of the multiple feature types across
varying of initial weighting of relation labels for unlabeled
data incorporation throughout the MIL-iEM are assessed in
order to examine the effectiveness of the pattern-based fea-
ture. We divide the experiments into two parts based on
the decision methods in EM algorithm. The former refers
to soft decision making (MIL-iEM-S) in which the predicted
result is directly yielded by the estimated class probability.

Table 4: Example of relevant sentences of pairs of drug-event (d, p, e).

Drugs (d)
Key phrasal
patterns (p)

Events (e) Pattern direction Sentences

ADR

C0020261
(hydrochlorothiazide)

be-hold-in
C0020625

(hyponatremia)
d→ e

However the patient’s sodium was 131 on
discharge thus the patient’s HCTZ

was-held-in the setting of hyponatremia.

C0000970
(acetaminophen)

be-think
C0002871
(anemia)

e→ d
Her anemia is-thought to be due to direct effects

of acetaminophen on marrow or indirect via kidneys.

IND

C0020223
(hydrallazine)

be-give-for
C0020538

(hypertension)
d→ e

Hydrallazine 20mg IV was-given-for isolated
episode of hypertension and emesis ensued.

C0043031
(warfarin)

be-initiate-for
C0004238

(atrial fibrillation)
e→ d

Warfarin was-initiated-for his atrial fibrillation
with an initial heparin bridge.

Pattern direction: d→ e is drug-event; e→ d is event-drug.

Be on

Be add for, 
Be initiate for, 

Well control with

Continue

Be control with

Be

Be with

Be change to

Control, require, start

Improve with

Be hold in
Contribute to

Be think, improve with

0

20

40

60Fr
eq

ue
nc

y 80

100

120

140

‒1.5 ‒1 ‒0.5 0
Sign score (S)

0.5 1 1.5

IND
ADR

Figure 5: The x-axis exhibits the pattern score with polarity whereas the score > 0 represents the distribution of pattern relevant to ADR (blue
circle marker), the score < 0 represents the distribution of pattern relevant to IND (orange square marker), and score = 0 indicates no
relevance between pattern and both labels. The y-axis is the frequency of patterns that appear in the clinical texts.
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The latter is so-called hard decision making (MIL-iEM-H)
in which the predicted outcome is considered the cutoff
value of the probability and assigned class label instead
of likelihood ratio. We initially perform the experimental
setting on the traditional-independent assumption through
MIL-iEM model.

Table 5 expresses an assessment of five text transforma-
tion across three alternative document representations and
three initial weighting of unlabeled data DU based on soft
decision making and hard decision making. In the table, the
pattern-based feature is expressed in the top 4 of each exper-
imental setting, that is, S–P, S–W, L–P, and L–W. From the
experimental results, we found that the pattern-based feature
outperformed traditional bag-of-words (BOW). The highest
F1 score value, 0.841, is resulted by MIL-iEM-SP-TF-S-Tp0 5
model which outperformed the baseline MIL-iEM-BOW-
TF-S-Tp0 5

up to 4.4%. In addition, B and TF document rep-
resentations have slightly better performance than TFIDF
for all types of initial weighting method. The similar results
are found on hard decision making approach as well. The
pattern-based feature performed better performance than
BOW feature. The MIL-iEM-LW-TFIDF-H-Tp0 5

model
obtains the highest performance of F1 score 0.807 and 3.3%
improvement from the MIL-iEM-BOW-TFIDF-H-Tp0 5
baseline model. However, it is noticed that the hard decision
making results in poor performance when compared to the
soft version.

The performance comparison across the number of fea-
tures is exhibited in Figure 6. The number of features relevant
to pattern-based features is ranged from 737 to 1322 dimen-
sions, and the number of BOW feature is 1853 dimensions.
From the graph, even though our proposed pattern-based
features with MIL-iEM-Tp0 5

and MIL-iEM-Tprandom
provide

slightly different F1 score from the BOW feature, their num-
ber of dimension are less than half of BOW, especially S–W
and L–W features. Therefore, our proposed pattern-based
feature is more efficient than BOW feature due to the small
number of features but yield similar model performance.

Accordingly, the experimental results confidently sup-
port that the simplified sentence using relation tuple of a
drug, a key phrasal pattern, and an event is a potential feature
transformation for relation classification task. Moreover,
ignoring the insignificant contexts can reduce redundancy
of feature and avoid computational time issue that is fre-
quently caused by the curse of dimensions.

