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. Abiofilmhasa unique structure composed of microorganisms, extracellular polymeric substances

. (EPSs), etc., and it is layered on a substrate in water. In material science, it is important to detect the
biofilm formed on a surface to prevent biofouling. EPSs, the major component of the biofilm, mainly

. consist of polysaccharides, proteins, nucleic acids, and lipids. Because these biomolecules have a

. variety of hydrophilicities or hydrophobicities, the substrate covered with the biofilm shows different

. wettability from the initial state. To detect the biofilm formation, this study employed a liquid-

. squeezing-based wettability assessment method with a simple wettability index: the liquid-squeezed
diameter of a smaller value indicates higher wettability. The method is based on the liquid-squeezing
behaviour of a liquid that covers sample surfaces when an air-jet is applied. To form the biofilm,
polystyrene surfaces were immersed and incubated in a water-circulated bioreactor that had collected

' microorganisms in ambient air. After the 14-d incubation, good formation of the biofilm on the surfaces

. was confirmed by staining with crystal violet. Although the contact angles of captive bubbles on the

. surfaces with the biofilm were unmeasurable, the liquid-squeezing method could distinguish between
hydrophilic and hydrophobic initial surfaces with and without biofilm formation using the diameter
of the liquid-squeezed area. The surface wettability is expected to be a promising property for in-situ
detection of biofilm formation on a macroscopic scale.

. Commonly, a biofilm is defined as an aggregate of microorganisms in which cells that are frequently embedded
. within a self-produced matrix of extracellular polymeric substances (EPSs) adhere to each other and/or to a
. surface. A biofilm is a system that can be adapted internally to environmental conditions by its inhabitants. The
. self-produced matrix of EPSs, which is also referred to as slime, is a polymeric conglomeration generally com-
. posed of extracellular biopolymers in various structural forms'. The biofilm formation is a phased process: (1)
. substances dissolved in water are physically adsorbed onto a surface, and this is referred to as a conditioning film;
(2) next, microorganisms adhere onto the conditioning film as a scaffold; (3) the microorganisms secrete EPSs
embedding the microorganisms themselves, and this results in a microorganism colony and biofilm; and (4)
some of the microorganisms are detached from the biofilm and dispersed into the surrounding environment>>.
In the biofilm, microorganisms adapt to their surrounding area and easily grow; therefore, the biofilm affects the
. surrounding environmental and sanitary conditions*’. Furthermore, because the biofilm has electrochemical
. properties, a substrate on which the biofilm has formed (referred to as a biofilm-formed substrate) is more easily
. corroded as compared with a biofilm-free substrate®’. Detection of the biofilm is normally confirmed by the
. presence of EPSs, in particular, staining of EPSs is a common approach®~°. This study focused on the EPSs that
: consist of various types of substances; that is, polysaccharides, proteins, nucleic acids, and lipids, which show a
- variety of hydrophilicities or hydrophobicities'!. Through biofilm formation, the surface covered with the biofilm
: is assumed to be hydrophilic; as a result, the wettability assessment becomes a method for detecting biofilm for-
mation in-situ.
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Figure 1. Bioreactor for biofilm formation by microorganisms in ambient air. Schematic diagram (A) shows
the setup of the bioreactor with a water circulation system and an electric fan for collecting and introducing
ambient air flow including microorganisms into the water. Photograph (B) shows the actual experimental setup.

Wettability is a surface property that shows affinity of the surface to a contact liquid'2 This property can be
visualized by the behaviour of a liquid droplet on the surface; liquid droplets spread on a high wettability surface
and are repelled on a low wettability one. The contact angle is a standard index to quantify the surface wettabil-
ity in various scientific fields!>-1°. As an in-liquid measurement, the captive bubble method has been used for
determining the contact angle of a bubble attaching on a cell surface in liquid'>!”~°. However, the captive bubble
method is unsuitable for some high wettability cases and it is difficult to use in an upright position where the
sample surface faces upwards. Recently, a method for assessing surface wettability based on the behaviour of
a liquid squeezed by an air-jet has been proposed?*!. In this method, the diameter of the liquid squeezed area
during air-jet application can be used as an index of surface wettability with a high correlation to contact angle?'.
Furthermore, this index is measurable even in situ. Through the wettability assessment by liquid squeezing, this
study demonstrated that the surface wettability is a useful property for in-situ detection of biofilm formation on
a macroscopic scale.

