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Abstract: Two decades ago successful transfection of antigen presenting cells (APC) in vivo was
demonstrated which resulted in the induction of primary adaptive immune responses. Due to the
good biocompatibility of plasmid DNA, their cost-efficient production and long shelf life, many
researchers aimed to develop DNA vaccine-based immunotherapeutic strategies for treatment of
infections and cancer, but also autoimmune diseases and allergies. This review aims to summarize
our current knowledge on the course of action of DNA vaccines, and which factors are responsible
for the poor immunogenicity in human so far. Important optimization steps that improve DNA
transfection efficiency comprise the introduction of DNA-complexing nano-carriers aimed to prevent
extracellular DNA degradation, enabling APC targeting, and enhanced endo/lysosomal escape of
DNA. Attachment of virus-derived nuclear localization sequences facilitates nuclear entry of DNA.
Improvements in DNA vaccine design include the use of APC-specific promotors for transcriptional
targeting, the arrangement of multiple antigen sequences, the co-delivery of molecular adjuvants to
prevent tolerance induction, and strategies to circumvent potential inhibitory effects of the vector
backbone. Successful clinical use of DNA vaccines may require combined employment of all of these
parameters, and combination treatment with additional drugs.

Keywords: DNA vaccine; nano carrier; promotor; transgene; adjuvant; antigen presenting cells;
dendritic cell; macrophage

1. Introduction

Compared to conventional protein/peptide-based vaccines intended to induce antigen-specific
adaptive immune responses, DNA vaccines are more stable, cost-efficient, easy to manufacture and
safe in handling [1]. DNA vaccines are being investigated for various applications including therapy
of cancer [2], allergies [3], autoimmune [4] and infectious diseases [5]. In the US, at the moment over
500 clinical trials that focus on DNA vaccination are registered, targeting especially viral infections [6]
and cancer [7], while bacterial infections and autoimmune diseases are less of a topic. The high number
of DNA-vaccines tested in clinical trials emphasizes their important role for future medical approaches.
This review aims to summarize current achievements and ongoing developments in the design of
optimized DNA vaccines and delivery methods.

2. Course of Action of DNA Vaccines

The classical ways for vaccine delivery are intramuscular, intradermal and subcutaneous injections
which address primarily myocytes [8] and keratinocytes [9], respectively, but also antigen presenting
cells (APC) residing near the injection side [10] (Figure 1). In case of DNA vaccines, after their
internalization the DNA needs to translocate to the nucleus for transcription, followed by translation
in the cytoplasm [11].
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Figure 1. DNA vaccines induce adaptive immune responses. A DNA vaccine intended to induce an 
adaptive immune response needs to encode an antigen and an adjuvant. The according plasmid 
DNA is applied either systemically or topically, e.g., by intramuscular injection. Transfected 
keratinocytes or myocytes express transgene and release derived peptide/protein via exosomes or 
apoptotic bodies. This material is endocytosed by immature dendritic cells (iDC) which subsequently 
present antigen preferentially via major histocompatibility class (MHCII) to CD4+ T cells in draining 
lymph nodes. Direct transfection of APC including iDC results in endogenous transgene expression, 
and hence parallel presentation via MHCI and MHCII, yielding CD8+ and CD4+ T cell responses in 
parallel. Besides this cellular immune response, a humoral immune response is induced if the B cell 
receptor recognizes the protein antigen, and acquires help by pre-activated antigen-specific CD4+ T 
cells. 

APC can be transfected directly by DNA vaccines [10]. In this case, the encoded antigen is 
expressed and after processing antigen-derived peptides are loaded in parallel onto MHCI and 
MHCII molecules [12]. In case of concomitant activation, antigen-presenting APC migrate into the 
draining lymph node and can prime CD8+ and CD4+ T helper cells [13]. 

In case of cutaneous application, transfected keratinocytes may generate antigen which is 
released by exosomes or apoptotic bodies and is internalized by APC [14]. In general, antigens of 
exogenous origin are loaded rather exclusively on MHCII resulting in activation of helper CD4+ T 
cells which in turn contribute to B cell priming to yield a humoral immune response and are 
required for full activation of CD8+ T cells [15]. So far, only subpopulations of dendritic cells (DC) 
with so-called cross priming potential are able to load MHCI with internalized antigen [16]. 

After intramuscular application, transfected myocytes may undergo apoptosis. Apoptotic 
bodies are engulfed by APC and the exogenous antigen is cross-presented on MHCI resulting in a 
CD8+ T cell response [17]. Early studies on DNA vaccination demonstrated that priming of CD8+ 
cytotoxic T lymphocytes (CTL) is mostly dependent on bone marrow-derived DC rather than 
induced by tissue specific cells [18], and was strictly dependent on CD4+ T cell help [19]. 

Figure 1. DNA vaccines induce adaptive immune responses. A DNA vaccine intended to induce an
adaptive immune response needs to encode an antigen and an adjuvant. The according plasmid DNA
is applied either systemically or topically, e.g., by intramuscular injection. Transfected keratinocytes or
myocytes express transgene and release derived peptide/protein via exosomes or apoptotic bodies.
This material is endocytosed by immature dendritic cells (iDC) which subsequently present antigen
preferentially via major histocompatibility class (MHCII) to CD4+ T cells in draining lymph nodes.
Direct transfection of APC including iDC results in endogenous transgene expression, and hence
parallel presentation via MHCI and MHCII, yielding CD8+ and CD4+ T cell responses in parallel.
Besides this cellular immune response, a humoral immune response is induced if the B cell receptor
recognizes the protein antigen, and acquires help by pre-activated antigen-specific CD4+ T cells.

