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Abstract: In an HVDC environment, space charge accumulated in polymeric insulators causes severe
electric field distortion and degradation of breakdown strength. To analyze the breakdown char-
acteristics, here, the space charge distribution was numerically evaluated using the bipolar charge
transport (BCT) model, considering the temperature gradient inside the polymeric insulator. In
particular, we proposed an electro-mechanical threshold energy condition, resulting in the modified
molecular chain displacement model. The temperature gradient accelerates to reduce the breakdown
strength with the polarity-reversal voltage, except during the harshest condition, when the tempera-
ture of the entire polymeric insulator was 70 ◦C. The energy imbalance inside the insulator caused by
polarity-reversal voltage reduced the breakdown strength by 82%. Finally, this numerical analysis
model can be used universally to predict the breakdown strength of polymeric insulators in various
environments, and help in evaluating the electrical performance of polymeric insulators.

Keywords: bipolar charge transport; breakdown; molecular chain displacement; space charge;
threshold energy

1. Introduction

Increasing demand for eco-friendly energy has led to the development of HVDC
cables for low Joule loss in power transmission. Polymeric insulators with high physical
and chemical stabilities are widely used in high-voltage power devices [1–3]. Polymeric
insulators must endure a severe operating environment with a high DC voltage [4,5].
In an HVDC environment, many space charges are accumulated inside the polymeric
insulator due to continuously applied one-directional voltage [6–9]. This space charge
causes a distorted electric field, which plays a critical role in lifetime reduction [10–13].
The study of space charge measurement has been conducted for several decades with
various methods, such as pulsed electro-acoustic (PEA), pressure wave propagation (PWP),
laser induced pressure pulse (LIPP), and current integration (Q(t)) methods, etc. [14–20].
Numerical analysis of space charge and electric field has been actively conducted with
the conductivity and bipolar charge transport (BCT) models [21–23]. With space charge
analysis development, studies measuring the breakdown strength and analyzing the
mechanisms have been conducted as the critical factor for stability and reliability. The
breakdown strengths of polymeric insulators have been studied using numerical and
statistical experimental approaches [24–27]. There are several models to interpret the
breakdown mechanisms inside the polymeric insulators, such as the electro-mechanical
model, electron avalanche model, molecular chain displacement model, and phase-field
model [1,27,28].

In recent studies on numerical breakdown strength prediction employing various
models, the space charge effect was not considered in some limits, or only the special cases
were dealt with related to the applied voltage and temperature. The breakdown strength
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of polymeric insulators was analyzed under certain conditions, increasing voltage with
constant ramp rate, with a constant temperature in the previous studies. However, in the
actual system, the polymeric insulator should endure the various voltage waveforms such
as a constant direct current (DC) voltage or polarity-reversal voltage (PRV) for a long time.
Additionally, high DC voltage causes a severe temperature gradient inside to change the
space charge distribution. These accumulated space charge behaviors greatly affect the
breakdown strength of the systems.

Encouraged by the recent research, here, we analyzed the breakdown phenomena of
low-density polyethylene (LDPE) under PRV with a temperature gradient. For this purpose,
we adopted the BCT model for analyzing space charge. Additionally, we proposed a new
evaluation model for analyzing the breakdown phenomenon, including a novel threshold
energy condition for the molecular chain scale. We determined the initiation of breakdown
phenomena, employing the electro-mechanical threshold energy condition coupled with
the molecular chain displacement (MCD) model.

In this study, we found that breakdown strength decreased under PRV with a tem-
perature gradient. As the temperature gradient inside the polymeric insulator increased,
the breakdown strength decreased. Additionally, there were differences in breakdown
strength and initiation time depending on which temperature was higher, anode or cathode.
Notably, we revealed that the breakdown mechanism could be explained by the imbalance
of mechanical and electrical energy through our proposed numerical model. With this new
approach, we expect this research to contribute to the development of new composites for
improved electrical performance.

In Section 2, the numerical analysis conditions and methods are described. In Section 3,
the fully coupled finite element analysis for space charge transport is described, incorpo-
rating the BCT and the heat transfer equations. Additionally, we discuss the space charge
behavior and the resulting electric field distortion related to the electric breakdown issue.
In Section 4, a modified MCD model is proposed to predict the electric breakdown in LDPE
under HVDC stress by use of the electro-mechanical threshold energy condition, and the
breakdown strengths are evaluated under various conditions. Finally, in Section 5, the
breakdown mechanism is explained inside the polymer insulator based on the proposed
numerical model.