Results
Biofilm formation. For the biofilm formation, two types of sample dishes, (1) polystyrene (PS) and (2) vac-
uum gas plasma-treated PS (VGP-PS) dishes were prepared and placed in the water tank of the bioreactor with
water circulation at 27°C (Fig. 1A). Because the bioreactor was located in an ordinary laboratory room, micro-
organisms in the ambient air were collected and introduced into the water in the tank by using an electric fan.
To understand the biofilm formation in the bioreactor, the incubation for 0 (the initial state without incuba-
tion), 7, 14, 21, and 28 d and crystal violet staining on the dish after the incubation were performed (Fig. 2A).
As a result, the stain densities on both the PS and VGP-PS dishes after the incubation were significantly higher
than those before the incubation (p < 0.001) (Fig. 2B). The stain densities changed in the incubations from 7 d
to 14 d and from 21 d to 28 d with statistical significances. By setting a threshold using the average density of
dishes between the initial and incubated states, the percent ratio of stained area per unit area was determined
(Fig. 2C). The area ratios in both PS and VGP-PS cases exceeded 90% at 7 d. Although the values of area ratios on
the dishes with the incubation were significantly higher than those without the incubation, that on PS dish at 28
d significantly decreased to around 50% due to the partial detachment of biofilm (PS dish at Day 28 in Fig. 2A).

SCIENTIFICREPORTS| (2019) 9:8070 | https://doi.org/10.1038/s41598-019-44167-6 2


https://doi.org/10.1038/s41598-019-44167-6

www.nature.com/scientificreports/

A

Day 0
(Initial state)

Day 7 Day 14 Day 21 Day 28

“““‘l“‘\ “‘I“lll“‘\ |“““““\ \
a < . " e

(%)
o
: - . - . .
[©)
>
B C
*k% *%
100 - I e —
9
5 80 A
C 60 A
©
j
< 40 -
025¢ [ s <verps | 2] ——PS —+ VGP-PS |
0.24 T T 0 T T
0 10 20 30 0 10 20 30
Incubation time (d) Incubation time (d)
D E 150
mPS DVGP-PS*** * BPS OVGP-PS
0.3 1 .2 25 . *kk
. M
E; . k%%
< 100 I
= =
Z 02 S
c (0]
5 o
° 3
5 01 < 507
@ 0013 059
+ +
0.022 072
0 - 0
Initial state Day 14 Initial state Day 14

Figure 2. Biofilm formation in the bioreactor. Photographs (A) show crystal violet stained surfaces with
respect to the incubation time of 0 (initial state), 7, 14, 21, and 28 d. PS, polystyrene; VGP, vacuum gas plasma-
treated. The yellow dashed line surrounds the area showing biofilm detachment. The black bar indicates 1 cm.
Graphs (B,C) show the time-series of average stain densities and percent ratios of stained area per unit area,
respectively. Data points and error bars represent means and standard deviations, respectively (N =5). Graphs
(D,E) show the data at 0 and 14 d. Bars and error bars represent means and standard deviations, respectively

(N =5). Symbols: *p < 0.05; **p < 0.01; and ***p < 0.001 for each indicated combination. All original data are
available in Supplementary Information 5.

As aresult, the biofilms were speculated to cover almost the whole surface of the dish (over 90% total area) within
the 7-d incubation and they were stably maintained between 14- and 21-d incubations. Based on these results,
the incubation for biofilm detection was performed for 14 d. Therefore, four different conditions of sample dishes
were prepared: (1) PS initial state; (2) PS with 14-d incubation; (3) VGP-PS initial state; and (4) VGP-PS with 14-d
incubation. In the 14-d incubation, the stain densities had a statistically significant difference among the combi-
nations of dish types or incubation times (Fig. 2D). On the other hand, the area ratios of stained area to unit area
only had a statistically significant difference for the incubation times in each dish type (Fig. 2E).

From the confocal scanning laser microscopy on the surfaces of PS and VGP-PS dishes, small objects partly
attached on the surfaces were observed (Fig. 3A,B). Some objects with the size of around 10 pm were found to
have rod- and sphere-like shapes on both surfaces (Fig. 3A,B). As a result of the three-dimensional reconstruction
of surface profiles (Fig. 3C,D), the maximum heights of objects on the PS and VGP-PS dishes were found to be

around 12 and 9 pm, respectively. The individual objects with rod- or sphere-shapes had a height around 2 pm
(Fig. 3C,D).
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Figure 3. Confocal scanning laser microscopy on surfaces after 14-d incubation. Photographs (A,B) show the
laser intensity on the PS and VGP-PS dishes, respectively. White bars indicate 50 pm. Graphs (C,D) show three-
dimensional views of surfaces on the PS and VGP-PS dishes, respectively. The colour indicates the height with
respect to the left-upper colour map in each graph.