APC can be transfected directly by DNA vaccines [10]. In this case, the encoded antigen is
expressed and after processing antigen-derived peptides are loaded in parallel onto MHCI and MHCII
molecules [12]. In case of concomitant activation, antigen-presenting APC migrate into the draining
lymph node and can prime CD8+ and CD4+ T helper cells [13].

In case of cutaneous application, transfected keratinocytes may generate antigen which is released
by exosomes or apoptotic bodies and is internalized by APC [14]. In general, antigens of exogenous
origin are loaded rather exclusively on MHCII resulting in activation of helper CD4+ T cells which
in turn contribute to B cell priming to yield a humoral immune response and are required for full
activation of CD8+ T cells [15]. So far, only subpopulations of dendritic cells (DC) with so-called cross
priming potential are able to load MHCI with internalized antigen [16].

After intramuscular application, transfected myocytes may undergo apoptosis. Apoptotic bodies
are engulfed by APC and the exogenous antigen is cross-presented on MHCI resulting in a CD8+ T cell
response [17]. Early studies on DNA vaccination demonstrated that priming of CD8+ cytotoxic T
lymphocytes (CTL) is mostly dependent on bone marrow-derived DC rather than induced by tissue
specific cells [18], and was strictly dependent on CD4+ T cell help [19].

The most serious challenges for DNA vaccines intended to induce an anti-tumor immune
response are caused by immune evasion strategies of the tumor [20]. In this regard, tumor cells
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are often characterized by defective processing of antigens for subsequent presentation via MHCI [21],
and impaired expression of MHCI [22]. In addition, within the tumor microenvironment both
parenchymal and infiltrated immune cells may overexpress tolerance-promoting non-classical MHCI
molecules like human leukocyte antigen (HLA-G) and HLA-E [23]. Besides, tumor-associated
macrophages (TAM) protect the tumor from immune responses by various mechanisms including the
release of anti-inflammatory interleukin-10 and the expression of surface receptors like programmed
death-ligand 1 which inhibit the functions of activated T cells [24]. The effectiveness of DNA vaccines
can also be diminished by CD4+CD25+FoxP3+ regulatory T cells (Treg) that promote cancer growth
which inhibit T effector cells [25]. Moreover, both TAM- and tumor-derived mediators promote the
expansion of myeloid-derived suppressor cells (MDSC) which interfere with the activation of T cells in
the tumor microenvironment and attenuate T effector cells as well [26].

3. DNA Vaccines in the Clinic

The use of DNA vaccines has early raised safety concerns mainly concerning the probability
of stable integration of transfected DNA into the genome of somatic or even germ cells, causing
dysregulated gene expression and mutations. In this regard, Wolff and collegues who demonstrated
that a luciferase-encoding vector after intramuscular administration was detectable for more than
19 months in skeletal muscle, but only as an extrachromosomal plasmid [27]. However, Wang and
coworkers reported that intramuscular injection followed by elecotroporation strongly enhanced the
overall transfection rate, which was associated with a low level chromosomal integration of vector
DNA at random sites [28]. However, the authors calculated that the integration frequency was well
below the number of spontaneous gene mutations. In a subsequent study, the majority of plasmid
DNA administered into skeletal muscles of different rodents was found to remain at the injection site,
while minor fractions were also detected in other organs, including the gonads, but not integrated
into the genome [29]. Concerning unwanted DNA vaccination-associated immune effects, repeated
intramuscular application of a luciferase-encoding reporter vector in primates resulted in long term
reporter expression, but induced no anti-DNA antibodies [30]. Potential transfer of prokaryotic
elements of DNA vaccines like antibiotic resistance genes into e.g., the gut microbiome has been
considered another issue of safety concerns, but so far no such event has been documented [31].
Nonetheless, the aforementioned as well as additional safety concerns of DNA vaccines need to be
considered with regard to their translational use in the clinic [32].

Presently, there are no approved DNA vaccines for use in humans. Nevertheless, some
DNA-based vaccines were approved by the FDA and the USDA for veterinary use, including a
vaccine against West Nile Virus in horses [33] and canine melanoma [34]. One of the first human
clinical trials with DNA vaccines evaluated the therapeutic and prophylactic effects against HIV in
which no significant immune responses but a potential immunogenicity were detected [35]. However,
in the same year Wang and colleagues demonstrated induction of CD8+ T cell responses in primates
after immunization with a mixture of for plasmids encoding for different Plasmodium falciparum
proteins [36]. Another clinical trial which targeted the Hepatitis B virus showed the induction of a
humoral response in patients not responding to conventional vaccination [37]. The overall safety of
DNA vaccines has been thoroughly proven in several clinical trials, underlined by the fact that no
antibody response against prokaryotic parts of the DNA vaccine itself has been observed and that
adverse effects are limited to mild local reactivity at the injection site [2].

One of the first clinical trials employing a DNA vaccine for tumor therapy was conducted in 1998
using prostate membrane antigen as a prostate cancer antigen delivered using an adenoviral vector
and granulocyte-macrophage colony–stimulating factor as an adjuvant. In this trial delayed-type
I hypersensitivity responses were observed [38]. Therefore, subsequent trials pursued the goal to
improve this parameter [39]. Vaccination of melanoma patients with a bivalent DNA encoding
Melan-A and tyrosinase as tumor-associated antigens elicited humoral and CTL responses in Stage
IV patients [40]. A subsequent clinical trial used the Synchrovax vaccine encoding for four peptide
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epitopes of Melan-A and melanoma antigen recognized by T cells 1 to induce broad antigen-specific
CD8+ T cell responses [41]. This trial showed antigen-specific responses but no induction of
tumor regression in the patients. Recent clinical trials showed good results in inducing immune
responses against Wilms’ tumor antigen 1 using DNA vaccines encoding for two different CD8+ T cell
epitopes [42].

