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In recent years, various breakthroughs have been made in tumor immunotherapy that
have contributed to prolonging the survival of tumor patients. However, only a subset of
patients respond to immunotherapy, which limits its use. One reason for this is that the
tumor microenvironment (TME) hinders the migration and infiltration of T cells and affects
their continuous functioning, resulting in an exhausted phenotype. Therefore, clarifying the
mechanism by which T cells become exhausted is of significance for improving the
efficacy of immunotherapy. Several recent studies have shown that mitochondrial
dynamics play an important role in the immune surveillance function of T cells.
Dynamin-related protein 1 (Drp1) is a key protein that mediates mitochondrial fission
and maintains the mitochondrial dynamic network. Drp1 regulates various activities of T
cells in vivo by mediating the activation of a series of pathways. In addition, abnormal
mitochondrial dynamics were observed in exhausted T cells in the TME. As a potential
target for immunotherapy, in this review, we describe in detail how Drp1 regulates various
physiological functions of T cells and induces changes in mitochondrial dynamics in the
TME, providing a theoretical basis for further research.
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INTRODUCTION

In recent years, with our increased understanding of the immune system, immunotherapy has
become an effective treatment for many types of tumors, prolonging patient survival (1). Immune
cells, especially T cells, play a key role in immunotherapy (1). Different metabolic forms are required
to direct the effector function of T cells at different stages (2). T cells are rapidly activated into T
effector cells once antigen is detected, then die or transform into T memory cells after completion of
the immune response (3). Thus, cellular metabolism must be reprogramed to acquire different
phenotypes and functions. For example, increased glycolysis was observed in activated T effector
cells, while increased levels of fatty acid oxidation were observed in suppressive T regulatory cells
(Treg) (2). Interestingly, although elevated levels of fatty acid oxidation were observed in Treg (2),
Abbreviations: ATP, adenosine triphosphate; CD95L, ligand of apoptosis factor CD95; Drp1, dynamin-related protein 1;
ERK, extracellular signal-regulated kinase; mTOR, mechanistic target of rapamycin; NFAT, nuclear factor of activated T cells;
PD-1, programmed cell death protein-1; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1-alpha;
ROS, reactive oxygen species.
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Treg metabolism was not dependent on fatty acid oxidation. The
study by Raud et al. showed that there are pathways other than
fatty acid oxidation that regulate Treg differentiation (4).
Furthermore, recent data suggest that Myc is involved in
regulating T cell activation and metabolic reprogramming, and
that Myc is a regulator of mitochondrial oxidative metabolism
(5). Although the mechanism of metabolic regulation of T cell
subsets has not been fully elucidated, this review aims to link
mitochondria with the various functions of T cells, providing
new possibilities for improving anti-tumor immunotherapy.