2. Analysis Setup and Test Conditions

LDPE is one of the most popular polymeric insulators actively used in HVDC cable
systems [29,30]. To implement the proposed method, Poisson’s equation and BCT model
were used to analyze the space charge behavior and electric field distortion with 200 µm
thick LDPE as a one-dimensional analysis model. The electro-mechanical threshold energy
condition, coupled with the MCD models was used to calculate the breakdown strength
and decide the breakdown initiation.

When a high DC voltage is applied to the cable, a severe temperature gradient occurs in
the polymeric insulator. Here, we analyzed the space charge and electric field distribution
over time under various temperatures and applied voltage conditions, as shown in Table 1.
As described in Table 1, two types of voltage waveforms were applied to the polymeric
insulators: one-directional constant voltage (CV) and polarity-reversal voltage (PRV) with
the maximum value, V0 and T0 is the voltage polarity transition time, set to 40 s, as depicted
in Figure 1 and Figure S1.

The temperature inside the polymeric insulator is also composed of constant (@CT)
and temperature gradient (@GT). The temperature of the polymeric insulator was set to
30 ◦C, 50 ◦C, and 70 ◦C, and the temperature gradient was set to 20 ◦C (30 ◦C~50 ◦C and
50 ◦C~70 ◦C) and 40 ◦C (30 ◦C~70 ◦C). When there exists a temperature gradient inside, it
can be divided into two types: heated anode (@GT-A) and heated cathode (@GT-C).
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Table 1. Various conditions analyzed in this numerical simulation.

Applied Voltage
Temperature (◦C)

Constant Gradient
(Anode-Cathode)

One-directional
constant voltage (CV)

30 (@CT30)

50 (@CT50)

70 (@CT70)

Heated Anode
30~50 (@GT-A1)
30~70 (@GT-A2)
50~70 (@GT-A3)

Heated Cathode
50~30 (@GT-C1)
70~30 (@GT-C2)
70~50 (@GT-C3)

Polarity-reversal voltage
(PRV)

30 (@CT30)
50 (@CT50)
70 (@CT70)

30~50 (@GT-1)
30~70 (@GT-2)
50~70 (@GT-3)
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Figure 1. The applied polarity-reversal voltage (PRV) waveform is divided into three parts: PRV
1–3. In PRV 1, constant magnitude voltage (V0) is applied. In PRV 2, a transition voltage is applied
with the same magnitude but in the opposite direction for T0, 40 s. In PRV 3, the opposite direction
voltage is applied for the same time as PRV 1.

In this study, we implemented the numerical analysis based on the finite element
method. The analysis time interval, ∆t, satisfied the Courant–Friedrichs–Lewy condition
as ∆t < ∆x/µE for holding numerical stability [22,31,32]. Therefore, the distance through
which the charge carrier moved per unit time was smaller than the interval of the finite
element mesh.

3. Analysis of Space Charge Transport and Electric Field Distribution
3.1. Bipolar Charge Transport Model

The BCT model includes the transport process of two types of charge carriers, such as
electrons and holes injected from an electrode. The whole transport process of the injected
electrons and holes is included in the BCT model, as depicted in Figure 2. Space charges are
injected from the electrode to the polymeric insulator following the Schottky thermionic
injection mechanism under a high electric field as Equation (1). As described in Equations
(2)–(4), the space charge distribution affects the electric field in real-time. Equation (2) is
Poisson’s equation, Equation (3) is the continuity equation for space charge and current
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density, and Equation (4) is the drift equation, including conduction current density and
diffusion effects of space charge as [4]:

jin(e,h) = AT2 exp(
−ΦA,C −

√
eEA,C/4πε0εr

kBT
) (1)

∂2V(x, t)
∂x2 = −ρ(x, t)

ε0εr
(2)

∂ρeµ,hµ

∂t
+

∂Jd
∂x

= Seµ,hµ (3)

Jd(x, t) = µe,h(x, t)ρe,hE(x, t)− D f
∂ρeµ,hµ(x, t)