4.2.3. Evaluation on the Effectiveness of MIL-dEM-SL and
MIL-dEM-T. In this experiment, the comparison between
our proposed method based on SL (MIL-dEM-SL) and trans-
ductive learning (MIL-dEM-T) across varying parameters
such as feature types, pattern-weighting models, and the ini-
tial weight methods for unlabeled data incorporation are
examined. Our proposed method is based on dependency
representation of texts, and the posterior estimation is based
on the interpolation of Markov property. The experiment is
set up with supervised learning-based model and three trans-
ductive learning-based models with different initial weight
methods of DU incorporation. The two types of pattern-

based features such as surface lexicon-based (S–P) and
syntactically lemmatized lexicon-based (L–P) are used for
examination. The parameter tuning is also performed for
all approaches.

As the results in Table 6, among transductive learning
models, the performance of S–P feature is slightly different
fromL–P feature for allmodels. The simple binary (B) weight-
ing model presents the higher F1 score over TF and TFIDF.
Moreover, MIL-dEM-S-TpML

model exhibits the higher per-

formance than the fuzzy guideline by MIL-dEM-S-Tp0 5
and

MIL-dEM-S-Tprandom
models for all evaluation matrices.

On the other hand, the F1 score of MIL-dEM-SP-S-SL
surface lexicon-based feature is better than MIL-dEM-LP-S-
SL syntactically lemmatized lexicon-based feature with 1%
and 0.8% for TF- and TFIDF-weighting model, respectively.

Similarly, the F1 score of the pattern-based feature S–P
across the three types of pattern-weighting model, that is,
B, TF, and TFIDF models is also slightly different; 0.928 for
MIL-dEM-SP-B-S-SL, 0.946 for MIL-dEM-SP-TF-S-SL, and
0.938 for MIL-dEM-SP-TFIDF-S-SL. Among models within
MIL-dEM-S-SL setting, the highest F1 score is presented by
TF-weighting model with 0.946.

One of the interesting results shows that the unlabeled
data incorporation is exhibited to increase the model per-
formance. The highest effectiveness, 0.954 of F1 score, is
presented by MIL-dEM-SP-B-S-TpML

model which is the

simple binary weighting model, and the model shows
2.6%, 1.6%, and 0.8% improvement over MIL-dEM-SP-B-
S-SL, MIL-dEM-SP-TFIDF-S-SL, and MIL-dEM-SP-TF-S-
SL, the best performance of our proposed supervised
learning, respectively.

According to the result from the parameter optimization
of our proposed method, the model performance is strongly
relevant to the dependency representation of random vari-
ables as follows: (i) an event and the clinical outcome and
(ii) a pattern, a drug, and the clinical outcome. In the con-
trast, the model is shown to have less relevance between a
drug and an event or a pattern and an event.

4.2.4. Evaluation on Overall Performance with Advanced
Machine Learning Methods. The comparison of our pro-
posed method and advanced machine learning methods is
presented in Table 7. The best models of each set of models
are used for assessment. The well-known MIL methods, that
is, MISVM, MINB, MILR are executed using WEKA. On the
one hand, we customize the original TSVM using the source
code from the author and incorporate the MIL assumption as
discussed in the previous section (see Section 2.2). We divide
the discussion into three parts: the effectiveness of supervised
learning model, the effectiveness of transductive learning
model, and the overall performance.

Firstly, the experimental results among baseline-
supervised learning methods, that is, MISVM-TFIDF,
MINB-B, and MILR-B, show that BOW feature works well
for all MIL methods; conversely, the pattern-based feature S–
P contributes a dramatic improvement when combined with
our proposed method MIL-dEM-TF-S-SL. The TFIDF-
weightingmodel yields the high performance forMISVMwith
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Table 6: The effectiveness of MIL-dEM-S-SL and MIL-dEM-S-T comparison across three types of initial weight on fivefold cross-validation
with soft decision making.