Mitochondria have a bilayer membrane structure, including
an outer mitochondrial membrane (OMM) and inner
mitochondrial membrane (IMM). The mitochondrial
membrane comprises numerous proteins. The mitochondrial
fusion proteins mitofusin (Mfn, including Mfn1 and Mfn2) (6)
and optic atrophy 1 (Opa1) (7) are located in the OMM and
IMM, respectively. In addition, mitochondrial anti-viral
proteins (8) and mitochondrial anti-apoptotic proteins also
exist in the OMM, while the electron transport chain is
located on the IMM. The morphology of mitochondria is
highly dynamic and the processes of fusion and fission occur
continuously. Different forms of mitochondria are observed that
regulate the energy metabolism of cells to adapt to the
surrounding environment (9). Mitochondrial fusion is related
to an increase in oxidative phosphorylation and adenosine
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triphosphate (ATP) production, mediated by mitochondrial
fusion proteins Mfn1, Mfn2 and Opa1 (10). When needed, the
fused mitochondrial network is fragmented, a process mediated
by guanosine-5′-triphosphate (GTPase) and dynamin-related
protein 1 (Drp1) (11). The initiation of mitochondrial fission
begins with contact between the endoplasmic reticulum and
mitochondria (Figure 1). The recruitment of Drp1 to the OMM
is regulated by other proteins such as fission protein 1 (Fis1),
mitochondrial fission factor (MFF), MiD49 and MiD51 (7).
Among these, Fis1 is not only a receptor recruited by Drp1 from
the cytoplasm to the OMM, but also promotes mitochondrial
fission by negatively regulating the fusion process of
mitochondria (12). Drp1 is usually located in the cytoplasm
when it is inactive and is phosphorylated at serine 637
(inhibitory phosphorylation) (13). When fission is initiated,
Drp1 is widely recruited to the OMM and phosphorylated at
serine 616, causing mitochondrial fragmentation through the
formation of oligomeric rings (14). In recent years, studies have
shown that mitochondrial dynamics are crucial for regulating
immune cell growth, development and migration, and the
immune response (3, 15). In this review, we summarize the
regulation of Drp1-mediated mitochondrial fission at different T
cell stages and the changes in these physiological processes in
the anti-tumor immune response, and explore the possibility of
developing new therapeutic strategies targeting Drp1.
FIGURE 1 | A schematic diagram of the function of T cells regulated by Drp1-mediated mitochondrial fission. Under the action of the ERK pathway, the
phosphorylation of Ser616 activates Drp1, and the activated Drp1 mediates mitochondrial fission. After fragmentation, the mitochondria migrate along the
microtubule to the uropod, where they provide ATP for T cell movement. The initiation of mitochondrial fission begins with contact between the endoplasmic
reticulum (ER) and mitochondria, then resting T cells transition to migrating T cells. Part of the fragmented mitochondria migrates to the immune synapse, where
calcium ions are absorbed to regulate calcium currents. Under a suitable calcium current, mTOR and cMyc are further activated to enhance the transcription of
activation-related genes. The main metabolic pathway of these T cells is glycolysis, and the T cells differentiate into effector T cells (TE). Fragmented mitochondria
also produce ROS, activate CD95L transcription, further activate CD95 and mediate T cell apoptosis. T cells are converted to a memory-like phenotype (TM) when
knockdown of Drp1 inhibits mitochondrial fission and distributes fused mitochondria within T cells.
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DRP1-MEDIATED MITOCHONDRIAL
FISSION IN DIFFERENT T CELL STAGES

Drp1-Mediated Mitochondrial Fission and
T Cell Maturation
In mice with specific Drp1 ablation during T cell development,
the number of mature T cells in the thymus was reportedly
decreased, whilst normal organelle function was retained and all
mature T cell subsets were correctly represented (16). Therefore,
knockout of Drp1 only appears to affect the number of mature T
cells and has no impact on their function or differentiation into
subtypes. Furthermore, the reduced proliferation of Drp1-
knockout mature T cells was also observed after stimulation
with antigen (16). Interestingly, this reduction in the clonal
expansion rate could be reversed by activating Drp1-S616E
overexpression (16). Although the underlying mechanism
remains unclear, the impairment of T cell migration function
may partly explain this phenomenon. T cells migrate from the
cortex to the medulla in the thymus and undergo strict positive
and negative selection (17). Knockout of Drp1 inhibits T cell
migration, thereby leading to the accumulation of T cells in the
thymic cortex (16). This, in turn, affects the screening of T cells
and leads to excessive T cell clearance. It is unclear whether Drp1
is involved in regulating positive and negative selection, although
knockout of Drp1 does not lead to an increase in autoreactive
T cells.

Drp1-Mediated Mitochondrial Fission and
T Cell Migration
The migration of T cells depends on their unique cytoskeleton,
which converts chemical signals into mechanical energy and
promotes migration (18, 19). During this process, Drp1 is
phosphorylated at serine 616 under the action of the
mitogen-activated protein kinase pathway (14), then the
mitochondria are fragmented and relocated to the uropod
along the microtubules (Figure 1), providing ATP for the
movement of myosin (20). Interestingly, the lack of Drp1 leads
to the fusion of mitochondria, which is not conducive to
microtubule-mediated transport, while overexpression of Drp1
can promote mitochondrial relocation and accelerate T cell
migration (16). This may be due to the inability of
microtubules to transport excessively large organelles, or the
disturbance of mitochondrial dynamics by changes in the
morphology of mitochondria (20). Impaired migration not
only affects the maturation of T cells in the thymus (reducing
the survival rate of thymocytes during positive selection), but
also hinders the migration of T cells to the blood and secondary
lymphoid organs, which play a role in immune surveillance (16).