Liquid squeezing by air-jet. The wettability on the bottom surface of the sample dish was assessed and rela-
tively quantified by comparison of the liquid squeezed area (Fig. 4A)2**!. The constant volume of ultra-pure water
in the dish was squeezed out around the area under the air-nozzle by air-jet application (Fig. 4B). The behaviour
of liquid in the dish was monitored from camera images (Fig. 5A and Supplementary Information 1-4) and the
liquid-squeezed diameter was determined in each experiment (Fig. 5B and Supplementary Information 6). A 5
kPa-compressed air-jet was applied for 1s, and the liquid in the dishes for all conditions was squeezed during
the air-jet application of t=0 to 1s. On the other hand, the liquid behaviours after ceasing air-jet application
at t=1s were discriminated into two categories: (1) the remaining squeezed area was the same as in the initial
state; and (2) there was complete recovery on the bottom surface by the liquid for the 14-d incubations. From
the time-series data of the liquid-squeezed diameter (Fig. 5B), two-step liquid squeezing, where the liquid was
squeezed to around 5mm in diameter at 0.2 s and then further spread over 15 mm, was observed in the PS initial
state condition. The liquid-squeezing diameter for the VGP-PS initial state condition oscillated with a frequency
of around 6 Hz at an average diameter around 6 mm during the air-jet application. In both PS and VGP-PS 14-d
incubations, the liquid-squeezed diameter simply reached a constant value and recovered to zero within 0.1s after
the beginning and ceasing of air-jet application, respectively.

Surface wettability. Two indexes of the liquid-squeezed diameter were used for the quantification of wet-
tability. The first index was the mean value of the liquid-squeezed diameter during air-jet application and it was
determined as the arithmetic mean of the diameter from 0.63 to 0.9 s. That range was the later phase of liquid
squeezing (Fig. 6A). For the initial dishes, the mean squeezed diameter on the PS dishes reached around 17 mm,
which was 2.5 times larger than that on VGP-PS dishes which had a mean of 6.8 mm (Fig. 6B). This relationship
indicated that the surface of the PS dishes was more hydrophobic than the surface of the VGP-PS dishes at the
initial state. On the other hand, the mean squeezed diameters on PS and VGP-PS dishes after 14-d incubations
for biofilm formation were 6.0 and 5.6 mm, respectively. The mean squeezed diameters on PS and VGP-PS dishes
after the 14-d incubations were reduced to 39% and 93% of the original mean square diameters at the initial state,
respectively. This result indicated that both surfaces at 14 d were becoming significantly hydrophilic in compari-
son with those at the initial state. The difference of mean squeezed diameters between PS and VGP-PS dishes was
reduced within 8% from the initial difference of 254%.

Next, to analyse the liquid recovery behaviour, the second index of the residual diameter of liquid-squeezed
area after ceasing the air-jet application from 1.23 to 1.5s was determined (Fig. 6C). The residual diameters of
PS and VGP-PS initially were 17 and 5.0 mm, respectively, and the liquid was slightly recovered for the VGP-PS
dishes after ceasing the air-jet application, though the liquid never recovered for the PS dishes. In the 14-d incuba-
tions, the liquid was fully recovered on the bottom surfaces of both PS and VGP-PS dishes. Therefore, the residual
diameter was determined as 0 for those dishes after the 14-d incubation.

The contact angle of a captive bubble in water attached on the bottom surface of a sample dish was also
measured as a standard index of surface wettability (Fig. 6E). However, because the dishes at the 14-d incubation
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Figure 4. Wettability assessment by liquid squeezing. Illustration (A) shows a schematic diagram of the
experiment from biofilm formation to wettability assessment. After the biofilm formation, the liquid covering
the sample dish was squeezed by air-jet application from an air nozzle. Then, the surface wettability was assessed
using the size of the liquid squeezed area. Photograph (B) is an overview of the experimental setup during liquid
squeezing by air-jet application.

strongly repelled the air bubble, the contact angle could not be measured for them. For the initial state, the captive
bubble contact angles on PS and VGP-PS dishes were 103 deg and 126 deg, respectively. This result indicated that
the PS surface was relatively hydrophobic compared with the VGP-PS surface.