Altogether, clinical trials employing DNA vaccines evoked efficient induction of cellular and
humoral responses [2]. However, the level of these responses most often was not sufficient to elicit
significant clinical benefits. Therefore, numerous clinical trials focus on DNA vaccine optimization
strategies to augment theirimmunogenicity [7] as presented in the following. In addition, it is necessary
to compare the suitability of different DNA vaccine delivery routes to yield potent adaptive immune
responses. In this regard, the Cutaneous and Mucosal HIV Vaccination (CUTHIVAC) trial is worth to
be mentioned since it aimed to comparatively analyze the influence of the combination of different
injection sites with or without electroporation [43]. In the following optimization strategies for the
design of DNA vaccines and approaches to improve their delivery to APC are presented. Both aspects
are important to overcome the poor immunogenicity of DNA vaccines in human.

4. Optimization of DNA Vaccines

DNA vaccines still face many challenges to become an effective tool as their success achieved
in preclinical studies has not been translated into the clinic yet [44]. The biggest challenge is the low
immunogenicity of DNA vaccines in bigger animals and humans probably due to the difficulty to
upscale the DNA vaccine amounts used in small animal systems [45]. For this, about 5–20 mg of DNA
would have to be injected into an average-sized human [46]. If naked i.e., unformulated plasmid
DNA is used for vaccination, an important factor that contributes to low therapeutic efficiency is
DNA degradation [47]. Studies showed that plasmids, compared to other administration forms like
minicircles, are degraded relatively fast within one week [48]. DNA molecules that successfully enter
the cell need to pass the barrier of the nuclear membrane to be transcribed [11]. Hence, due to the
low amount of DNA that is at disposal for transfection of a given target cell in vivo, a major goal is
the optimization of transfection. Optimization parameters of DNA vaccine design are summarized in
Figure 2.
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a promoter engineered to transcriptinally target APC like DC may be used. To enhance antigen
expression, especially in case of pathogens, codon optimization is important. To induce a broad
CD4+/CD8+ T cell response, linker-separated sequences encoding different antigens may be used.
In addition, fusion with a sequence encoding the invariant chain may enhance loading of antigen onto
MHCII. Conventionally, molecular adjuvants intended to enhance the APC activation state and/or
T cell attraction and polarization are encoded by expression vectors coadministered with a DNA vaccine.
To ensure coexpression of antigen and a molecular adjuvant by a transfected cell, both sequences must
be incorporated in the DNA vaccine (in cis), separated by an IRES or T2A sequence. The vector
backbone comprises the part of the DNA vaccine which is not required for eukaryotic expression.
Inherent or inserted immunostimulatory sequences are detected by danger receptors, and mediate
APC activation. Inclusion of a NLS facilitates nuclear entry of the DNA. Intrinsic inhibitory effects
of the backbone on the transfection efficiency are limited by insertion of A/T-rich sequences or by
recombinase-mediated deletion of the prokaryotic part as a last step after propagation in bacteria to
yield minicircle DNA.

4.1. Promotor

Conventionally, viral promoters like the human immediate/early CMV (cytomegalovirus)
promoter which are ubiquitously active at high level have been employed to drive transgene
expression [49]. However, especially with regard to long term expression, viral promotors are
often subjected to methylation-mediated inactivation, whereas eukaryotic promoters and hybrids of
eukaryotic/viral promoters remain active [50]. Furthermore, the use of cell type-specific promotors
may allow to restrict antigen expression to APC.

To achieve transcriptional targeting of DC which at activated state constitute the most potent
APC population [13,51], various promoters of endogenous genes that are expressed predominantly
by this APC population were tested to drive DC-focused transgene expression. CD11c has been
well established as a DC-specific marker in mouse [52], whereas this ß2 integrin is expressed more
broadly in human by different immune cell types [53]. Transgenic mice engineered to express antigens
under transcriptional control of a large 5.5 kb promoter fragment showed DC-specific transgene
expression [54]. However, when mice were biolistically transfected with a DNA vaccine containing this
CD11c promoter fragment insufficient CTL activation was observed [55]. Dendrocyte expressed seven
transmembrane protein (DC-STAMP) constitutes an evolutionarily highly conserved transmembrane
protein of the endoplasmic reticulum [56]. In the same study, DC-STAMP was reported as primarily
expressed in immature human and mouse DC, down-regulated in response to maturation. However,
osteoclasts and macrophages were reported to express DC-STAMP as well [57]. The suitability of the
DC-STAMP promotor to transcriptionally target DC was evaluated by transduction of hematopoietic
stem cells with a lentiviral expression vector harboring the DC-STAMP promoter to drive expression
of a fluorescence reporter [58]. Lethally irradiated mice were reconstituted with transductants,
and reporter expression was monitored in different immune cell types. Indeed, the reporter was
primarily expressed by differentiated conventional and plasmacytoid DC, and at low level in
monocytes, B cells, and NK cells. Dectin-2 (CLEC6A) is a C-type lectin receptor (CLR) that binds
mannose-rich surface structures of various pathogens [59], and is primarily expressed by Langerhans
cells (LC) [60] which constitute the epidermal DC population. In line, biolistic transfection of mice
with a reporter plasmid driving luciferase expression by the Dectin-2 promoter yielded predominant
reporter expression in LC [61]. In subsequent studies, transduction of mice with a lentiviral reporter
expression vector under control of the Dectin-2 promotor resulted in reporter expression in LC
as well as macrophages [62]. In a comparative study including the aforementioned gene promoters
and a promoter fragment of the dendritic cell-specific intercellular adhesion molecule-3-grabbing
non-integrin (DC-SIGN) gene which encodes for a CLR predominantly expressed by DC and
macrophages [59], the DC-STAMP promoter was identified as most potent to induce antigen-specific
T cell responses in vitro after transfection of DC [63].
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The highly conserved actin-bundling protein Fascin-1 is highly expressed in neuronal cells,
and mediates the structural integrity of axons [64]. We have shown that, besides neuronal cells,
Fascin-1 is only expressed in activated DC of mouse and human [65]. The Fascin-1 promoter yielded
strong and specific activity in DC of both species [66,67]. In subsequent studies we demonstrated
that transcriptional targeting of DC using DNA vaccines containing the Fascin-1 promoter to drive
antigen expression yielded antigen-specific T helper cell (Th)1-biased immune responses, whereas
transfection with CMV promoter-driven DNA vaccines resulted in mixed Th1/Th2 responses [68].
Moreover, Fascin-1 and CMV promotor containing DNA vaccines induced CTL at comparable
extent [66]. In various mouse models of allergen-induced airway inflammation and type I allergy [69],
as well as a mouse model of multiple sclerosis [70] vaccination with plasmids encoding the relevant
allergen/antigen under control of the Fascin-1 promoter showed therapeutic efficacy, especially when
co-transfecting expression constructs that encode anti-inflammatory cytokines.