Drp1-Mediated Mitochondrial Fission and
T Cell Activation
As a second messenger, the calcium current is indispensable for T
cell activation. Mitochondria of the immune synapse ensure the
calcium release-activated calcium channels remain open by
absorbing calcium, keeping the calcium current at a low level
most suitable for T cell activation (21, 22) (Figure 1). The calcium
Frontiers in Immunology | www.frontiersin.org 3
current regulates the AMP-activated protein kinase pathway (23)
and the mechanistic target of rapamycin (mTOR) pathway (24) to
control the metabolic reprogramming of T cells to meet the
metabolic needs of the activated state (25, 26). The complete
activation of Drp1 depends on calcium-dependent calcineurin-
regulated serine 637 dephosphorylation (27) and activation of
phosphorylated serine 616 by the mitogen-activated protein
kinase pathway (16). Activated Drp1 mediates mitochondrial
division and migration to immune synapses (28) (Figure 1).
The calcium influx of Drp1-deficient T cells increases during
activation, which further leads to the over-activation of AMP-
activated protein kinase and a decrease in mTOR-cMyc (16).
Since cMyc is necessary for transcription when metabolic genes
are activated in T cells (29), its reduction may affect their
metabolic transcription. In addition, the electron transport
chain located in the IMM produces reactive oxygen species
(ROS), which are intrinsically linked to the stability of
mitochondrial dynamics, because high levels of ROS can lead to
cell damage (30, 31).

Drp1-Mediated Mitochondrial Fission and
T Cell Differentiation
After activation, T cells differentiate into i) effector T cells (TE),
which participate in immune reactions to foreign antigens, and
ii) memory T cells (TM), which differentiate rapidly into TE to
participate in the immune response on subsequent exposure to
the same antigen. The metabolic patterns of different T cell
subsets differ greatly (32, 33). Mitochondria, as metabolic
centers, affect the differentiation of T cells. During the
differentiation of naïve T cells into TE, the metabolic mode
changes from oxidative phosphorylation and fatty acid
oxidation to glycolysis (34). This process depends on the
precise regulation of the calcium current at immune synapses
by Drp1, which promotes the transcription of glycolysis genes by
maintaining the activation of mTOR/cMyc (16) (Figure 1).
Fragmented mitochondria were predominantly observed in TE,
and this phenotype depended on the phosphorylation of Drp1 at
Ser616 to mediate mitochondrial division (35). Knockout of
Drp1 in vitro promotes the transition of T cells to a memory-
like phenotype due to the inability of mitochondria to divide
(16). The same results were obtained when the glycolysis of T
cells was inhibited (36). It should be noted that although
knockout of Drp1 appears to promote the conversion of TE to
TM by inhibiting glycolysis (37), another study has shown that
promoting glycolysis can also increase the formation of memory
T cells (38), and the primary metabolism of TM remains
controversial (4). Interestingly, the mitochondrial fusion
protein Opa1 is not only implicated in effector and memory
fate decisions (35), but also affects T cell development in the
thymus (39, 40). We believe that both mitochondrial
morphologies play a role in T cell development, from
maturation to apoptosis, after participating in the immune
response. It is crucial to clarify the specific changes in
mitochondria and the alteration of pathways during these
processes. Whether it is an autoimmune disease that
suppresses the immune response, or an anti-tumor treatment
March 2022 | Volume 13 | Article 873834
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that needs to enhance the immune response, more research is
needed to clarify the relationship between mitochondrial
metabolism and T cell differentiation.