Models
B TF TFIDF

P R F1 P R F1 P R F1

Supervised learning

MIL-dEM-S-SL1

S–P 0.883 0.978 0.928 0.904 0.993 0.946 0.890 0.993 0.938

L–P 0.896 0.962 0.928 0.898 0.978 0.936 0.889 0.976 0.930

Transductive learning

MIL-dEM-S-T2
pML

S–P 0.934 0.975 0.954 0.901 0.942 0.921 0.881 0.951 0.915

L–P 0.926 0.962 0.944 0.919 0.916 0.918 0.875 0.945 0.909

MIL-dEM-S-T3
p0 5

S–P 0.839 0.907 0.872 0.635 0.925 0.754 0.686 0.916 0.784

L–P 0.850 0.889 0.869 0.663 0.900 0.763 0.714 0.887 0.791

MIL-dEM-S-T4
prandom

S–P 0.830 0.889 0.859 0.581 0.607 0.594 0.647 0.682 0.664

L–P 0.843 0.865 0.854 0.597 0.619 0.608 0.657 0.679 0.668
1,2γ = 0 45 0 02 0 45 0 02 0 04 0 02 , β = 0 97 0 02 0 01 0 00 , α = 0 10 0 90 ; 3,4γ = 0 45 0 02 0 45 0 02 0 04 0 02 , β = 1 00 0 00 0 00 0 00 , α = 0 50 0 50 .
B: binary frequency; TF: term frequency; TFIDF: term frequency-inverse document frequency.
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Figure 6: The number of features for each type of feature extraction and weighting method across F1 score. (a) represents the soft decision
method and (b) represents the hard decision method of MIL-iEM.
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F1 score 0.901, while binary weighting model (B) is exhibited
to improve the performance for MINB and MILR with F1
scores 0.880 and 0.861, respectively. However, our proposed
MIL-dEM-TF-S-SL with S–P feature outperforms all MIL
methods, and 4.5% F1 score is better than the highest perfor-
mance of advanced machine learning method which is
resulted by MISVM-TFIDF with BOW feature. The precision
of MIL-dEM-TF-S-SL with S–P feature is slightly lower than
MISVM-TFIDF with BOW but the recall is significantly
improved. Accordingly, our proposed method contributes to
reducing the type II error which is always considered in the
medical domain.

Secondly, the comparison among transductive learning
methods, the BOW feature with TSVM-B is shown to achieve
an F1 score of 0.889, while applying the pattern-based feature
S–P, its performance is presented to degrade around 2%.
Conversely, thepattern-based featureS–PwithMILgenerative
method exhibits to enhance the effectiveness of the models.
The accuracy of MIL-iEM-TF-S-Tp0 5

model increases up to
6.3% when the pattern-based feature is deployed instead of
the BOW feature.

Lastly, in the overall evaluation, the generative models
with dependency representation, that is, MIL-dEM-TF-S-SL
and MIL-dEM-B-S-TpML

, outperform for all models. The

highest performance is exhibited by our transductive learn-
ing MIL-dEM-B-S-TpML

method with 0.934 precision, 0.975

recall, 0.954 F1 score, and 0.949 accuracy, respectively. More-
over, improving the generative model by substitute assump-
tion of word-dependency MIL-dEM-B-S-TpML

model to

word-independency MIL-iEM-TF-S-Tp0 5
model is shown to

dramatically improve 11.3% F1 score and 12.2% accuracy.
From multiple aspect assessments, the experimental

results confidently support that our proposed method,
MIL with the two generative models, has the comparative
advantage in performance for relation classification task.
The proposed pattern-based feature contributes to reduce
the curse of dimension issue and preserve text dependency
structure. The incorporation of a generative model with
proper model assumption and transductive learning can

potentially estimate the distribution of patterns relevant
to harmful or beneficial event of drug usage with high pre-
cision and recall. Our proposed method can provide the
supporting evidence based on the relevant clinical sentence
rather than only prediction of result which is expected to fur-
ther assist a professional medical for decision making on
treatment or diagnosis process.

5. Conclusion

This paper presents a framework of distant supervision
with MIL and transductive learning for detecting adverse
reaction hidden in clinical texts. Our work aims to deal
with two main difficulties: (i) the limitation of hand-
labeled data and (ii) intractable processing of large-scale
unstructured clinical texts.