Transcriptional targeting of DC is intended to restrict antigen and adjuvant expression to this
APC population, and thereby to prevent addressing of tolerance by regulatory cell types like MDSC
and TAM. However, transcriptional targeting of DC will also largely exclude expression of (protein)
antigen in B cells and thereby may impair the induction of antigen-specific antibodies. Additional B
cell addressing may be achieved by employment of cellular promoters that display activity also in this
APC population [51].

4.2. Antigen

The use of DNA vaccines in infectious diseases or for tumor therapy enables to focus on sequences
that encode immunogenic peptides of a given pathogen or tumor-specific proteins, and allows to
include antigen-encoding sequences derived from different proteins within one minigene to induce a
broader T cell response [71]. Antigens that are expressed by tumor cells, so called tumor-associated
antigens (TAA) can be divided into two categories: tumor-specific shared antigens and tumor-specific
unique antigens [72]. Shared antigens are expressed by different tumors and can also be present
in normal cells of different tissues, although at lower amounts. Tumor-specific unique antigens,
i.e., neo-antigens, are expressed only by (individual) tumors [73]. Usage of shared antigens is more
convenient since the sequence of most proteins is well known and a genetic analysis of the mutanome
is not needed to select antigen-encoding sequences [74]. However, a major risk of using shared TAA
is the induction of autoimmune responses as the immune system will also be turned against healthy
tissues expressing the antigen [75]. Neo-antigens seem to be the first choice if designing a DNA vaccine
as studies have shown that effector T cell responses are more potent against mutated antigens [76].
Furthermore, antigens with a higher half-life have been shown to induce stronger cytotoxic T cell
responses and thereby increased immunogenicity [77].

Codon optimization is mostly needed if the target antigen is of non-human origin, and can
strongly enhance antigen expression [62]. Besides, if immunogenic peptides of an antigen are known,
and induction of antibodies specific for the target protein are not an issue, only sequences encoding
relevant T cell antigen epitopes may be included [78]. Even if the encoded antigen is expressed at high
amounts, antigen presentation/recognition still may be an obstacle to prompt a sufficient immune
response. This problem is addressed by introducing epitope-specific changes in the antigen to increase
MHC affinity [79]. Similar efforts are being made to increase the affinity of the MHC/peptide complex
to T cell receptors [80]. The latest approach to increase antigen presentation is the use of xenogenic
antigens [81]. This approach was very successful in the development of the USDA-approved DNA
vaccine against canine melanoma.

In current studies, both the strategy to administer a DNA vaccine which encodes for a full length
protein as a source of antigen and the administration of a DNA vaccine which encodes for different
peptide antigens are followed. While the former approach aims to induce a cellular and concomitant
humoral immune response, the latter focuses on the induction of T cell responses at the expense of
antibody production. The design of an antigen-encoding expression unit includes the selection of
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several immunogenic antigens derived from one or different proteins to be presented via MHCI/II to
yield parallel CD4+/CD8+ T cell activation, conceivably codon optimization, and eventually strategies
to boost MHCII antigen presentation, e.g., by introducing of the invariant chain.

4.3. Adjuvant

To avoid induction of vaccine-mediated antigen-specific tolerance, APC need to be activated by a
so-called danger signal which promotes the upregulation of antigen presenting receptors, costimulators
and pro-inflammatory mediators for efficient T cell activation and polarization [13]. To this end,
antigen-encoding vaccines have been coadministered with established adjuvants like aluminium
salt-based Alum [82] or immunostimulatory CpG oligonucleotides which engage the endosomal
located toll-like receptor (TLR)9 to stimulate APC [83]. Intradermal application of plasmids was
observed to yield Th1-biased immune responses due a CpG-rich element located within the ampicillin
resistance gene [84]. Besides TLR9, cytosolic DNA sensors that mediate activation of the stimulator of
interferon genes signaling pathway contribute to the intrinsic adjuvant effect of DNA vaccines [85].