∂x
(4)

where Jin(e,h) is the current density by the injected charge carriers at anode and cathode in
A/m2; A is Richardson constant, 1.26 × 106 A/m2·K2; EA,C is the electric field strength at
the cathode and anode, respectively in V/m; ΦA,C is the injection barrier height between
the electrode and insulator at the cathode and anode, in eV; kB is Boltzmann constant; T is
the absolute temperature in K; and e is the unit charge, 1.6 × 10−19 C. The subscripts e and
h expresse the type of the charge carriers, electrons, and holes. V is the electric potential
in V, ρ(x,t) is the total space charge distribution in C/m3, including free mobile electrons,
holes, trapped electrons, and trapped holes. ε0 is the permittivity of vacuum in F/m, and εr
is the relative permittivity. ρeµ ,hµ is the free mobile charge carrier density in C/m3, Jd is the
conduction current density in A/m2, and S is the reaction-generation term for each charge
in C/m3·s. The reaction-generation process includes charge recombination, trapping, and
de-trapping, as depicted in Figure 2. µe,h is the mobility of the free mobile charges in
m2/V·s, E(x,t) is the electric field in V/m, and Df is the diffusion coefficient in m2/s.
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Figure 2. BCT model: The electrons are injected from the cathode, and holes are injected from the
anode depending on the electric field strength and temperature. These charges transport according
to hopping conduction at the shallow trap, which is the localized energy level. These charges are
trapped in the deep trap, and the de-trapping process occurs, contributing to the conduction current.
The energy and density of the deep trap change with temperature. In this study, the Fermi level of
LDPE was set to −2.60 eV, and the deep trap energy was set to 0.987 eV in 30 ◦C. The recombinations
between trapped electron, free electron, trapped hole, and free hole are also considered.



Polymers 2021, 13, 2746 5 of 16

The coefficients used in the BCT model were obtained from previous experimental
studies, such as electron and hole mobility, deep trap energy and density, and injection
barrier height that varies with temperature [24–27]. In particular, we assumed that deep
trap energy has a single level for simplicity in this numerical analysis model. (The detailed
charge transport processes and parameters are included in Supplementary Material, S1).

3.2. Heat Transfer Model

The polymeric insulator temperature increases due to the Ohmic heat at the end of the
electrode in the HVDC system. Then, a temperature gradient exists across the polymeric
insulator. In this numerical simulation, we employed Fourier’s Law to analyze the heat
transfer process inside the polymeric insulator as [33]:

ρpCp
∂T(x, t)

∂t
+

∂q(x, t)
∂x

= Q0 (5)

Jd(x, t) = µe,h(x, t)ρe,hE(x, t)− D f
∂ρeµ,hµ(x, t)

∂x
(6)

where ρp is the mass density of LDPE in 1400 kg/m3, Cp is the heat capacity in 2500 J/kg·K,
Q0 is the heat source in W/m3, k is the thermal conductivity in W/m·K, and q(x,t) is the heat
flux density in W/m2. Q0 is caused by the current density and the electric field inside the
polymeric insulator. (The detailed parameters are included in Supplementary Material, S1).

3.3. Characteristics of Space Charge Transport Resulting in the Maximum Electric Field Strength

Figure 3 shows the space charge and electric field distribution when the temperature
at the anode region was 40 ◦C higher than that of the other region (CV@GT-A2). Many
holes were injected from the anode in the form of packets and penetrated quickly. Electrons
injected from the cathode crossed the polymeric insulator with a lower speed than the
holes. The electrons were trapped near the cathode with a higher probability than the
holes and sequentially lowered the electric field at the cathode. Holes quickly penetrated
the polymeric insulator and recombined with the slow-moving electrons actively near the
cathode. Therefore, the maximum electric field appeared in the low-temperature region,
cathode. (Detailed space charge behavior depicted in Supplementary Material, Figure S4).
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Figure 3. Space charge distribution with time (left) and electric field strength (right) in CV@GT-A2
and V0 = 10 kV.

In contrast to Figure 3, Figure 4 shows the space charge and electric field distribution
when the temperature at the cathode region was higher than the other region (CV@GT-C2).
At the cathode region where the temperature was high, a large number of electrons were
injected into the polymeric insulator with high kinetic energy. In the case of an LDPE,
the injection barrier height is lower for holes than for electrons [34]. Therefore, holes
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could inject into the polymeric insulator easier, even at a lower temperature. The electrons
move with a higher speed than the holes over the entire polymeric insulator. Compared
with Figure 3 (CV@GT-A2), mobile electrons with high kinetic energy could penetrate
deeper into the polymeric insulator [35]. Additionally, the zero point of the space charge
distribution moved toward the anode. As a result, the maximum electric field was located
near the cathode and gradually moved to the anode region. (Detailed space charge behavior
depicted in Supplementary Material, Figure S5). As can be seen from Figures 3 and 4, the
maximum electric field always appeared at the low-temperature region under CV.
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Figure 4. Space charge distribution with time (left) and electric field strength (right) in CV@GT-C2
and V0 = 10 kV.