Discussion

Because of the increasing stain densities on the dishes after the 7-d incubation as compared with those at the
initial state, the biofilm was speculated to be well formed on both PS and VGP-PS dishes. Since small objects
having rod- or sphere-like shapes and other larger structures were observed by confocal scanning laser micros-
copy for the 14-d incubated dishes, the steps in the biofilm formation in this bioreactor were inferred to include
not only physical adsorption of substances, resulting in the formation of a conditioning film, but also, the growth
of microorganisms and the accumulation of EPSs. However, the dispersion stage was unable to be determined
in this experiment, although the biofilm detachment occurred on the PS dish at 28 d. In previous studies?*%,
incubation with the bioreactor successfully yielded well-formed biofilms on various types of material surfaces
including glass, metals, and plastics other than PS. Therefore, this incubation system was judged as applicable to
the biofilm formation on PS and VGP-PS surfaces. Various types of surface modifications affecting hydrophobic
and hydrophilic properties have been investigated for reduction of biofilm formation?*-%, and in the present study
both hydrophilic VGP-PS and hydrophobic bare PS surfaces had no remarkable effect for preventing biofilm
formation. The cause of biofilm formation on both PS and VGP-PS dishes was speculated to be the enhancement
of physical absorption such as by a hydrophobic effect in the PS case and hydrogen bond formation to a hydroxy
group in the VGP-PS case?. Hydrophobic PS surfaces generally cause the hydrophobic effect which enhances
the physical absorption of hydrophobic sites of molecules in water onto hydrophobic surfaces by repelling the
surrounding water®. On the other hand, because the VGP process introduces hydroxy groups onto a surface, a
hydrogen bond occurs between the hydroxy groups on the VGP surface and some types or parts of molecules in
solution. Therefore, the hydrogen bond on the VGP-PS surface was speculated as assisting the physical absorption
of molecules onto that surface’'.

The 14-d incubations in both PS and VGP-PS cases produced the biofilm that was the same as the biofilm
formed following the 21-d incubation and relatively stabler in comparison with the early stage biofilm for the
7-d incubation or the biofilm for the longer 28-d incubation. Those PS and VGP-PS surfaces at 14 d were more
hydrophilic than the original surfaces, even in the case of the originally hydrophilic VGP-PS, the surface with the
biofilm was more hydrophilic than the original one. Because the contact angle of the captive bubble on the PS
dish surface was smaller than that on the VGP-PS one, the PS and VGP-PS dishes at the initial state had relatively
hydrophobic and hydrophilic properties, respectively. This result agreed with the general understanding of the
VGP process, which can change a surface into a more hydrophilic by the addition of the hydroxy group onto
the surface. In a previous study regarding liquid-squeezing-based wettability assessment?!, a clear relationship
between the liquid-squeezed diameter and contact angle of the water droplet onto bare and atmospheric pressure
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Figure 5. Liquid squeezing by air-jet application for differently conditioned sample dishes. Photographs (A)
show the time-courses of liquid-squeezing behaviour by air-jet application. The row and column of these
photographs indicate the time-course (0, 0.5, 1.0, and 1.5s) and the different sample conditions, respectively.
The black bar indicates 1 cm. Movies are available in Supplementary Information 1-4. Graph (B) shows

the time-series of the liquid-squeezed diameter determined by image processing from the time-courses of
photographs as shown in (A). Lines and lightly shaded corresponding-colour areas represent means and
standard deviations, respectively (N =3, PS initial state; N =9, PS 14-d incubation; N = 3, VGP-PS initial
state; N =6, VGP-PS 14-d incubation). PS, polystyrene; VGP, vacuum gas plasma-treated. All original data are
available in Supplementary Information 6.

nitrogen gas plasma-treated polystyrene surfaces was confirmed. The larger liquid-squeezed diameter during
air-jet application and the residual squeezed area on the PS dish indicated this dish had a better hydrophobic
property compared with the VGP-PS dish, and the results agreed with the results from the captive bubble method.