Apart from the intrinsic adjuvancy of plasmid DNA, codelivery of plasmids that encode
transcription factors as genetic adjuvants has been tested to stimulate APC. Upregulated activation of
transcription factors of the nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NF-κB) [86]
and the interferon-regulatory factor (IRF) [87] family are hallmarks of APC stimulation by danger
signals. Shedlock and coworkers have demonstrated that codelivery of a HIV protein encoding
DNA vaccine and of an NF-κB p65 expression construct by in vivo electroporation of mice elevated
both cellular and humoral immune responses [88]. Codelivery of an influenza antigen encoding
DNA vaccine and an IRF-3 encoding vector by biolistic transfection of mice resulted in an increase of
activated CD4+ and CD8+ T cells [89]. Cotransfection with an IRF-1 expression vector yielded enhanced
viral antigen-specific antibody production, whereas enhanced expression of IRF-7 increased both T cell
and B cell responses. However, in combination with a HIV tat antigen DNA vaccine delivered by
intramuscular injection, only codelivery of an IRF-1 encoding vector elevated the intended CTL/Th1
response [90]. To achieve coactivation of IRF and NF-κB transcription factors, Luc and co-workers
immunized mice with an influenza protein encoding DNA vaccine and a plasmid encoding the
virus-induced signaling adaptor protein which resulted in elevated anti-viral T cell responses [91].
In a comparative study, Larsen and colleagues assessed the ability of codelivered expression vectors
for numerous different TLR signaling adaptors to enhance immune responses [92]. Of more than
seventeen different signaling adaptors tested, only combined coadministration of Tak1 and Tram
expression vectors enhanced CLT responses in vivo.

The aforementioned strategies aim to enhance the activation state of transfected APC. In other
approaches DNA vaccines were coadministered with plasmids that encode either costimulatory
receptors in transfected APC to enhance their T cell stimulatory capacity as reported for CD80 and CD86
used e.g., by de Andrés and colleagues to evoke potent anti-Visna/Maedi virus T cell and antibody
responses in immunized sheep [93]. More often, DNA vaccines were codelivered with expression
constructs for soluble mediators like cytokines or chemokines that exert stimulatory/chemoattracting
effects on APC and other immune cells [13]. For example, IL-12 is produced by activated APC to
promote Th1 differentiation, but also stimulates APC themselves [94]. Accordingly, administration of
an IL-12 expression construct in combination with a multigene HIV DNA vaccine by intramuscular
electroporation resulted in enhanced antigen-specific CD4+ and CD8+ activation in healthy
volunteers [95]. IL-15 is also released by activated DC, and exerts broad stimulatory effects on
effector CD4+ and CD8+ T cells, B cells, NK cells as well as DC [96]. In several studies a pronounced
effect of cotransfected IL-15 was observed as reported e.g., by Sun and coworkers demonstrating
that a fusion construct of a Mycobacterium antigen and IL-15 applied intramuscularly into mice
yielded pronounced NK activity, an enhanced Th1 and CTL response as well as elevated antibody
titers [97]. Altogether, while different cytokines were employed as genetic adjuvants to stimulate both
APC and other types of immune cells [45], IL-2 acts mainly on T cells (and NK cells) [98]. Hence,



Int. J. Mol. Sci. 2018, 19, 3605 8 of 28

its overexpression is intended to support sustained activation of exhausted T effector cells and to
overcome its depletion by Treg [99].

More recently, as an alternative to promote APC and T cell activation by (over)expression
of intracellular or secreted factors, the concept of regulating cell activation by RNA interference
has gained attention [100]. For this, either specific silencer RNA or plasmids that encode short
hairpin RNA which specifically target intracellular mRNA encoding inhibitory factors are applied.
By this approach transcription factors like signal transducer and activators of transcription 3 which
is known to induce expression of protolerogenic factors [101] or their downstream targets like the
coinhibitory surface receptor PD-L1 [102] that counteract APC-mediated costimulation are targeted.
Furthermore, micro-RNA (miRNA) species which regulate the activation state of APC have been
recognized as interesting targets [103]. For example, delivery of a plasmid harboring multiple
miRNA consensus bindings sites, termed miRNA sponge, is intended to limit their inhibitory effect on
activation-associated mRNA targets [104].

In current human DNA vaccination approaches antigen-encoding DNA vaccines are
coadministered with soluble immunostimulatory agents which often have been approved for anti-tumor
adjuvant therapy [105]. Besides, expression vectors that encode cytokines [106] or chemokines [107] are
clinically tested. So far, DNA vaccines that integrate both the antigen expression unit and a molecular
adjuvant into a single plasmid have been tested in a limited number of studies only.

4.4. Vector Backbone

For transfection the prokaryotic part of a DNA vaccine is not necessary, and early studies have
shown that the overall size of a DNA vaccine inversely correlated with transfection efficiency even in
mitotically active cell lines [108]. This effect was attributed at least in part to silencing of transgene
expression as a consequence of heterochromatin formation of bacterial components spreading into
the promoter/vaccine expression cassette [109]. To circumvent this problem, the concept to delete
prokaryotic sequences of the plasmid after its propagation in bacteria was developed, yielding so-called
minicircle DNA [110]. More recently, Lu and colleagues reported that inclusion of A/T-rich sequences
into the vector backbone prevented transcriptional silencing [111]. However, in a growing number of
studies, increased efficacy of minicircle DNA vaccines as compared with conventional plasmids has
been demonstrated [112].

Concerning the combined administration of DNA vaccines and genetic adjuvants (see above),
bicistronic vectors are available which enable expression of both (or more) genes in cis [113].
Such vectors contain either two different promoters to independently express both transgenes or
both expression units are separated by sequences like an internal ribosomal entry site (IRES) to
mediate cap-independent translation of the downstream expression unit [114]. Especially due to the
frequent observation of strongly different expression intensities of both transgenes, as an alternative a
virus-derived T2A sequence was introduced instead [115]. After translation, this peptide sequence
is recognized by an endogenous protease which mediates posttranslational cleavage of the different
transgenes [116]. Usage of an IRES or T2A sequence is interesting when using a cell type-specific
promoter for transcriptional targeting of APC.