Drp1-Mediated Mitochondrial Fission
and T Cell Death
To avoid autoimmunity, effector T cells die following the
immune response. This process is called activation-induced
cell death and is regulated by mitochondria. Drp1-mediated
mitochondrial fission generates ROS that regulate the
transcription and expression of CD95L (FasL), which is
essential for CD95 (Fas)-dependent apoptosis (41) (Figure 1).
In addition, mitochondria also play other roles in apoptosis. The
activation of protein kinase A downstream of the T cell receptor
(TCR) signal can inhibit autophagy induced by activation-
induced cell death, leading to the accumulation and division of
damaged mitochondria, thereby releasing cytochrome C and
driving apoptosis (42).
DRP1-MEDIATED MITOCHONDRIAL
DIVISION AND T CELL EXHAUSTION IN
THE TUMOR MICROENVIRONMENT (TME)

Because of the lack of T cells or the presence of nonfunctional T
cells in the TME, a considerable number of patients show no
response to immunotherapy (43). Compared with the secondary
lymphoid organs where T cells survive, the TME is always
hypoxic. Hypoxic signaling stimulates the generation of
markedly heterogeneous blood vessels in the TME (44), which
further increases hypoxia due to an uneven lumen (45). In
addition, the TME also contains an extracellular matrix and
various growth factors (such as hepatocyte growth factor and
fibroblast growth factor) secreted by stromal cells and fibroblasts
(45, 46). The extracellular matrix can stimulate tumor
angiogenesis (47), and growth factors can both promote the
growth of malignant cells and act as chemokines to stimulate
other cells to migrate to the TME (45). In the TME, T cells
undergo continuous TCR stimulation and suffer from nutritional
deficiency and hypoxia, leading to a phenotype known as
exhaustion (48). Exhausted T cells are characterized by
decreased proliferation and functional status, accompanied by
increased expression of co-inhibitory molecules (49).
Interestingly, exhausted T cells showed damaged mitochondria
and abnormal ROS compared with normal T cells (50, 51). This
indicates that mitochondrial dynamics are changed during the
process of T cell exhaustion, or it may be that these
mitochondrial dynamic changes lead to the exhaustion of T
cells. Next, we focus on the mitochondrial dynamics of exhausted
T cells in the TME and the possible role of Drp1 in these events.

Persistent Antigen Stimulation Affects T
Cell Proliferation and Exhaustion Through
Drp1 Changes
Some studies have shown that the mitochondrial function of
tumor-infiltrating lymphocytes is abnormal (50, 52, 53).
Frontiers in Immunology | www.frontiersin.org 4
Persistent antigen stimulation in the TME leads to the damage
of mitochondrial function (Figure 2) and further affects the
ability of T cells to proliferate (54).

TCR can increase the level of glycolysis by co-stimulation with
CD28 receptor (55). In vitro, glycolysis increased significantly in T
cells after long-term stimulation with antigen (54) (Figure 2),
which was consistent with transformation of the metabolic mode
during the differentiation of effector T cells. However, in this case,
the tricarboxylic acid cycle and the synthesis of nucleotide
triphosphate were affected, indicating that this continuous
stimulation impaired the ability of mitochondrial b-oxidation in
T cells (54) (Figure 2). The dysfunction of mitochondria leads to
the deficiency of ATP synthesis in T cells. It can be speculated that
oxidative phosphorylation is impaired in T cells stimulated by
antigen, which further aggravates the dependence of T cells on
glycolysis (Figure 2). In addition, continuous antigen stimulation
leads to the accumulation of high levels of ROS in T cells, which
directly interferes with ATP synthesis (54) (Figure 2). The
proliferation of T cells requires the synthesis of DNA and
protein, which is inseparable from the production of ATP (56–
58). Therefore, although long-term antigen stimulation maintains
a high level of glycolysis, the decrease in mitochondrial oxidative
phosphorylation affects the ability for T cell proliferation. Long-
term stimulation also increases the level of calcium in T cells and
further stimulates the increase in mitochondrial ROS (59, 60) and
nuclear factor of activated T cells (NFAT) (61, 62), which can
directly activate exhaustion-related transcription factors (63)
(Figure 2). Excessive calcium ions in T cells can also block the
interaction between kinesin-1 and microtubules and prevent
mitochondria from moving along microtubules in T cells (64,
65). In addition, hypoxia, as another feature of the TME,
cooperates with continuous stimulation to impair the respiratory
ability of T cells and leads to the expression of co-inhibitory
molecules (66). Unfortunately, no research has focused on Drp1
changes in this chronic process.