Although the contact angle of the captive bubble could not be measured due to no attachment of the air
bubble for biofilm-formed dishes, the liquid-squeezing approach worked on these dishes. Both dishes after the
biofilm formation had smaller mean values of liquid-squeezed diameter during air-jet application and the liquids
were fully recovered over the dishes, resulting in no residual squeezed area. Therefore, liquid-squeezing-based
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Figure 6. Wettability analysis for different sample dishes. Graph (A) shows the time-courses of liquid-squeezed
diameters trimmed out at 0.5 to 1.0s of Fig. 5B to indicate the data for mean values. Graph (B) compares the mean
squeezed diameters. Graph (C) shows the time-course of liquid-squeezed diameters trimmed out at 1.0 to 1.5s to
indicate the data for determining the residual liquid-squeezed diameters. Graph (D) compares the residual liquid-
squeezed diameters. Photographs (E) show a captive bubble attaching on a sample surface in water. Graph (F)
shows the contact angles of captive bubbles. PS, polystyrene; VGP, vacuum gas plasma-treated. Lines and lightly
shaded corresponding-colour areas in (A,C) or bars and error bars in (B,D,F) represent means and standard
deviations, respectively (N = 3, PS initial state; N =9, PS 14-d incubation; N = 3, VGP-PS initial state; N =6,
VGP-PS 14-d incubation for liquid-squeezed diameter. N =6 for contact angle). Symbols: *p < 0.05; **p < 0.01;
and ***p < 0.001 for each indicated combination. All original data are available in Supplementary Information 6.

wettability assessment was an appropriate method for detecting biofilm formation via its wettability change. In
situ Raman spectroscopy? and FTIR spectroscopy? have revealed the existence of lipids, which are fundamental
hydrophobic substances, in biofilms. However, the lipids were speculated to be embedded in a micelle structure
in the EPSs or microorganisms because of interaction by surrounding water, therefore, the wettability of surfaces
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Approach Features Reference
. . Local observation of planar microstructure in an intact biofilm in case of no | 3539
Optical microscopy o -
staining.
Volumeric microstructure of biofilm can be observed in situ from laser 044

Confocal laser scanning microscopy (CLSM) intensity without staining

Observation of local microstructure in near-atmospherical vacuum 14546

Environmental scanning electron microscopy environment with higher resolution than optical diffraction limit.

Raman spectroscopy Chemical structures in biofilm can be assessed in situ. 22,3947

The chemical functional groups in biofilm can be analysed macroscopically | 333447

Fourier transform infraredspectroscopy (FTIR) in situ in case of attenued total reflection technique.

Time-series biofilm formation can be indirectly detected in situ via 3

Quartz crystal microbalance (QCM) frequency changes

In-situ macroscopic representation of physicochemical information of intact

Wettability hydrous biofilm.

This study

Table 1. In-situ approaches!! for biofilm characterization with additional references.

on both PS and VGP-PS dishes expressed hydrophilicity. Especially, because of the non-zero values in the case
of biofilm-formed dishes, instead of zero in the residual squeezed diameter, the mean value of liquid-squeezed
diameter during air-jet application was a more useful index for quantitative evaluation.

To date, various types of in-situ approaches for biofilm characterization have been proposed and practically
used (Table 1). The present wettability approach has the two important features: (1) the capability for in-situ
assessment of an intact hydrous biofilm and (2) the capability for macroscopic representation of physicochemical
surface information via the wettability index (liquid-squeezed diameter). Unfortunately, though local detailed
information such as a microscopic surface profile cannot be obtained directly, the wettability approach is useful
for the simple assessment of surface change in the incubation of anti-biofilm material development with comple-
mentary use of a microscopic approach.

Methods

Biofilm formation. Biofilm formation with a bioreactor (Fig. 1B) was performed as previously reporte
Two types of substrates were used for sampling biofilms: (1) a polystyrene petri dish (PS) (Falcon 351008)
(Corning, Corning, NY); and (2) a vacuum-gas-plasma-treated polystyrene dish (VGP-PS) (Falcon 353001)
(Corning). In advance of biofilm formation, a plastic mesh basket was positioned obliquely above an open-top
water tank (water volume of 12 L) and ambient air was collected by an electric fan (MU1025S-11N) (Oriental
Motor, Tokyo, Japan) and introduced onto the water flow passing over the mesh basket for over a month. The water
flow that circulates in the bioreactor was generated by a water pump (PMD-221B2M) (Sanso Electric, Hyogo,
Japan). The substrate was immersed into the water tank and placed onto the tank bottom in the bioreactor, and
then biofilm formation was carried out with water circulation without air flow by the fan for 28 d at 27+ 1°C. The
flow rates of air blown by the electric fan and circulating water were set at 1.4 m*/min and 5 L/min, respectively.