Efficient transfer of DNA vaccines into the cell nucleus for subsequent expression is an important
obstacle for success of transfection, especially in case of mitotically inactive cells like APC [117].
Quite early, certain DNA sequences were identified that mediated nuclear translocation. One of the
first identified was the simian virus (SV)40 enhancer region, and transcription factors binding this
site in the cytoplasm facilitated active nuclear entry of plasmid DNA due to their nuclear localization
signal (NLS) [118]. As a consequence, in some approaches the SV40 enhancer site was included into
the vector backbone [11]. Alternatively, the NLS activity of virus-derived peptides like the SV40 large
T-antigen was exploited to facilitate nuclear plasmid translocation by attaching these peptides either
directly to the vector backbone [119] or to DNA delivery systems [120].
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5. Nano-Carriers for Transfer of DNA Vaccines

Nano-carriers (NC) offer the advantage to shield the DNA vaccine from degradation by DNases
and other enzymes [121]. Surface modifications of NC with moieties like antibodies or natural ligands
like carbohydrates may enable direct targeting of DC [16]. As outlined above, direct transfection of
APC would prevent unwanted uptake of antigen and adjuvant by MDSC and TAM that promote
tumor tolerance [122]. In addition, internal expression of the transgene ensures that sufficient amounts
of antigen are presented via MHCI to yield robust CD8+ T cell responses [16].

NC are defined as particles of 1–1000 nm in size with an interfacial layer that can be composed
of different materials [123]. They have gained scientific interest due to their unique properties
and the wide range of applications linked to the variance in composition, size, shape and surface
modifications [124]. So far, NC are used predominantly as delivery systems for drugs, adjuvants or
nucleic acid-based vaccines contributing to the emerging field of nano-vaccines [125]. One of the
most frequent applications of NC is the use in tumor therapy [126] as they have many advantages
over classical chemotherapeutics and other pharmacology agents like improved bioavailability [127],
organ- [128] or cell type- [16] specific targeting, tunable drug release [129], and addressing of
organelles [130]. The exact mode of interaction of NC with a cell membrane is strongly influenced by
the size, charge, shape, and hydrophilic/hydrophobic surface properties of the former, and uptake most
often occurs either by membrane penetration which is associated with transient appearance of holes or
by receptor-mediated endocytosis [131]. Both cellular uptake and endosomal release of NC-complexed
DNA is enhanced by cell penetrating peptides (CPP) which are either attached directly to DNA [132]
or to the DNA-complexing NC [133]. However, most of these studies have been performed under
serum-poor conditions in vitro, and the possibility of rapid formation of a protein corona around the
NC and engagement of negatively charged serum components by CPP prior to cellular engagement
needs to be taken into account [134]. NC surface modifications like dense decoration with polyethylene
glycol (PEG) have been introduced to limit serum protein adsorption, and to retain CPP activity [135].
Major safety concerns associated with the use of NC are are biocompatibility, biodistributiion and
clearance, and the induction of unwanted immune reactions [136]. For example, repetitive application
of PEG-coated NC may result in the arisal of PEG-specific antibodies [137]. The development of new
NC-based delivery systems stirred up hope in the field of gene therapy for cancer treatment [138].
APC are assigned to recognize pathogens, so particles that are of similar size as pathogens should be
easily engulfed [139]. While DC normally ingest particles that are virus-like in size (20–200 nm) [140],
macrophages usually engulf larger particles (0.5–5 µm) [141], but for NC the efficacy of uptake by
APC is strongly dependent on the surface properties and shape of the NC [142]. Cationic particles are
internalized better by APC, but are also more likely to induce platelet aggregation and hemolysis [143].
Also the shape of the particle is crucial for uptake. For gold NP (AuNP) it was demonstrated that
spherical particles are more efficient than any other shape [144]. Additionally, hydrophobicity, surface
modification and the delivered cargo can influence the interaction with immune cells [145]. It needs
to be considered that all these factors also influence the interaction with serum proteins, i.e., that
modifications can have unpredictable effects in the organism [121].

As outlined below, the field of nanomaterials is still emerging resulting in new designs that
open new opportunities for use like the development of virus-like particles (VLP) [146] and magnetic
particles which may be directed in vivo by applying magnetic fields [147], and the introduction of
tumor microenvironment-triggered drug release mechanisms [148]. Still, there are many challenges
linked to the use of NC including the issue whether active targeting to specific cells and tissues is
possible and needed for therapeutic efficacy [149].

NC-mediated delivery of nucleic acid-based therapeutics is a very promising approach, but
several extra- and intracellular barriers still limit transfection efficacy [150] Hence, NC intended for
the delivery of nucleic acid-based therapeutics need to fulfill a number of requirements:
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(i) The delivery vector has to offer a sufficient capacity to efficiently package DNA/RNA per se,
which is an obstacle especially for longer plasmid DNA [151], in order to enable delivery of a
sufficient amount of molecules per target cell [152].

(ii) The delivery system has to show stability against serum proteins that may form a protein corona
around the NC and thereby affect its targeting and uptake efficiency [134].

(iii) After uptake by the cell, the NC cargo has to evade endo/lysosomal degradation and to enter
the cytoplasm by endosomal escape [153]. While released mRNA is translated directly in the
cytoplasm, DNA vaccines need to translocate into the nucleus for subsequent transcription which
may be enhanced by NLS [154].

5.1. Nano-Carriers Composed of Inorganic Material

There are numerous different types of NC regarding material, size and shape, each having
advantages and disadvantages in the field of nanomedicine. Inorganic nanomaterials have a rigid
structure and a controllable synthesis allowing simple modification.