Interestingly, after long-term stimulation of TCR, mitochondria
in T cells exhibited a disrupted membrane structure, decreased
mitochondrial cristae length and a decreased number of cristae,
which resulted from the accumulation of damaged mitochondria
that could not be cleared in a timely manner (67). Damaged
mitochondria prevent T cells from being fully utilized and from
performing their normal functions (see sectionDrp1 andMitophagy
for more detail). The same result was observed in T cells treated
with the Drp1 inhibitor Mdvi-1, that is, mitochondria showed a
damaged morphology (67). Previously, we discussed the important
role of Drp1-mediated mitochondrial division in T cell energy
metabolism and the regulation of ROS production, and
emphasized the necessity of mitochondrial relocation in the
immune synapse for regulation of the calcium current. Therefore,
there is good reason to further explore the changes in Drp1 during
this process.

The Influence of PD-1 on T Cells May
Involve Drp1
Programmed cell death protein-1 (PD-1) is a co-inhibitory
receptor expressed on the surface of T cells (68), which
mediates immunosuppression (69). Upregulation of PD-1
March 2022 | Volume 13 | Article 873834
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expression is one of the characteristics of exhausted T cells (49).
Anti-PD-1 therapy can effectively improve the activity of tumor-
infiltrating T cells (70, 71). The effect of PD-1 on tumor-
infiltrating T cells is at least partly achieved by inhibiting Drp1.

PD-1 regulates T cell metabolism. First, PD-1 enhances T cell
fatty acid b-oxidation and inhibits the T cell glycolysis pathway
and amino acid metabolism by changing the length and number
of mitochondrial cristae (72, 73). Second, PD-1 inhibits the
expression of peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1a, the most important gene
that drives mitochondrial biogenesis), polarizing mitochondria
and resulting in the production of high levels of ROS, leading to a
metabolic imbalance (74, 75) (Figure 2). Metabolic stress not
only affects the differentiation of T cells, but also weakens the
anti-tumor ability of T cells.

Previous studies have shown that PD-1 can inhibit the
proliferation and migration of T cells (76, 77). Simula and
colleagues used a mouse tumor model to explore whether PD-1
Frontiers in Immunology | www.frontiersin.org 5
regulates these processes by affecting Drp1 (78). Their study
demonstrated that the PD-1 signal inhibits the division of
mitochondria in T cells by inhibiting the phosphorylation of
Ser616 sites, and this inhibition is achieved through the ERK
and mTOR pathways (76, 78, 79) (Figure 2). Compared with
thymocyte Drp1-knockout mice, PD-1 inhibitors significantly
enhanced the anti-tumor effect of wild-type mice, and this
difference was related to the phosphorylation level of Drp1 in T
cells (78). Interestingly, consistent with the effect of Drp1 on T cell
migration described earlier, Simula and colleagues found that the
density of tumor-infiltrating T cells in wild-type mice was higher,
which was related to Drp1-mediated polarization and
rearrangement of the mitochondria located in the uropod of T
cells (78).