Figures 5 and 6 show the space charge behavior and electric field distribution inside
the polymeric insulator, where PRV was applied with a temperature gradient. In this
case, the temperature gradient was 40 ◦C (PRV@GT-A2), and V0 of 6 kV was applied in
Figure S1b. First, a positive directional voltage was applied for 3600 s, and voltage polarity
was reversed between 3612 and 3652 s in 40 s. Next, the negative directional voltage was
applied for 3600 s.

As shown in Figure 5, many holes were injected from the anode, high-temperature
region, moving toward the opposite electrode with high kinetic energy. A small number
of electrons were injected from the cathode, low-temperature region, compared to the
holes. The holes were trapped in a deep trap adjacent to the anode, where many of them
were injected. These trapped holes lowered the electric field as the homo-charges, steadily
decreasing the number of injected holes. In PRV 1, with a temperature gradient inside the
polymeric insulator, the maximum electric field appeared in the low-temperature region
under the positive voltage as described in Figures 3 and 4. In PRV 2, the opposite polarity
charge was progressively injected from the electrodes, and the space charge distribution
was completely reversed around 4000 s. After the voltage polarity was reversed, the
maximum electric field strength shifted to the high-temperature region. The space charge
distribution in PRV 3 became a mirror image of the space charge distribution in PRV 1,
which agreed well with the space charge measurement results [14,36].
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Figure 5. Space charge distribution with time as colored surface (left). x = 0 sets as a cathode,
x = 200 µm sets as an anode. The anode and cathode are high- and low-temperature regions, respec-
tively. In PRV 2, the polarity of the voltage is reversed. Total space charge distribution, including free
mobile and trapped charge is depicted with time (right).

Figure 6 shows the detailed space charge and electric field strength in PRV 2. After the
polarity of the voltage was reversed in PRV 2, the electric field strength decreased rapidly
to zero, and the electric field strength became the minimum during the entire operating
time. However, the electric field strength suddenly increased due to the interaction of the
hetero-charge accumulated in the vicinity of the electrode and the opposite charge injected
after a polarity reversal. This electric field strength had a maximum value of 50.1 kV/mm.
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Figure 6. Space charge and electric field distribution with time under PRV. At the beginning of
PRV 2, the electric field is close to zero. Even after the voltage polarity is changed, the injection of
opposite charges is blocked for a while due to the trapped hetero-charge. Immediately after PRV
2, the electric field strength increases steeply, and then the charge injection with opposite polarity
gradually increases. After ~4000 s, the total space charge distribution is completely reversed in its
polarity.

4. Prediction of Breakdown Strength with Electro-Mechanical Threshold
Energy Condition
4.1. Modified Molecular Chain Displacement Model

We numerically calculated the breakdown strength based on the space charge and
electric field distribution with time. In the previous study, the MCD model was used to
calculate the breakdown strength [37]. This conventional MCD model explains that the
molecular chain of polymeric insulators is deformed by the electric force acting on the
trapped charge. This model is suitable for a continuously increasing voltage with a constant
ramp rate. However, this conventional model predicts an excessively smaller value than
the actual breakdown strength when the CV is applied, as depicted in Figure S10. To
overcome the limits of this conventional model expressed as Equation (S6), an additional
threshold energy condition was proposed, based on the electro-mechanical energy relation
as [38]:

Wes + Wem > Ws + Wp (7)

where Wes = 1/2ε0εrE2 is the stored electric field energy per unit volume, Wem = ε0εrE4/8Y
is the mechanical stress induced by the electric field with the yield strength, Y, Ws is the
surface energy that must be overcome to develop a crack, proportional to the fracture
toughness, G = 6500 J/m2, and Wp is the mechanical energy dissipated by the crack,
proportional to the yield strength. Wes, Wem, and Wp are the energies proportional to the
volume of the crack, whereas Ws is the energy proportional to the surface of the crack.
When the electrical energy exceeds the mechanical threshold energy released by the crack,
the molecular chain starts to deform by the electric force, as depicted in Figure 7. The yield
strength used in this model was obtained by interpolating the temperature-varying values
in the experimental study (further details can be found in Supplementary Material, S2).
With an additional threshold energy condition, we proposed the modified molecular chain
displacement (M-MCD) model as:

dλ(x, t)
dt

=

{
µmolE(x, t)− λ(x,t)

τmol
, i f : Ws + Wem > Ws + Wp

0, i f : Ws + Wem ≤ Ws + Wp
(8)
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where λ is the displacement of the molecular chain in nm, µmol is the mobility of the
molecular chain in m2/V·s, and τmol is the relaxation time in s. For LDPE, the critical
displacement length for breakdown initiation is 23 nm [1,25].
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Figure 7. Schematic representation of MCD model with threshold energy condition. After the electri-
cal energy exceeds the mechanical threshold energy, the molecular chain begins to deform, resulting
in an electro-fracture at the electrical stress concentration point (red-colored area). Breakdown starts
from this point where the physical crack has occurred.

