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Posttraumatic stress disorder (PTSD) is widely associated with deficits in implicit emotion
regulation. Recently, adaptive fMRI neurofeedback (A-NF) has been developed as a
methodology that offers a unique probe of brain networks that mediate implicit emotion
regulation and their impairment in PTSD. We designed an A-NF paradigm in which
difficulty of an emotional conflict task (i.e., embedding trauma distractors onto a neutral
target stimulus) was controlled by a whole-brain classifier trained to differentiate attention
to the trauma distractor vs. target. We exploited this methodology to test whether PTSD
was associated with: (1) an altered brain state that differentiates attention towards vs.
away from trauma cues; and (2) an altered ability to use concurrent feedback about brain
states during an implicit emotion regulation task. Adult women with a current diagnosis
of PTSD (n = 10) and healthy control (n = 9) women participated in this task during
3T fMRI. During two initial non-feedback runs used to train a whole-brain classifier,
we observed: (1) poorer attention performance in PTSD; and (2) a linear relationship
between brain state discrimination and attention performance, which was significantly
attenuated among the PTSD group when the task contained trauma cues. During the
A-NF phase, the PTSD group demonstrated poorer ability to regulate brain states as
per attention instructions, and this poorer ability was related to PTSD symptom severity.
Further, PTSD was associated with the heightened encoding of feedback in the insula
and hippocampus. These results suggest a novel understanding of whole-brain states
and their regulation that underlie emotion regulation deficits in PTSD.

Keywords: adaptive neurofeedback, real-time fMRI neurofeedback, PTSD, emotion regulation, attention,
interpersonal violence

INTRODUCTION

A hallmark symptom of posttraumatic stress disorder (PTSD) is hypervigilance towards threats.
Attentional bias towards threat is not only part of the diagnostic criteria for PTSD, but it is
also a predominant focus of neurocircuitry models of PTSD. That is, prominent neurocircuitry
models of PTSD (Rauch et al., 2006; Pitman et al., 2012; Admon et al., 2013) converge on the
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explanation that biased attention towards threat is mediated
jointly by the hyperactive amygdala and dorsal anterior cingulate
cortex (dACC) and hypoactive medial prefrontal cortex (mPFC).
These PTSD neurocircuitry conceptualizations of attentional
bias towards threat correspond with more general models of
implicit emotion regulation (Etkin et al., 2006, 2015), which
differentiate two processes engaged during attentional biases:
the detection of a salient cue and a regulatory process by
which attention is disengaged from the cue and redirected
towards task-relevant stimuli. From this perspective, PTSD is
characterized by heightened detection of trauma-related cues
and weaker engagement of regulatory processes. Presumably,
these are mediated by amygdala hyperactivity resulting in the
capturing of attention, and rostral anterior cingulate cortex
(rACC) hypoactivity failing to inhibit attention towards the
trauma cue and redirect attention towards on-going task-relevant
stimuli. The purpose of the current study was to use a novel
methodology to provide a critical test of this neurocircuitry
model of PTSD.

A significant limitation of current neurocircuitry models of
implicit emotion regulation and PTSD is the univariate focus on
isolated regions. By contrast, human neuroimaging is moving
towards more plausible neurophysiological models, where the
brain is conceptualized as a spatially distributed and multivariate
network of regions operating in tandem (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010; Smith, 2012; Sporns and Betzel,
2016; Woo et al., 2017). Multivariate pattern analysis (MVPA)
is an analytic approach that offers a unique characterization
of large-scale functional brain organization (Haynes, 2015). In
this approach, a mapping is tested between a multivariate set
of features (e.g., voxels) and cognitive states (e.g., attention
to faces or words). When applying an MVPA approach to
identify neural mechanisms of attentional bias towards threat
in PTSD, there are at least two clear predictions. First, given
the poorer behavioral performance on attentional bias tasks
involving a threat in PTSD, a parallel brain representation
might be expected. That is if attention is drawn to threat
cues when directed to ignore threat cues (e.g., the common
emotional Stroop task), underlying brain representations that
encode ‘‘attend to threat’’ and ‘‘ignore threat’’ would be expected
to be more similar in PTSD. Therefore, brain states would more
poorly discriminate these distinct cognitive states due to an
inability to suppress a brain state related to the distractor in those
with PTSD compared to controls. Second, the distinct spatial
patterns that discriminate these cognitive states should differ
in PTSD vs. controls. Specifically, regions involved in salience
detection (e.g., amygdala, insula, dACC) should have stronger
contributions to the ‘‘attend threat’’ state in PTSD, whereas the
rACC should have weaker contributions to the ‘‘ignore threat’’
state in PTSD. These predictions are directly testable using an
MVPA approach.

Another interesting methodology that MVPA affords is in its
application to real-time adaptive fMRI neurofeedback (A-NF),
which involves the real-time presentation of a subjects’ blood-
oxygen-level-dependent (BOLD) signal back to the participant
(usually adapted into a moving scale or other forms of feedback)
while they are in an MRI scanner. Then, the experimenter can

adapt the behavioral task in real-time, based on the BOLD
response of the participant (deBettencourt et al., 2015; Mishra
and Gazzaley, 2015; Sitaram et al., 2017). Classic applications
of A-NF involve a ‘‘target region,’’ or the brain area of focus
during neurofeedback, in which participants are instructed to
either up- or down-regulate during a behavioral task (Linhartová
et al., 2019). For example, participants may be instructed to
increase amygdala activity in response to positive images and
are shown their progress with a moving bar that moves up or
down as amygdala activity increases or decreases, respectively.
Various forms of A-NF have been studied in patients with PTSD,
especially investigating patients’ ability to regulate amygdala
activity, and demonstrate the feasibility of utilizing this novel
task design for patients with PTSD and the capability of
these patients to regulate amygdala activity (Gerin et al.,
2016; Nicholson et al., 2017, 2018; Misaki et al., 2018; Zotev
et al., 2018; Zweerings et al., 2018). In addition, research has
demonstrated that A-NF can not only influence activity in
the targeted feedback area (i.e., the amygdala) but may affect
whole-brain modulation and connectivity (Misaki et al., 2018).
These results suggest particular importance of the use of novel
analysis measures, like MPVA, to measure large-scale functional
brain organization.