These results suggest that in the case of persistent metabolic
disorders, PD-1 gradually induces T cells and causes their
dysfunction by regulating Drp1. As a key factor of PD-1, Drp1
has great potential as a target for synergistic anti-PD-1 therapy.
FIGURE 2 | A schematic diagram of T cell depletion caused by continuous antigen stimulation and PD-1. Continuous antigen stimulation increased the level of
glycolysis in T cells and inhibited beta-oxidation in these cells. The decrease in oxidative phosphorylation indirectly increases the level of glycolysis. In addition,
continuous antigen stimulation not only directly increases the levels of intracellular ROS and NFAT, but also increases the level of intracellular calcium, resulting in the
accumulation of intracellular ROS indirectly. High levels of ROS affect the synthesis of ATP, thereby affecting the synthesis of DNA in T cells. Activation of the PD-1
signal pathway inhibits the transcription of PGC-1 a, resulting in an increase in the level of ROS. The PD-1 signal pathway also inhibits the phosphorylation of Drp11
at Ser616. Continuous antigen stimulation cooperates with the PD-1 signaling pathway to prevent mitochondrial autophagy and self-renewal, resulting in the
accumulation of dysfunctional mitochondria in T cells.
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Drp1 and Mitophagy
Regardless of the cause of metabolic stress (i.e., hypoxia, or
continuous antigen stimulation and activation of the PD-1 signal
pathway), mitochondrial damage ensues. As the main functional
organelle in cells, mitochondria are constantly undergoing self-
renewal, and damaged mitochondria are removed in a timely
manner. Although the proteasome system can degrade
mitochondria that undergo reversible damage, the clearance of
mitochondria during an immune response mainly occurs
through mitophagy (80).

Yu and colleagues showed that antigen stimulation combined
with activation of the PD-1 signal impaired the autophagy
activity of mitochondria, resulting in the accumulation of a
large number of mitochondria in tumor-infiltrating T cells
(67). These accumulated mitochondria are characterized by the
destruction of the mitochondrial membrane and the structure of
the cristae (67). The accumulated mitochondrial mass increases
and the membrane potential decreases, indicating that these
mitochondria are dysfunctional and depolarized (67). The
inability to clear these dysfunctional mitochondria leads to a
decrease in mitochondrial adaptation, resulting in the expression
of more co-suppressor molecules, such as PD-1, on T cells (67).
In addition, further analysis showed that the chromatin
accessibility of T cells accumulating a large number of
damaged mitochondria changed with DNA methylation, which
was related to exhaustion (67).

Drp1-mediated mitochondrial fission plays a role in
mitochondrial autophagy (81). Significant inhibition of
mitochondrial autophagy was observed in Drp1-negative B
cells (82). In addition, the importance of mitochondrial
division for mitochondrial autophagy has been observed in a
variety of cells (83). It can be speculated that damaged
mitochondria are marked and separated by division, and
mitochondrial autophagy will target and eliminate depolarized
mitochondria (82).
THERAPIES TARGETING DRP1

In view of the limitations of existing immunotherapy, researchers
are exploring alternative targets. Along with an in-depth
understanding of metabolic stress in the TME, targeted
metabolic anti-tumor therapy has been proven to restore the
anti-tumor activity of exhausted T cells (84). Considering
the role of Drp1 in the various physiological processes of
T cells, the regulation of Drp1 as a target is worth exploring.
However, it is precisely because Drp1 is involved in a variety of
cellular activities that makes this regulation so complex.

The first challenge encountered in targeting Drp1 is how to
regulate its expression. To date, studies have achieved regulation
of Drp1 expression by overexpression or knockout of Drp1 at the
gene level (85, 86), or by blocking the activation of Drp1 using
peptides (87, 88). However, these methods are not suitable for
the development of treatments. The regulation of genes may lead
to the dysfunction of other cells, and the blocking effect of drugs
will affect energy metabolism and the neurological function of
Frontiers in Immunology | www.frontiersin.org 6
the brain (89). The next challenge therefore was to control the
level of Drp1 expression. Drp1-mediated mitochondrial fission
contributes to the production of effector T cells and enhances the
anti-tumor ability of T cells. However, this regulation is not
conducive to the production of memory T cells or, therefore,
maintaining long-term immune surveillance. Studies have shown
that knockdown of Drp1 in tumor cells can significantly inhibit
the invasion rate of tumor cells (90–92), but it has so far proven
difficult to translate Drp1 targeting of tumor cells into clinical
treatments. Advances in nanotechnology have enabled cell-
specific drug delivery or direct drug delivery into cells (93), but
when the drug acts on cells other than just the tumor cells (i.e.,
not just immune cells in the TME), it may cause serious side
effects. At present, the most promising method is to combine the
regulation of Drp1 with adoptive immunotherapy since the
regulation of T cells by Drp1 in vitro may avoid the various
adverse effects in vivo.
FUTURE DIRECTIONS