d22,23,34

Staining and quantification. To confirm the biofilm formation, crystal violet staining was performed?>3¢.
In brief, the water-immersed dishes were removed from the water tank at incubations of 7, 14, 21, and 28 d. A bare
dish was used as the initial state condition and was referred to as the 0-d incubation. After water that remained
inside the selected dish was removed, 0.1 w/v% crystal violet aqueous solution was added into the dish by pouring
it gently down the dish wall. After the incubation at room temperature for 30 min, the added crystal violet aque-
ous solution was removed, and the dish was immersed into tap water. After being air-dried, the stained dish was
photographed with an image scanner (MG6930) (Canon, Tokyo, Japan).

From the image of the stained dish (Fig. 7A), the density of the stain was quantified by assuming it was repre-
sented by optical density (OD)*. Briefly, the centre part of the dish bottom with half the radius of the dish bottom
was trimmed out as an analysis area (Fig. 7B). The brightness of each pixel in the gray scale image I was converted
into the brightness without compensation for visual display I’ by Eq. (1) (Fig. 7C):

I = —Lln[h;]
In10 (22 -1 (1)

where 7y and b are the gamma value of the scanner (=1.8 in this study) and the bit depth of the image (=8 bits in
this study), respectively. The stain density d was calculated by Eq. (2) with two coefficients ¢, and ¢, determined
from the linear relationship between OD standards (visible light ND filters No. 4; OD = 0.6, 8; OD = 0.9 and 16;
OD =1.2) (Nikon, Tokyo, Japan) and the corresponding values of I in advance (Supplementary Information 5):

d=cl' + ¢ 2

After setting the threshold d value of each pixel with the average value of dishes between the initial and incu-
bated states, the ratio of stained area per unit area was calculated (Fig. 7D).

Confocal scanning laser microscopy. After being air-dried, the 14-d incubated surfaces on PS and
VGP-PS dishes were observed with a confocal scanning laser microscope (VK-8710) (Keyence, Osaka, Japan).
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Figure 7. Flow chart of quantification for staining. The homemade software had a four-step process: (A)
acquiring an image; (B) setting the analysis area; (C) calculating the stain density; and (D) calculating the area
ratio. Images on the right side of the flow chart (A-D) correspond to the process results. The software code is
available in Supplementary Information 5.

The observed data were three-dimensionally reconstructed using the accessory software of the microscope (VK
Analyzer) (Keyence).

Wettability assessment. The surface wettability of sample dishes was assessed by the previously proposed
liquid-squeezing method?*?!. In brief, the sample dish was rinsed with fresh ultra-pure water, the rinsing water
was carefully removed from the dish, and then 1.5mL of ultra-pure water was poured into the dish for the assess-
ment. After the sample dish with the constant volume of water was set on the flat stage of a wettability assessment
system (prototype) (Kitagawa Corporation, Hiroshima, Japan) (Fig. 4B), air compressed at 5 kPa was released
from an air nozzle (i.d., 0.5 mm) positioned at a height of 15 mm from the water surface in the dish. The behaviour
of liquid during air-jet application was monitored by the accessory digital camera of the system. The diameter
of the liquid-squeezed area was automatically determined from the monitored images with the accessory image
processing software of the system.

As a conventional method, the captive bubble contact angle measurement was employed for assessing the
wettability of sample surfaces in liquid. Before the contact angle measurement, the bottom surface of the sample
dish was trimmed out with an ultrasonic cutter (USW-334) (Honda Electronics, Aichi, Japan) to get a 1-cm width
specimen, and then, the specimen was placed with its bottom surface up and immersed into the ultra-pure water
that filled the water chamber of a contact angle meter (DMs-401) (Kyowa Interface Science, Saitama, Japan). A
single bubble with a volume of 2 to 5 pL was formed onto the specimen surface, and then, the angle of the attached
bubble was automatically measured.
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Data analysis. For the liquid-squeezed diameter, two different indexes were defined: (1) the mean value dur-
ing the air-jet application phase (t=0.63 to 0.9s); and (2) the residual diameter as a mean value after ceasing the
air-jet application (t=1.23 to 1.5s). Those two indexes were determined for each liquid-squeezing experiment.

Statistical significance between two data sets was confirmed with Student’s t-test for equal variances or Welch’s

t-test for unequal ones after homoscedasticity confirmation with an F-test.
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