In another study of A-NF, a support vector machine
(SVM) classifier was adopted to discriminate (i.e., differentiate;
not to be confused with the use of ‘‘discrimination’’ as a
cognitive mechanism of neurofeedback; Gaume et al., 2016)
between ‘‘brain states’’ reflecting two separate emotional states
(i.e., tenderness and anguish), and was able to successfully
classify these states based on distributed patterns of brain
activity (Lorenzetti et al., 2018). Based on this methodology
and relevant to hypervigilance towards threat in PTSD, the
experimenter could create a contingency between task difficulty
and the person’s brain state, such that a brain state more
resembling the desired state (i.e., ‘‘ignore threat’’ brain state)
is rewarded by making the next trial easier, whereas a brain
state more resembling the undesired state (i.e., ‘‘attend to
threat’’ brain state) is punished by making the next trial
harder. This methodology has been successfully used in a
neutral task differentiating attention from faces and scenes
among healthy adults (deBettencourt et al., 2015). Here, we
exploit this A-NF methodology in the context of an attentional
bias task to test whether this methodology can be used to
modify underlying difficulty among individuals with PTSD in
engaging brain states related to attending to vs. attending away
from threat. That is, we tested whether making task difficulty
contingent on brain state engagement could increase engagement
of the desired brain state in PTSD. If successful, this would
suggest a novel and direct way of retraining the underlying
patterns of brain activity that mediate biased attention to
threat in PTSD. However, given general neurocognitive and
self-regulation impairments in PTSD (Vasterling et al., 2002;
Seligowski et al., 2015), PTSD might be characterized by a
poorer ability to adaptively regulate brain states following
the online feedback signal. Indeed, a recent neurofeedback
study targeting the anterior cingulate cortex (ACC) among
individuals across three training days found poorer performance
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in ACC regulation activity in PTSD compared to controls
(Zweerings et al., 2018).

Accordingly, the current pilot study used a novel MVPA
approach to critically evaluate large-scale neural network
patterns that contribute to implicit emotion regulation difficulty
in PTSD. We focused on addressing four research questions:
(1) Is PTSD characterized by poorer large-scale brain state
discrimination of attending to threat vs. attending away from
the threat? (2) Is PTSD characterized by altered organization
of a brain state that discriminates attention to vs. away from
threat compared to controls? (3) Does neurofeedback ‘‘correct’’
the ability to engage desired brain states in PTSD? Alternatively,
(4) is PTSD characterized generally by a poorer ability to use
feedback to regulate brain states? Addressing these research
questions would provide novel evidence regarding the large-scale
network patterns associated with implicit emotion dysregulation
in PTSD and provide novel targets for treatment.

MATERIALS AND METHODS

Participants
Study approval was granted by the University of Wisconsin
Institutional Review Board following the Declaration of Helsinki.
All participants consented before participation. Inclusion criteria
were female sex, ages 21–50, and either: (a) a current diagnosis
of PTSD related to interpersonal violence (IPV) exposure; or (b)
no current mental health diagnosis and no current psychotropic
medications. Three participants were excluded from analyses
due to scanner error, a neurological abnormality that precluded
registration, and inability to follow task instructions, therefore
final analyses included 10 PTSD and nine healthy control
participants. Demographic information is included in Table 1.

Assessments
All participants completed a clinical interview and questionnaires
to assess mental health, trauma exposure, and verbal intelligence
quotient (IQ). The Receptive One-Word Picture Vocabulary
Test, Fourth Edition (ROWPVT-4) was used to measure verbal
IQ (Brownell, 2000). The Structured Clinical Interview for
DSM-IV (SCID-IV) was used to assess current and past mental
health symptoms (First et al., 2002). Trauma exposure and
assaultive history were assessed using the trauma portion of
the National Women’s Survey (NWS) and National Survey of
Adolescents (NSA; Resnick et al., 1993; Kilpatrick et al., 2000,
2013). PTSD diagnosis and symptom severity were assessed
for any participants endorsing trauma exposure using the
Clinician-Administered PTSD Scale for DSM-IV, Past Month
Version (CAPS-4; Blake et al., 1995). All participants included
in the PTSD group met current criteria for PTSD, assessed
by the CAPS.

Implicit Emotion Regulation Task
The implicit emotion regulation task was modeled after a prior
A-NF task (deBettencourt et al., 2015) and broader attentional
bias to threat literature in PTSD and anxiety disorders (McNally
et al., 1990; Etkin et al., 2006; Bar-Haim et al., 2007; Cisler et al.,
2011; Etkin and Schatzberg, 2011). A block design was used

as opposed to an event-related design, supported by evidence
that the emotional Stroop effect produces greater behavioral
impairment during block design (Cisler et al., 2011). The task was
programmed and implemented with Neurobehavioral Systems
Presentation software.

Training Runs
During the A-NF task training runs, words (either IPV-related
or neutral) were embedded onto facial stimuli (either female
or male). During the training phase, word and face opacity
remained static throughout each run. Word categories were
matched for syllables, length, and relative frequency of
occurrence. Participants saw a series of images, each lasting 1s,
presented on the screen. The instructions directed participants
to attend to either the faces or words, in blocks of 30 trials
lasting 1s each, and indicate (by button response) if the word
(on attend-to-word blocks) was trauma-related or neutral and
if the face (on attend-to-face blocks) was female or male.
Ninety percentage of trials required a ‘‘yes’’ response, creating
a prepotent tendency to respond ‘‘yes’’ (deBettencourt et al.,
2015). Each block type was presented three times during training
runs. Blocks were separated by an 8s resting-block with a
fixation cross (Figure 1). Two training runs, used to train a
SVM classifier SVM on the targeted brain states (details on
SVM classification are provided below), used a factorial design
with twelve blocks: six attend-to-face blocks (three with 90%
neutral words, three with 90% trauma words) and six attend-
to-word blocks (three with 90% neutral words, three with
90% trauma words). All blocks consisted of 90% female and
10% male faces from the NimStem Set of Facial Expressions
(Tottenham et al., 2009).