4.2. Analysis Results of Breakdown Strength

The breakdown strength was calculated by using the M-MCD model as depicted in
Figures 8 and 9. These numerical analysis results were verified through the experiments
in the previous study [39–41] (detailed results to verify the numerical analysis model are
included in the Supplementary Material, S2-3). Figure 8a shows the calculated breakdown
strength under a constant voltage with constant temperature, CV@CT, and a polarity-
reversal voltage with constant temperature, PRV@CT. The breakdown strength decreased
as temperature increased with a PRV. The temperature was significant for reducing the
breakdown strength of polymeric insulators, irrespective of the applied voltage waveform.
Compared to CV, with PRV, the breakdown strength was decreased as described in recent
studies [11,17,41–43]. The critical environment for LDPE was when the temperature in the
entire polymeric insulator reached 70 ◦C with PRV (PRV@CT-70). Here, the breakdown
strength decreased by about 82% from 71.4 kV/mm (CV@CT-70) to 59.1 kV/mm (PRV@CT-
70). The breakdown strength decreased by about 93% for 30 ◦C and 91% for 50 ◦C. Similarly,
for the case of polymeric insulator pre-stressed by the polarity reversal voltage, breakdown
strength decreased 81%~95% (detailed results for breakdown strength of pre-stressed
polymeric insulator are included in the Supplementary Material, Figure S9) [41].
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Figure 9. Maximum electric field strength inside the polymeric insulator varies with time before
breakdown initiation: CV@GT-A2, CV@GT-C2, CV@CT-70, PRV@GT-2, and PRV@CT-70.

Figure 8b shows that the calculated breakdown strength under a constant voltage with
a temperature gradient, CV@GT, and a polarity reversal voltage with temperature gradient,
PRV@GT. Temperature gradient cases can be divided into heated anode cases (@GT-A1,
-A2, and -A3) and heated cathode cases (@GT-C1, -C2, and -C3). Numbers 1 to 3 indicate
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the cases at 30 ◦C~50 ◦C; 30 ◦C~70 ◦C; and 50 ◦C~70 ◦C, respectively. The breakdown
strength decreased as the temperature gradient increased [44]. The breakdown strength
was slightly larger for CV@GT-Cs rather than CV@GT-As in Figure 8b. The difference
between the heated cathode and anode cases has been reported in previous studies [44,45].
The difference between @GT-Cs and @GT-As originated from the position of the maximum
electric field, as depicted in Figures 3 and 4. For @GT-As, the maximum electric field was
located closer to the low-temperature region. Although the temperature gradient was ex-
pected to reduce the breakdown strength significantly, it had an approximate intermediate
value between the two cases related to the ends’ temperature of the polymeric insulator.
The breakdown strength was 77.0 kV/mm (CV@GT-A2) and 80.6 kV/mm (CV@GT-C2)
between 100.3 kV/mm (CV@CT-30) and 71.4 kV/mm (CV@CT-70), respectively. With
a temperature gradient, the maximum electric field occurred near the low-temperature
region. Hence, the mechanical threshold energy was higher than when a high temperature
was applied to the entire polymeric insulator. For PRV@GT-2, the breakdown strength
decreased rapidly to 68.1 kV/mm from CV@GT-A2 and CV@GT-C2 cases. Herein, PRV had
a more significant effect on reducing the breakdown strength of the @CT cases than @GT
cases. On average, the decrement rates in breakdown strength due to the polarity-voltage
effects were 8.0% and 10.8% when a temperature gradient exists and when the temperature
was constant, respectively.

Figure 9 shows the change in the maximum electric field strength inside the polymeric
insulator with time before breakdown initiation. The breakdown occurred at a reduced
electric field strength when the PRV was applied compared to when CV was applied.
Under PRV, the breakdown occurred slightly after the voltage polarity changed. When
CV was applied, the maximum electric field inside the polymeric insulator continuously
increased and then progressively decreased until the equilibrium state was attained. In
previous studies, the time to reach the breakdown is longer in the cathode-heated case than
in the anode-heated case [45]. After the voltage was applied, for CV@CT-2 and CV@AT-2,
the breakdown was reached after 7120 and 7000 s, respectively.