AuNP showed low cytotoxic effects, were biocompatible and have been used as carriers for
virus-derived antigens [155] as well as DNA vaccines since plasmid DNA can be complexed directly
on the surface of the particle [156]. In addition, protein-coated AuNP were reported to possess intrinsic
immunostimulatory capacity as they mediated DC activation [157]. The transfection efficiency was
increased by the use of CPP to coat the AuNPs, thus minimizing influences from the cell environment
on the plasmid DNA and facilitating cell uptake [158].

Another interesting candidate for nucleic acid delivery are silica-based NC. These are
biocompatible, and can deliver different types of cargo [159]. Of note, such NC were demonstrated to
passively target tumor tissues [160]. Mesoporous silica NC have been used for DNA transfection of
cell lines in vitro [161]. In general, such NC allow to control the release of cargo by modification of
pore size and shape as well as surface functionalization [162].

Graphene oxide is a compound consisting mainly of carbon and oxygen with a layer structure.
Because of the electrostatic π-π-stacking interactions it shows a high loading capacity as well as a
controlled release of cargo [163]. Additionally, graphene oxide protects nucleic acids from cleavage,
making it a very remarkable candidate for gene therapy [164]. For negatively charged carbon NC
direct transfer of DNA via the cell membrane into the cytosol was demonstrated [165]. Another type of
carbon-based nanomaterial suitable for transfer of nucleic acids are carbon nanotubes (CNT). CNT are
small and chemically inert. However, their hydrophobicity limits their use in biomedical application
as CNT are poorly soluble in water [166]. To improve their biocompatibility, CNT can be modified
covalently, but this often reduces the loading capacity of nucleic acids as well as the intracellular
release of the cargo [167].

Magnetic particles like iron oxide core particles have the unique ability not only to provide cargo
delivery but also allow detection in vivo by magnetic resonance imaging [168]. An approach tested
in the clinic for cancer therapy is to target magnetic particles to the tumor tissue and then to induce
magnetic hyperthermia [169]. To improve biocompatibility of magnetic particles, they are often coated
with proteins, polymers or polysaccharides, which reduces cytotoxic effects and can improve their
DNA transfecting properties [170].

5.2. Lipid-Based Nano-Carriers

Lipids can also be used for gene delivery. Felgner and colleagues were the first to demonstrate
that N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTAP) can transfer DNA
into cells [171]. Complexes composed of DOTAP and protamine-condensed DNA showed good
transfection efficiencies in vivo [172]. Cationic lipids are generally very suitable for transfection as
they preferably interact with the anionic cell membrane thus facilitating uptake of the transfection
complex into the cell [173]. Charge-driven interaction with cellular receptors initiating endocytosis was
shown as the uptake mechanism for cationic liposomes [174]. Furthermore, cationic lipids show great
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binding of DNA and the forming liposomes protect their cargo from degradation. A positive effect is
achieved by the addition of a neutral helper lipid, which stabilizes the lipid-bilayer and may promote
endosomal escape of passenger DNA either due to pH buffering of protonatable groups or after
fusion with the endosomal membrane [175]. In case of cationic DOTAP-based liposomes containing
cholesterol as a helper lipid, macropinocytose was identified as the major uptake mechanism [176].
More recently, incorporation of coiled-coil lipopeptides into the liposomal bilayer was demonstrated
to promote interaction with cell membrane receptors and direct release of cargo into the cytosol [177].
Liposomes also can encapsulate protein antigens and are commonly used as adjuvant delivery systems
as they spontaneously rearrange into nanostructures [178]. Several liposomal protein-based substances
haven been approved decades ago for prophylactic vaccination against herpes simplex virus A [179]
and influenza [180].

5.3. Protein-Based Nano-Carriers

Proteins constitute a favorable material for NC generation since they are biocompatible,
biodegradable and typically show low cytotoxicity [181]. A good choice for a gene delivery system is
gelatin B combined with protamine sulfate [182]. The overall negative charge of the protein switches
in the endosome leading to a release of cargo. The major drawback of this system is the relatively
low DNA loading capacity. Endogenous proteins can be also used to design NC for gene delivery.
A good example is albumin which is generated largely by the liver and constitutes the most abundant
serum protein [183]. Albumin has been demonstrated to exert several tasks via transient binding of
other extracellular components, including the protection of proteins and fatty acids from peroxidative
modifications [184], ion transport, and adsorption of drugs which affects their bioavailability. In line,
albumin has many reactive groups on the surface allowing chemical modifications [185]. NC consisting
of an albumin core and chitosan as an outer layer successfully transfected different cell lines [186],
and when surface-modified with ethylenediamin for introduction of cationic properties served to
deliver siRNA into metastatic tumor in vivo [187].

VLP which consist of various self-assembling viral proteins may constitute suitable candidates for
gene delivery [188], as they combine the ability of the virus to interact with immune cells while lacking
infectious properties [146]. However, VPL proteins were demonstrated to serve as antigens due to
their exogenous origin which constitutes an unwanted side effect [189]. Anyway, the first VLP-based
vaccine was commercialized in 1986, and by now several anti-viral and one malaria-directed vaccine
are clinically used, most often in combination with the classical adjuvant Alum [190].