Adaptive Neurofeedback Runs
The adaptive neurofeedback phase of the task consisted of two
runs, each with six attend-to-face blocks and six attend-to-word
blocks. All blocks used 90% trauma-related words. On each trial,
the task difficulty was adjusted such that as the participants’ brain
state moved away from the desired brain state, the opacity was
adjusted to mask the target and make subsequent trials more
difficult. For example, in an attend-to-face block, if a participant’s
brain state moved closer to an attend-to-word brain state, the
opacity of the faces became more transparent and words became
dominant on the screen, making the faces harder to distinguish
on future trials. Blocks were again separated by an 8 s resting
block with a fixation cross.

MRI Acquisition
fMRI data were acquired on a GE MR750 3T scanner using
an 8-channel headcoil. T1-weighted anatomic images were
acquired with a MP-RAGE sequence [matrix = 256 × 256,
156 axial slices, repetition time/echo time/flip angle
(TR/TE/FA) = 8.2 ms/3.2 ms/12◦, field of view (FOV) = 25.6 cm,
final resolution = 1 × 1 × 1 mm]. Echo planar imaging
(EPI) sequences used to collect the functional images used
the following parameters: TR/TE/FA = 2000 ms/25 ms/60◦,
FOV = 24 cm, matrix = 64 × 64, 40 sagittal slices, slice
thickness = 4 mm, original resolution was 4 × 3.75 × 3.75 mm,
and images were resampled to a final isotropic 3× 3× 3 mm.
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TABLE 1 | Demographic information.

Variable PTSD group n = 10 Control group n = 9 p-value

Age 33.8 (8.8) 31.8 (7.3) 0.60
IQ 101.9 (18.9) 113.1 (23.2) 0.26
Working memory score 10.1 (2.1) 9.6 (3.3) 0.67
Ethnicity

Caucasian (%) 80.0 88.9
African American (%) 10.0 0.0
Other (%) 10.0 11.1

Current Depressive Disorder (%) 33.3 –
Current Anxiety Disorder (%) 77.8 –
Current psychotropic medications (%) 30.0 –
DERS Total Score 91.5 (27.4) 37.8 (8.6) <0.001
CAPS-5 Total Score 46.5 (13.7) –
CAPS-5 Avoidance 5.3 (1.3) –
CAPS-5 Hyperarousal 10.8 (4.3) –
CAPS-5 Re-experiencing 11.1 (4.4) –
CAPS-5 Negative Cognitions/Mood 19.3 (6.6) –

Note: PTSD, Post-traumatic stress disorder; IQ, Intelligence quotient; DERS, Difficulties in Emotion Regulation Scale; CAPS-5, Clinician-Administered PTSD Scale for DSM-5.

FIGURE 1 | Depiction of the implicit emotion regulation task. (A) Example of the task during training runs. Face and word opacity remained static throughout
training runs. (B) Example of the task during testing runs. On each trial, the opacity of the face or word changed in response to the degree to which a participant’s
brain state matched the task instruction (“attend-to-word” or “attend-to-face”) on the previous repetition time (TR). Reproduced/Adapted from the NimStim Face
Stimulus set with permission.
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Real-Time fMRI Processing Pipeline
Classifier Training
Basic preprocessing was first applied to the initial two training
runs and T1 images, all of which used AFNI software. The
T1 image was skull stripped, registered to an image from the
first training run, and segmented into gray matter, CSF, and
white matter. The EPI images underwent slice time correction,
deobliquing, motion correction, and 6 mm Full Width at Half
Maximum (FWHM) spatial smoothing.

Following this basic preprocessing of the training data, the
SVM classifier, using a radial basis function kernel and C = 1,
was trained to differentiate attend-to-threat block (i.e., attend-
to-word instructions with trauma words) TRs vs. ignore threat
block (i.e., attend-to-face instructions with trauma words) TRs,
and rest TRs were censored out. The input features consisted
of z-scored time courses of all gray matter voxels, concatenated
across both training runs. The training labels, corresponding
to the attend-to-threat and ignore-threat blocks, were coded
−1 and 1. The SVM classifier was then fit corresponding gray
matter voxel time courses, using LIBSVM, to optimally define the
hyperplane that differentiates the training labels. The resulting
weights of each feature were then transformed into 3D spatial
maps for further group-level analysis (see below). We conducted
additional offline classification analyses (see below) using leave-
one-out cross-validation to define the accuracy of the SVM
classifier, but the classifier that was used during the adaptive
neurofeedback phase used all available TRs to maximize power
and accuracy of the classifier.