The first issue is coped with distant supervision paradigm
by knowledge base incorporation. Therefore, we can auto-
matically assign either ADR or IND label to each drug-
event pair and use as labeled examples. For the second issue,
we propose the pattern-based feature to present semantic
comprehension of a sentence and proposed alternative
parameters learning of a generative model using dependency
representation model assumption. However, such training
data set derived by distant supervision is formed as the
instance-level, while the predictive goal is focused on the
entity-level. Therefore, MIL paradigm is involved into the
framework. The collected statistics from the tagged drug-
event pairs are used to examine the semantic distribution rel-
evant to ADR and IND. Exploiting EM algorithm as the base
model for our supervised learning and transductive learning,
it is helpful to estimate the probability of an unknown rela-
tion of given drug-event pair and then classify this relation
to either ADR or IND. From the experimental results on
multiple assessments, we found three significant findings.

Firstly, the pattern-based feature contributes to improve
model performance of generative models. The MIL-iEM-
SP-TF-S-Tp0 5

model is shown to achieve the highest perfor-
mance among all MIL-iEM-based methods with 0.844
precision, 0.838 recall, and 0.841 F1 score, and the model

Table 7: The comparison of overall performance among MIL-dEM-SL, MIL-dEM-T, advanced machine learning methods, and MIL-iEM-T
using fivefold cross-validation.

Models
BOW S–P

P R F1 Acc. P R F1 Acc.

Supervised learning

MIL-dEM-TF-S-SL1 — — — — 0.904 0.993 0.946 0.939

MISVM-TFIDF2 0.918 0.885 0.901 0.895 0.799 0.733 0.765 0.735

MINB-B 0.864 0.896 0.880 0.867 0.619 0.701 0.744 0.691

MILR-B3 0.869 0.852 0.861 0.850 0.718 0.783 0.749 0.692

Transductive learning

MIL-dEM-B-S-T4
pML

— — — — 0.934 0.975 0.954 0.949

TSVM-B 0.898 0.881 0.889 0.881 0.873 0.865 0.869 0.859

MIL-iEM-TF-S-Tp0 5 0.749 0.850 0.797 0.764 0.844 0.838 0.841 0.827
1,4γ = 0 45 0 02 0 45 0 02 0 04 0 02 , β = 0 97 0 02 0 01 0 00 , α = 0 10 0 90 . 2Polynomial kernel, C = 10. 3Collective MI assumption, geometric mean for
posteriors.
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provides the outstanding improvement over the traditional
BOW method, MIL-iEM-BOW-TF-S-Tp0 5

model, up to
4.4% F1 score.

The second potential result, the traditional assumption of
word independency is rather improper for natural clinical
texts. Therefore, we tackle such fundamental problem by
integrating Markov assumption on dependency representa-
tion of texts in order to estimate the prior probability and
likelihood probability in a generative model. Given the same
set of the pattern-based input features, the performance of
MIL-dEM model is dramatically improved from MIL-iEM
model. The MIL-dEM-SP-B-S-TpML

model exhibits the

improvement over MIL-iEM-SP-B-S-Tp0 5
up to 8.9% preci-

sion, 13.9% recall, and 11.4% F1 score.
Lastly, the incorporation of unlabeled data DU and

labeled oneDL using MIL-dEM-SP-B-S-TpML
model achieves

the highest effectiveness with 0.954 F1 score. In addition, our
proposed MIL-dEM-SP-B-S-TpML

model also outperforms

the advanced machine learning methods by F1 score
improvement up to 5.3% of MISVM-BOW-TFIDF, 7.4% of
MINB-BOW-B, 9.3% of MILR-BOW-B, 6.5% of TSVM-
BOW-B, and 11.3% of MIL-iEM-SP-TF-S-Tp0 5

.
However, our work presents some limitations that can

contribute to support further improvement of the framework.
The projection from distant supervision to corpus currently is
employed byMetaMap tools and can be improved by advance
method such as word embedding to increase high potential
entity-level relation for instance examples. The key phrasal
pattern extraction in the current work is scoped by the sen-
tence boundary, but a drug and an event possibly associate
throughout across different sentences. This issue would be
challenged by coreference problem. Even though the discov-
ered key phrasal patterns provides the significant role for rela-
tion classification, the number of patterns is rather limited
and probably encounters the problem of out of vocabulary
(OOV) when applied to the framework with a huge unseen
data. Therefore, the semantic representation is the promising
method to increase the number of key phrasal patterns.
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