Targeting Drp1 of T cells appears to alter T cell function and fate
by regulating metabolism, but this process is complex. There
appear to be multiple metabolic pathways for both regulatory T
cells and memory T cells (4). Therefore, future studies are needed
to clarify the changes in signaling pathways during Drp1-mediated
mitochondrial fission. However, it is possible to directly
manipulate T cell metabolism to meet the needs of antitumor
therapy. In addition, chemotherapeutic drugs can target tumor
cells in a specific stage of the cell cycle (94). The possibility of
modulating mitochondrial dynamics to alter cellular metabolism
in such a way as to target tumor cells in a specific stage of the cell
cycle, along with the cooperation of chemotherapeutic drugs, is
also a direction worth exploring. Radiotherapy can alter the TME
and disrupt tumor tissue (95). In this context, modulating Drp1 to
improve the function of exhausted T cells in the TME may be
synergistic with radiotherapy.

Studies have shown that in MAPK-mutated human tumor
cell lines, inhibition of this signaling pathway results in the loss of
Drp1, which ultimately leads to excessive mitochondrial fusion
(96). Since our goal is to modulate mitochondrial dynamics by
enhancing Drp1 expression levels, thereby altering T cell fate and
biological behavior, can the same goal be achieved by targeting
mitochondrial fusion proteins to inhibit mitochondrial fusion?
Studies on breast cancer cells have shown that inhibition of the
mitochondrial fusion protein Mfn promotes the accumulation of
mitochondria in the lamellipodia region and significantly
enhances the migration ability of breast cancer cells, while
mitochondrial uncouplers or inhibitors of ATP synthesis can
reverse this change (91). However, just as altering Drp1 may
trigger changes in multiple signaling pathways, the regulation of
mitochondrial fusion proteins also requires caution. Studies have
shown that Opa1 has other functions in addition to regulating
mitochondrial fusion. Opa1 maintains the integrity of the
IMM and cristae, and is also involved in the sequestration
of cytochrome c to regulate mitochondrial apoptosis (97).
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In addition, Opa1 regulates mitochondrial calcium uptake by
regulating the coupling between mitochondria and the
endoplasmic reticulum (98), which is important for T cell
activation. Recently, Liu et al. showed that promoting
mitochondrial fusion can improve the function of
cardiomyocytes (99), and targeting cell metabolism is becoming
a common strategy for the treatment of various diseases. Further
research on the regulation of mitochondrial fusion proteins in T
cells will undoubtedly confirm the role of mitochondria as key
mediators in the regulation of T cells.
CONCLUSIONS

Mitochondria are not only at the center of cell energy metabolism,
but they are also responsible for the integration of various signal
pathways (3). Immunotherapy is by no means limited to relieving
immunosuppression, and reversing the exhaustion of T cells in the
TME may overcome the fact that immunotherapy is only effective
in some patients. As an important factor in integrating the
functions of the mitochondrial network, Drp1 is vital for the
correct functioning of T cells. It has been shown that the
functional impairment of tumor-infiltrating T cells is related to
Drp1, and therefore considering Drp1 as a therapeutic target in the
Frontiers in Immunology | www.frontiersin.org 7
future is a promising strategy. However, it is worth noting that
most of the studies so far have simulated the TME in vitro, which
is very different from the complex environment of tumor patients
in vivo. In addition, T cells extracted from peripheral blood and
tumor-infiltrating T cells have different TCR lineages (100). These
factors may affect the translatability of the research into effective
therapeutics. Finally, the expression changes and mechanisms of
action of Drp1 in exhausted T cells remain to be clarified, and
further exploration is needed.
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