Adaptive Neurofeedback
After training the SVM classifier, the adaptive real-time fMRI
neurofeedback runs began. The MRI console computer sent each
TR through a Transmission Control Protocol/Internet Protocol
(TCP/IP) connection to a separate Linux-based computer
running AFNI’s real-time fMRI plug-in, which assembled and
wrote each 3D volume to disk as it was acquired. The volume
was registered to the training data registration image and
6 mm FWHM smoothing was applied. A Matlab script was
concurrently running, which identified and loaded each volume
after it was written, reshaped the volume to a 1D vector, and
applied a gray matter mask. The task began with 20 resting-
state TRs (40 s) to allow a sufficient sample with which to
z-score and detrend the gray matter voxel time courses of the
testing data before applying the SVM classifier, again using
LIBSVM. After 20 TRs and applying z-scoring and detrending,
the SVM classifier was fit to the current volume, resulting in
a hyperplane prediction. This hyperplane prediction then first
underwent a sigmoidal transformation and then was scaled to
a range of 0.17–0.83 (i.e., the minimum stimulus opacity was
17% and the maximum was 83%, thus ensuring that both stimuli
(face or word) were visible to at least a slight degree). After
the initial three stimuli scaled sigmoidal transformed values,
we applied a slight temporal smoothing to these values by
taking the average of the current and previous two values.
The current sigmoidal transformed and scaled hyperplane
prediction was then transformed to the range of alpha values
used by Neurobehavioral Systems Presentation software (0–255),

which controlled the opacity of the different stimuli. These
operations required between 800 ms and 1,200 ms, depending
on the amount of data requiring z-scoring and detrending
and was well-within the TR acquisition time of 2,000 ms.
The current stimulus opacity value was then written to disk
and a concurrently running python script transmitted it via
TCP/IP connection to the stimulus presentation computer. The
Neurobehavioral Systems Presentation software script running
on the stimulus presentation computer then adjusted the alpha
channel of the subsequent stimulus pair according to the
incoming opacity value. That is, the subsequent trial displayed
the opacity of each stimulus in direct accordance with the
previous transformed hyperplane value. Opacities of both face
and word stimuli were accordingly changed on a TR-by-TR
basis in opposing directions, corresponding to the hyperplane
prediction. This resulted in the stimulus opacity changing every
two trials (i.e., as per the TR acquisition time). Each block began
with balanced opacity (i.e., 50% face and 50% word) on the first
two trials, and updated accordingly for the remainder of the trials
in the block.

Offline Preprocessing
Image preprocessing followed standard steps and was completed
using AFNI software in the following order. Images underwent
de-spiking, slice timing correction, deobliquing, motion
correction using rigid body alignment, alignment to participant’s
normalized anatomical images, spatial smoothing to achieve
an isotropic smoothness of 8 mm (AFNIs 3dBlurToFWHM
that estimates the amount of smoothing to add to each dataset
to result in the desired level of final smoothing), detrending,
low frequency (128 s) bandpass filtering, and rescaling into
percent signal change. Images were normalized using the
MNI 452 template brain. Following recent recommendations
(Siegel et al., 2014), we corrected for head motion-related signal
artifacts by using motion regressors derived from Volterra
expansion, consisting of [R R2 Rt−1 R2

t−1], where R refers to
each of the six motion parameters, and separate regressors for
mean signal in the CSF and WM. This step was implemented
directly after motion correction and normalization of the EPI
images in the image preprocessing stream. Additionally, we
censored TRs from the first-level generalized linear models
(GLMs) based on the threshold of framewise displacement
(FD) >0.4 mm. FD refers to the sum of the absolute value of
temporal differences across the six motion parameters; thus, a
cut-off of 0.4 mm results in censoring TRs where the participant
moved, in total across the six parameters, more than ∼0.4 mm
plus the immediately following TR (to account for delayed
effects of motion artifact). Additionally, we censored isolated
TRs where the preceding and following TRs were censored,
and we censored entire runs if 50% or more of TRs within
that run were censored. No participants were removed with
this criterion.

DATA ANALYSIS

All linear mixed-effects (LME) models were conducted using
Matlab’s fitlme function.
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Behavioral Performance (Training Runs)
We tested for group differences in behavioral performance
during the training runs using a Group (PTSD = 1 vs.
control= −1) ∗ Attention (attend-to-word = −1 vs. attend-
to-face = 1) ∗ Valence (trauma words = 1 vs. neutral
words = −1) ∗ Run (run 1 vs. run 2) LME model on
the performance measure of sensitivity. Consistent with prior
research, sensitivity was used as the behavioral measure of
interest as it indexes attention to the correct stimulus during the
most difficult portion of the task (i.e., inhibiting a prepotent ‘‘go’’
response upon correct identification of a low-frequency ‘‘no-go’’
stimulus). Age and Education were added as covariates in all
models, and all models estimated a separate by-subject random
intercept and by-subject random slope for any within-subject
variables (Attention and Valence). Therefore, the final model was
defined as such:

Sensitivity∼Attention ∗Valence ∗Group + Age + Education
+ (Attention*Valence|sub)

Classifier Accuracy (Training Runs)
We conducted additional offline analyses to define the accuracy
of each participant’s SVM classifier that was used during the
adaptive neurofeedback phase. Here, classifier accuracy was
defined using a leave-one-out cross-validation approach, in
which one block of each attend-to-word and attend-to-face
block was selected as hold-out sample TRs for testing and the
SVM classifier was trained on the remaining blocks, again using
z-scored time courses of gray matter voxels as input features as
described above in ‘‘Classifier Training’’ section. The classifier
defined on the training set was then applied to labels from
TRs in the held-out test blocks and accuracy (% correct) was
stored. This process was repeated until each block was used as
the held-out test sample, and classifier accuracy was defined
as mean % accuracy across all folds of the cross-validation.
This process was repeated identically for attending-to-word and
attending-to-face discrimination when the word was trauma-
related (i.e., defining classifier accuracy in the presence of
threat words) and when the word was neutral (i.e., defining
classifier accuracy in the presence of neutral words). Group
differences in brain state discrimination during the training
runs were tested using these SVM Classifier accuracies as the
dependent measure with a Group ∗ Valence LME model to
investigate the degree to which voxel-wise patterns of brain
activation discriminate between Attention, and whether this is
moderated by Valence. Age and Education were again included
as covariates, and a random intercept and slope were included
for Valence.