Figure 10 shows the changes in the electric field enhancement factor and breakdown
strength with the transition time, T0: 20 s~60 s under PRV@GT-2. The field enhancement
factor (FEF) represents the distortion of the local electric field due to the accumulated space
charge. FEF can be calculated using the maximum electric field and the applied electric
field described as [14]:

FEF =
Emax − Eappl

Eappl
× 100% (9)

where Emax is the maximum electric field and Eapp is the applied electric field. As T0
increased, the EFE inside the polymeric insulator increased. As the polarity reversal
occurred slowly, the remaining homo-charge decreased and the injected hetero-charge
increased, causing severe electric field enhancement near the electrode. The breakdown
strength, however, decreased with T0. The decrease in breakdown strength can be explained
as the accumulated hetero-charge intensifies the local electric field distortion as T0 increases.
Moreover, these results agree well that the breakdown strength increases with the voltage
ramp rate analyzed in our previous research results [40].
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20 s~60 s under PRV@GT-2. FEF denotes a field enhancement factor and BS denotes a breakdown
strength.

5. Discussion

Based on the space charge and electro-mechanical energy distribution calculated using
the numerical analysis model, it was possible to explain why the breakdown strength
weakened when the polarity-reversal voltage was applied with a temperature gradient, as
depicted in Figure 11.
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In PRV 1, when the positive voltage was applied, many holes were injected from the
anode (high-temperature region). Most of the holes were trapped adjacent to the electrode
so that the maximum electric field strength appeared in the low-temperature region. When
a large amount of space charge accumulates inside the molecular chain, the inter-atomic
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distance increases. Additionally, the enhancement of the local electric field easily destroys
the molecular chain due to partial damage [41,46].

In PRV 2, the charge having an opposite polarity to the trapped charge was injected.
Then, the maximum electric field appeared near the anode due to the interaction between
hetero-charges [36]. At this time, the imbalance in the electrical and mechanical energies
accelerated breakdown inside the polymeric insulator. The mechanical threshold energy
required to initiate MCD is proportional to the yield strength. The yield strength decreases
as the temperature increases [47–49]. Therefore, low mechanical threshold energy and the
maximum electric field appeared simultaneously at the anode (high-temperature region).
As a result, the magnitudes of electrical and mechanical energies were reversed in PRV 2,
as depicted in Figure S6.

The slope of polarity reversal voltage and the temperature gradient strongly contribute
to lowering the breakdown strength with the thermal effect. The yield strength of the
polymeric insulator decreases as the electro-mechanical threshold energy is lowered. As
the mechanical and electrical stresses are concentrated in the region where the molecular
chain has low threshold energy, therefore, one can build an insulation design scheme using
this proposed analysis.

6. Conclusions

In this study, the space charge behavior and the breakdown strength were numerically
analyzed under various conditions in which a temperature gradient exists and the polarity
of the applied voltage changes. We analyzed the space charge behavior with the thermal
effect inside the polymeric insulator by fully coupled the BCT and the heat transfer models.
Moreover, we proposed the M-MCD model, considering the electro-mechanical threshold
energy to predict the breakdown strength. This model was successfully tested under
various severe environments. Additionally, the numerical results with the M-MCD model
were verified by comparing those with experiments in previous research.

Unlike the conventional calculating method for breakdown strength, our newly pro-
posed M-MCD model can effectively calculate the breakdown strength considering the
space charge behavior, including the temperature and applied voltage effects. In particular,
we can successfully predict the breakdown strength with the constant voltage while the
conventional approach fails.

Moreover, we revealed the mechanism that the breakdown strength quantitatively
weakened while the PRV was applied with a temperature gradient by employing the
imbalances of electrical and mechanical energies. This breakdown mechanism was discov-
ered using the M-MCD model, which was a combination of the conventional MCD model
and the proposed threshold energy condition. This proposed methodology can predict
the breakdown strength of polymeric insulators in various environments, and suggest
enhancing the electrical characteristics for developing new polymeric materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13162746/s1, and supplementary data file includes the detailed parameters and results
of numerical simulation. (S1. Model and selection of parameters for BCT model with temperature
effect, S2. Breakdown strength prediction).
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