Classifier Accuracy Predicting Behavioral
Performance (Training Runs)
An additional LME model tested whether SVM Classifier
accuracy during training predicted behavioral performance and
whether this was moderated by PTSD. The LMEmodel consisted
of a Group ∗ SVM Classifier accuracy ∗ Valence factorial design
predicting sensitivity. Age and Education were again added
as covariates, with a random intercept and slope included for
Valence, SVM Classifier accuracy, and their interaction.

Group Differences in Classifier
Organization
We tested whether PTSD was associated with a unique pattern
of brain activation that discriminated between Attention and
whether this was moderated by Valence. This was tested by
comparing the groups on voxel-wise feature weight loadings
from the SVM Classifier. Given that SVM feature weights
represent a backward encoding model, it is necessary to
transform them into a forward encoding model to interpret the
weights for the task (Haufe et al., 2014; Haynes, 2015). We
used a previously described model to create these transformed
forward encoding maps (Haufe et al., 2014), which were then
compared using voxel-wise LME models with factors for Group
and Valence with covariates for Age and Education. The
voxel-wise analysis was constrained within a group-level gray
matter mask. Cluster-level thresholding, using contemporary
methodology with an autocorrelated function (Eklund et al.,
2016; Cox et al., 2017), corrected for whole-brain comparison,
in which a corrected p < 0.05 was achieved through 13 or
more contiguous voxels (nearest neighbor = 1) with an
uncorrected p < 0.001.

Brain State Regulation (Neurofeedback
Runs)
Brain state regulation was defined by correspondence between
observed brain state and instructed brain state. During the A-NF
phase, the participant-specific SVM Classifier was applied to
each TR, resulting in a hyperplane distance (HD) quantifying
the degree to which the current brain state resembles the brain
state encoding the training labels. For example, with attend-
to-face (= 1) and attend-to-word (= −1) to train the classifier,
a TR with a more positive HD during testing reflects a brain
state more closely matching the brain state the participant was
using to attend to faces during training, whereas a TR with a
more negative HD during testing reflects a brain state that more
closely resembles the brain state the participant used to attend
to words during training. Standard GLMs then regressed these
time courses of HDs onto a task design matrix, consisting of
two distinct block regressors for the Attention instructions and
convolved with the standard HRF from SPM. The resulting beta
coefficients represent the fit (i.e., correspondence) between the
instructed brain state and the observed brain state (e.g., a higher
beta coefficient suggests the HD corresponds better with the
task design). These beta coefficients were then carried forward
to a group-level Group∗Attention LME model. In the group-
level LME model brain state was regressed on Group, Attention,
Run and their interaction, with Age and Education, included
as covariates. A random intercept and slope were included
for each within-subjects variable (Run and Attention) and
their interaction.

Brain Regions Encoding Neurofeedback
We compared groups on neural mechanisms encoding the
A-NF signal by including the stimulus opacities, determined
by the participant’s brain state on the previous trials, as
additional predictors of the task design matrix of the standard,
within-subject-GLMs. This task design included a column for
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FIGURE 2 | Behavioral performance and classifier accuracy during training runs. (A) Mean No Go accuracy on blocks where participants were instructed to ignore
the words (i.e., attend to faces), separated by whether the block included trauma or neutral words. (B) The same as (A) except for blocks where participants were
instructed to attend to the words. (C) Group differences in support vector machine (SVM) classifier accuracy during training runs in attend-to-word and
attend-to-face blocks dependent on the presence of trauma-related words. Results showed significantly poorer classifier accuracy during neutral word blocks for
both posttraumatic stress disorder (PTSD) and control groups, but no overall group differences on classifier accuracy. (D) Scatterplot depicting the significant linear
relationship between mean SVM cross-validation accuracy and mean no go accuracy, suggesting that better brain state differentiation is related to better attention
towards task-relevant stimuli.

attend-to-word and attend-to-face instructions, the attend-to-
word instructions × word opacities, and the attend-to-face
instructions× face opacities. These design matrices were created
and implemented using AFNI (3dDeconvolve and 3dREMLfit).
The beta coefficients, reflecting the degree to which trial-by-
trial fluctuations in stimulus opacity explain variance in a
given voxel’s activity, were then carried forward to group-
level Group∗Attention LME models, implemented voxel-wise
within a group-level graymatter mask. Cluster-level thresholding
(Eklund et al., 2016; Cox et al., 2017) corrected for whole-brain
comparison, in which a corrected p < 0.05 was achieved through
13 or more contiguous voxels (nearest neighbor = 1) with an
uncorrected p < 0.001.

RESULTS

Behavioral Performance (Training Runs)
The LME model identified a significant main effect of Attention,
t(134) = −5.66, p < 0.001, and group, t(134) = −3.57, p < 0.001,

on sensitivity during training runs. However, the main effect of
Group was qualified by a Run*Group interaction, t(134) = −2.04,
p = 0.043, such that participants with PTSD showed decreased
sensitivity during training Run 2 compared to controls,
t(66) = −3.52, p < 0.001, and a less pronounced decrease during
Run 1, t(66) = −1.88, p = 0.065. There were no other significant
interactions (Figures 2A,B).

Classifier Accuracy (Training Runs)
The LME model identified a main effect of Valence, t(32) = 4.11,
p < 0.001, on SVM Classifier accuracy during training runs, but
no significant main effect of Group, t(32) = −1.03, p = 0.312, or
Group∗Valence interaction, t(32) =−0.074, p = 0.942 (Figure 2C).

Classifier Accuracy Predicting Behavioral
Performance (Training Runs)
The LME model identified a significant Valence*Group*SVM
Classifier accuracy interaction, t(28) = −3.05, p = 0.005,
predicting sensitivity, specifically attributable to a Group*SVM
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FIGURE 3 | (A) Surface renderings of the mean SVM feature weights for the PTSD (left) and control (right) groups, separated by blocks containing trauma words vs.
neutral words. The SVM classifiers were trained to differentiate attention towards the word target vs. attention towards the face target (i.e., ignoring the word target).
Each participant’s raw SVM feature map underwent a forward encoding transformation before calculating group means to allow the maps to be interpretable
concerning the brain processes of interest (Haufe et al., 2014). (B) Significant clusters of activation from a group-level linear mixed-effects (LME) model, in which a
given voxel’s feature weight is modeled as a function of valence (trauma vs. neutral word blocks) × group (PTSD vs. control), with additional covariates for age and
education. The intercept (bottom left) represents the mean feature weight encoding of the voxel, independent of factors entered into the model. The main effect of
valence (bottom middle) indicates a significant cluster of voxels in the medial prefrontal cortex that more strongly differentiated attention to words vs. faces when
trauma words were present. The valence × PTSD interaction (bottom right) indicates a significant cluster where the impact of valence on the differentiation of
attention to words vs. faces differed between PTSD and control participants.

TABLE 2 | Results from the voxel-wise LMEMs on forward encoding maps.

MNI center-of-mass coordinates

Contrast Region X Y Z Peak t Cluster size

Intercept Occipital Cortex −2 83 6 −10.5 1, 218
Medial Prefrontal Cortex −3 −46 6 10.4 423
Right Anterior Insula −43 −18 3 −5.5 157
Superior Temporal Gyrus −52 22 −4 −4.4 63
Amygdala 20 9 −14 5.3 54
Supplementary Motor Area −6 −7 59 −4.7 54
Inferior Frontal Gyrus −26 −33 −5 6.9 46
Amygdala −23 1 −14 5.1 40
Inferior Temporal Gyrus 30 28 −27 5.7 19
Inferior Frontal Gyrus 23 −35 −5 4.5 18

Valence Medial Prefrontal Cortex −8 −41 4 4.5 26
Valence × PTSD Middle Frontal Gyrus 29 −27 55 −4.7 14

Classifier accuracy interaction, t(13) = −2.61, p = 0.022, during
trauma, but not neutral blocks (p = 0.08). In both groups,
higher SVM Classifier accuracy predicted better sensitivity;
however, this effect was much stronger in the controls,
t(5) = 6.69, p = 0.001, than in the PTSD group, t(6) = 3.88,
p = 0.008 (Figure 2D).

Group Differences in Classifier
Organization
The mean participant SVM maps the following transformation
into forward encoding maps (Haufe et al., 2014) are depicted

in Figure 3A. Results from the voxel-wise LME models on
these forward encoding maps are depicted in Figure 3B and
Table 2. Across participants, there was a main effect of Valence
(i.e., discriminating between attending-to-words vs. faces during
trauma vs. neutral blocks) in the perigenual anterior cingulate
cortex (pgACC), indicating greater pgACC engaging when
participants were instructed to ignore trauma words. There
was a Group ∗ Valence interaction in the right middle frontal
gyrus (rMFG), indicating that during trauma-word blocks, the
rMFG strongly encoded-words in individuals with PTSD, but
strongly encoded faces in controls. During the neutral-word

Frontiers in Systems Neuroscience | www.frontiersin.org 8 July 2020 | Volume 14 | Article 40

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Weaver et al. Adaptive Neurofeedback and PTSD

blocks, the rMFG encoded faces in both the PTSD and the
control groups. Therefore, the PTSD group showed a marked
sensitivity to Valence and strongly encoded-words only when
they were trauma-related. In contrast, controls did not show a
sensitivity to Valence, and more strongly encoded faces across
all task blocks (Figure 4). To test the functional relevance of
this region, Sensitivity was included as a covariate predicting

FIGURE 4 | PTSD × Valence interaction in the right middle frontal gyrus
(rMFG). More negative values indicate the heightened encoding of words
during the block. More positive values indicate the heightened encoding of
faces during the block. Individuals with PTSD showed heightened encoding
of words only when word content was trauma-related but encoded faces
when word content was neutral. Control participants showed heightened
encoding of faces, regardless of word content.

rMFG encoding. An interaction between Valence and Sensitivity,
t(31) = 6.57, p < 0.001, indicated that greater rMFG encoding of
faces during trauma blocks was associated with better Sensitivity,
t(14) = 2.16, p = 0.049.

Brain State Regulation During
Neurofeedback
The LME model on brain state regulation during A-NF
demonstrated significant main effects for Attention,
t(62) = −2.64, p = 0.011, and Group, t(62) = −3.41, p = 0.001.
However, this main effect of Group was again qualified by
a Run*Group interaction, t(62) = −2.06, p = 0.044, where
participants with PTSD had particularly worse brain state
discrimination (i.e., smaller hyperplane distance) during Run
2 compared to controls, t(30) =−4.71, p< 0.001 (Figure 5). There
were no other significant higher-order interactions (Figure 6A).
Differences in PTSD symptom severity (CAPS total score)
relating to brain state regulation performance during A-NF
were then tested. This analysis consisted of an Attention*CAPS
LME model controlling for Age and Education and identified a
significant Attention*CAPS interaction, t(32) =−3.17, p = 0.0034.
This interaction was due to a positive association between CAPS
severity and brain state regulation when the instruction was
to avoid the trauma word, but a negative association when the
instruction was to attend to the trauma word (Figure 6B).

Brain Regions Encoding Neurofeedback
Results of the voxel-wise LMEmodel testing group differences in
encoding trial-by-trial fluctuations in the A-NF signal (i.e., the
opacity of target) are depicted in Figure 7 and Table 3. There
was increased encoding of the A-NF signal in the anterior-to-
mid insular cortex in PTSD participants and decreased encoding

FIGURE 5 | Hyperplane distance (HD) of both PTSD and control groups across all trials of both A-NF runs, plotted over the task labels (“attend-to-face” = 1,
“attend-to-word” = −1). HD values quantify the degree to which the individual’s current brain state resembles the brain state encoding the training labels (based on
training runs). Therefore, HDs more closely matching the task label reflect brain states more closely matching the brain state used to train the SVM classifier.
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FIGURE 6 | (A) Comparison of β coefficients for brain state regulation between groups as a function of task instruction. β coefficients come from generalized linear
models (GLMs) in which HDs (i.e., SVM model predictions) were regressed onto the task design matrix. A higher β coefficient indicates better brain state regulation
(i.e., the participant increased or decreased the brain state following task instructions). (B) Scatter plot indicating a significant PTSD symptom severity (CAPS total
score) × task instruction interaction on β coefficients among the PTSD participants. As can be seen, more severe PTSD symptoms were associated with better brain
state regulation when the task instruction was consistent with avoidance (i.e., ignore trauma words), yet worse brain state regulation when the task instruction asked
participants to attend to the trauma words.

FIGURE 7 | Significant clusters from group-level LME models of adaptive neurofeedback encoding where there was a main effect of PTSD (left) or interaction (right)
with PTSD and attention instruction (attend-to-word vs. ignore word). Adaptive neurofeedback encoding refers to brain region activity that scales linearly with the
feedback signal itself. In this paradigm, the feedback signal was the alpha channel (i.e., opacity) of the target stimulus. The feedback signal updated on a trial-by-trial
basis depending on the participant’s hyperplane, which itself was determined through the fit of the participant’s brain state on a given trial with the SVM classifier.
Higher alpha channels of the target stimulus indicate positive feedback, such that they inherently make the task easier and therefore reinforce brain states that
preceded them. Below each significant cluster is a bar graph indicating mean activation differences per task condition as a function of PTSD.

in two clusters in the MFG and one cluster in the parietal
cortex. Further, there was an Attention*Group interaction in the
hippocampus, such that in attend-to-word blocks (where 90%

of words are trauma-related), there was a negative relationship
between the A-NF signal and hippocampal activation in the
control group (i.e., hippocampal activity tracked A-NF signals
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TABLE 3 | Results from the voxelwise LMEM testing group differences in encoding trial-by-trial fluctuations.

MNI center-of-mass coordinates

Contrast Region X Y Z Peak t Cluster size

PTSD Middle Frontal Gyrus −40 −6 53 −5.2 43
Occipital Cortex −11 79 44 −5.5 28
Insula 37 −6 −1 4.5 13
Dorsolateral Prefrontal Cortex −37 −20 40 −4.5 13
Occipital Cortex −35 68 42 −4.8 13

Attention × PTSD Cerebellum −13 37 54 −4.6 30
Hippocampus −20 10 −13 −4.1 13

indicating poorer performance), but a positive relationship in
the PTSD group (i.e., hippocampal activity tracked A-NF signals
indicating better performance).

DISCUSSION

The current pilot study used a novel task and MVPA adaptive
neurofeedback approach to critically evaluate the large-scale
neurocircuitry patterns mediating implicit emotion regulation
in PTSD and whether A-NF can ‘‘correct’’ the ability to
engage in desired brain states. During training runs of the
attentional bias task, participants with PTSD showed reduced
behavioral performance compared to controls, especially during
run 2. During testing runs, when incorporating trial-by-trial
feedback was necessary for task performance, participants with
PTSD were also less able to incorporate relevant feedback,
leading to reduced discrimination between brain states compared
to controls, particularly during the second testing run. In
addition, SVM classifier accuracy was positively related to task
accuracy across participants, such that as the SVM classifier
became more accurate (i.e., brain states for the target vs.
distractor were more easily discriminable), participants’ task
performance increased. This suggests that performance on an
attentional bias task may at least in part require the ability to
effectively engage different brain states and suppress a brain
state related to the distractor. Interestingly, this relationship
between SVM Classifier accuracy and behavioral performance
was significantly weaker in individuals with PTSD compared
to controls only during the trauma word blocks, suggesting
this impairment may be specific to a trauma-related context.
Therefore, even without overall differences in SVM classifier
accuracy, these individuals may not as effectively ‘‘switch’’
into brain states that increase task performance during blocks
involving trauma-related stimuli. While these results did not
support the hypothesis that individuals with PTSD would
be overall less able to discriminate between brain states, we
did find evidence that brain state regulation in PTSD was
less strongly related to task performance when trauma-stimuli
were presented.

The current study did not find support for the typical
neurocircuitry model of PTSD (which would predict increased
amygdala activity couple with decreased frontal activity).
However, these results do suggest an impairment may be due
to deficits in the ability to switch attention. Seen in Figure 5,
individuals with PTSD, especially during later blocks of the

testing runs, show almost no discrimination between brain
states in either attend-to-word or attend-to-face blocks. These
individuals may effectively get ‘‘stuck’’ attending to the trauma-
related words in each block, and therefore are unable to shift
their attention to the relevant task instructions. In run 2, this
effect may be exacerbated by the high cognitive demands of
the behavioral task coupled with the repeated presentation of
trauma-related stimuli, which differentially influence behavior in
those with PTSD compared to healthy controls. These deficits
in the switching of attention away from trauma-related cues and
onto task-relevant demands are crucial targets for treatment, and
coupled with neurofeedback could be an important target for
therapies moving forward.

Evidence also partially supported the idea that a weakened
ability to effectively engage brain states among those with
PTSD would be driven by different spatial patterns during
discrimination compared to controls. Contrary to previous
neurocircuitry models of implicit emotion regulation in PTSD,
discriminability of attention towards vs. away from threat does
not seem to involve a hyperactive amygdala. Instead, during
trauma-word blocks, PTSD participants showed heightened
encoding of words in the rMFG, whereas controls showed
stronger encoding of faces. During neutral-word blocks, both
groups strongly encoded faces in the rMFG. The degree to which
this region encoded faces during trauma blocks was predictive
of better behavioral performance, demonstrating a functional
impact of this altered encoding. This demonstrates a specific
sensitivity to the valence of the blocks in those with PTSD,
strongly encoding words in the rMFG only when they were
trauma-related, and possibly a mechanism of poorer behavioral
performance. Right MFG has been proposed as a link between
the dorsal attention network, responsible for top-down attention,
and the ventral attention network, responsible for bottom-up
attention, making it responsible for the reorientation of attention
from external cues to exert endogenous control (Corbetta et al.,
2008; Japee et al., 2015). Heightened encoding of words in
this region during trauma-word blocks may indicate increased
difficulty in ignoring the trauma-related words among those
with PTSD, leading to greater activity as the rMFG attempts to
reorient attention. Finally, the pgACC was significantly engaged
in both the PTSD and control groups when instructed to
ignore trauma cues, consistent with its theorized role in implicit
emotion regulation (Etkin et al., 2011; Marusak et al., 2016),
but inconsistent with univariate dysfunction within this region
in PTSD.
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During testing runs involving ongoing neurofeedback in
response to feedback signals (opacity), PTSD participants
showed decreased brain state discrimination compared to
controls, especially in run 2. As such, providing feedback
signals about their brain state did not improve control over the
ability to engage the desired brain state. Rather, consistent with
prior research (Zweerings et al., 2018), PTSD was associated
with poorer regulation of brain states during neurofeedback.
This could be explained by a variety of factors. First, general
neurocognitive and emotion-regulation impairments in PTSD
could negatively impact their ability to respond and update
brain states based on feedback signals. Participants with PTSD
have been shown to perform significantly worse on tasks
involving sustained attention, therefore cognitive demands of the
attentional bias task could differentially affect PTSD participants
compared to controls (Vasterling et al., 2002). However, PTSD
participants in this sample had average intelligence and working
memory abilities, suggesting baseline cognitive deficits were
likely not responsible.

Second, this inability to regulate brain states could also
depend on the context in which participants with PTSD are
asked to discriminate. There was an observed interaction
between PTSD symptom severity and brain state regulation
during separate blocks of the A-NF task, such that in task
blocks instructing participants to avoid attending to the trauma
stimuli, participants with higher PTSD symptom severity showed
increased brain state discrimination. That is, they were better
able to use feedback signals specifically to suppress the brain
state that encoded trauma words. However, during the attend-
to-trauma task blocks, PTSD symptom severity showed a
negative correlation with brain state discrimination, such that
participants with higher PTSD symptoms were less able to
discriminate between attend-to-trauma and avoid-trauma brain
states. That is, they were worse at using feedback signals
to engage brain states encoding trauma words. This context-
dependent ability to regulate brain states is directly in line
with the conceptual understandings of PTSD. Higher symptoms
of PTSD would suggest a natural tendency to avoid trauma
reminders, and participants with higher symptoms may be
more effective in tasks that encourage this. However, when
task instructions directly contradict this natural tendency
(i.e., asking participants to attend to a trauma reminder),
participants with higher symptoms would be less able to
engage brain states that encode trauma words. Relevant to
contemporary neurocircuitry models of PTSD, the current
results also provide novel evidence that avoidance of trauma
stimuli is mediated by a widely distributed and multivariate
brain state, rather than being localized to a given region as
normative and PTSD neurocircuitry models based on univariate
analyses would suggest (e.g., mPFC; Pitman et al., 2012;
Etkin et al., 2015).

Relevant for PTSD neurocircuitry models, PTSD participants
showed increased encoding of the neurofeedback signal in
the anterior-to-mid insular cortex and decreased encoding
in the MFG and parietal cortex. This indicates that PTSD
participants may be recruiting less typical networks responsible
for top-down cognitive control (i.e., frontoparietal network),

and instead recruit regions more involved in salience detection
(Patel et al., 2012; Admon et al., 2013). In healthy subjects,
previous studies have shown the insular cortex responds
similarly to opposite neurofeedback signals (i.e., up and
down-regulate amygdala), suggesting a lack of discrimination in
this region to certain types of neurofeedback (Paret et al., 2018).
Given these results, the increased encoding of neurofeedback
signals seen in individuals with PTSD is especially notable.
Instead of executing top-down control to incorporate feedback
information on later trials, participants with PTSD seem
to focus on the salience of that information instead. This
inability to incorporate feedback could explain the inability to
discriminate brain states during testing when feedback is critical
for performance.

In addition to group differences in neurofeedback signal
encoding, analyses revealed group differences in hippocampal
activity during different instruction phases (attend-to-trauma,
ignore trauma). For controls, hippocampal activity was related
to the encoding of signals indicating poorer performance in
the attend-to-trauma condition, whereas, in PTSD participants,
hippocampal activity was related to encoding signals indicating
better performance. This is in line with previous research
suggesting those with higher PTSD symptoms perform better
on reward-based feedback trials compared to punishment trials
in cognitive tasks (Myers et al., 2013), and may also suggest
an impairment in those with PTSD in incorporating negative
feedback when in a context requiring attention to trauma-related
stimuli. These data suggest that decreased discriminability
between brain states may underlie hypervigilance towards threat
cues in PTSD and lead to poorer behavioral performance when
tasks require disengagement of attention from trauma cues
(i.e., during trauma-word blocks). Although this pilot study
suggests a novel way of understanding the neurobiological
underpinnings of brain state regulation in those with PTSD, it
is not without limitations. The use of a novel behavioral task in
addition to small numbers of participants in each group makes
replication crucial to the understanding of the neurocircuitry
of PTSD. Given that participants with PTSD in this study
show a weakened ability to engage brain states to increase
performance, and show overall decreased task performance
during training runs, it will be essential for future research to
determine whether those with PTSD can improve this brain state
regulation, as this could inform targeted therapy techniques in
the future.
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