5.4. Polymeric Nano-Carriers

Polymer-based nanomaterials have gained interest because of their electrostatic interactions
with nucleic acids resulting in protection from enzymatic degradation [191]. Furthermore, cationic
polymeric nanomaterials are cheap, non-immunogenic, safe and have a greater DNA-loading capacity
than viruses. The first polymeric particle reported to enhance transfection was diethylamino-dextran
in the late 1960’s [192]. Polymeric systems are often surface-modified to prolong their circulation
time in the bloodstream to enable more specific or even cell-targeted delivery. One option to shield
NC from the formation of a protein corona determining cellular interactions is the use of PEG [193].
Cationic polylactides are an example of this problem and it was shown that PEGylated particles
performed better in serum at high polymer/DNA ratios than commercially available transfection
reagents [194]. The importance of polymer-based materials was emphasized when it was early
demonstrated that cationic polymers not only bind to DNA but are also very effective in condensing
it to form structures resembling viruses [195]. Among the best studied polymeric nanomaterials are
poly-D,L-lactide-co-Glycolide (PLG) [196] and poly-D,L-lactic-co-Glycolic acid (PLGA) [197]. PLG- and
PLGA-based particles are biocompatible, biodegradable and show a sustained release of a wide range
of different cargo molecules [198], including DNA [199]. Poly-L-lysine (PLL) is a natural polymer
with a peptidic structure and therefore highly biodegradable. However, the transfection efficiency
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of PLL particles was lower than obtained using polyethylenimine (PEI) [200]. Polymeric structures
achieved a milestone in 1988 as the first receptor targeted transfections were performed. For this,
asialoglycoprotein was introduced into PLL targeting its receptor which resulted in increased
transfection in vivo [201]. To improve the transfection efficiencies of polymeric systems equipped
with targeting moieties, in early approaches inactivated adeno- [202] and rhino- [203] viruses were
used in combination with receptor targeting polyplexes. To enhance endosomal escape of the systems,
proteins have often been used. In this regard, a sulfhydryl-activatable listeriolysin O/protamine
conjugate showed enhanced delivery of DNA into the cytosol [204]. As an alternative, polyamidoamine
dendrimers were shown to exert a prominent proton sponge effect as the amines are only slightly
protonated at neutral pH [205]. PEI was reported to yield a better transfection capacity as a linear
compared to a branched polymer which suggested that unpacking of the DNA is more complicated
when complexed with the latter [206]. However, PEI is not biodegradable and shows high toxic effects
in a molecular weight-dependent manner [207]. Additionally, cationic polymers in general can be
recognized by the immune system and were shown to trigger complement activation, which can lead
to an untimely clearance of the NC [208]. In other approaches, the suitability of natural polymers
to generate NC has been demonstrated. For example, chitosan was shown to constitute a suitable
DNA carrier [209], and bears intrinsic adjuvant activity [210], similar to other polysaccharide-based
polymers like inulin [211] and others [212].

6. Route of Vaccination

To transfect as many APCs as possible, targeting DNA vaccine delivery to secondary lymphoid
organs via systemic application like intravenous injection [213], oral [214] or pulmonary [215]
administration is a suitable strategy. Alternatively, DNA vaccines are often applied often topically
via the skin [216] or intramuscularly [217]. Figure 3 presents an overview over common DNA
vaccination routes.
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Figure 3. Routes of DNA vaccine delikvery. DNA vaccines may be delivered systemically by
intraveneous injection to reach secondary lymphatic organs, by oral application of (attenuated) bacteria
as a vehicle to confer uptake of DNA by intestinal APC, and by pulmonary administration of nebulized
DNA to achive uptake by lung cells. Transdermal delivery primarily adresses LC, and both needle-free
delivery of particle-adsorbed DNA vaccines by helium pressure (gene gun, PMED) and needle-based
administration via microneedles and tattoo devices are clinically tested. Transfection of cutaneous
APC as well as of non-APC by intradermally injected DNA vaccines is enhanced by immediate
electroporation. Subcutaneous injection mainly results in transfection of fibroblasts and keratinocyts,
which express transgenes and release antigen for uptake APC. Likewise, intramuscular injection of
DNA vaccines primarily yields transfection of myocytes that express/release antigen for APC uptake,
and myocyte transfection rates are enhanced by electroportion at the site of injection as well.
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Intraveneous application of DNA vaccines inprinciple allows to reach APC located in secodnary
lymphoid organs. However, the physicochemical characteristics of DNA-complexing NC determine
the biodistribution of the DNA vaccine. For example, PEI-complexed reporter expression vectors
preferentially transfected lung cells [218], whereas lipsomomal formulations transfected liver cells [219].
In general, numerous types of NC were demonstrated to interact with blood components which
thereby form a protein corona around the NC which in turn may strongly affect its cellular binding
properties [134]. For example, we have recently shown that NC coated wtih dextran to confer
biocompatibility triggered the lectin-dependent pathway of complement activation which resulted
in deposition of C3 fragments on the NC surface, and preferential binding to splenic B cells via their
complement receptor [220].

For oral administration of DNA, non-pathogenic (L. lactis [221] or attenuated (S. thyphimurium [222]
and L. monocytogenes [223]) bacterial strains are often used as vectors, termed bactofection [224].
In the intestine, these bacteria may be phagocytosed directly by mucosal DC/macrophages
spreading extensions into the gut lumen or after M cell-mediated transcytosis at the Peyer’s
patches [225]. After phagocytosis, plasmid DNA is released from phagolysosome, and the numerous
bacteria-associated danger signals result in profound APC activation [226]. More recently, ‘bacterial
ghosts’ which constitute only the bacterial envelope have been introduced as carriers for DNA
vaccines [227]. Aside oral application, bacteria were shown to confer transfection of APC when applied
at other mucosal sites, e.g., when applied intranasally [228]. More recently, the DNA vaccine delivery
properties of orally applied bacteria, for example with regard to phagolysosomal escape have been
improved by additional coating with NC [229].

Compared with other sytemic routes of DNA vaccination, pulmonary application of aerolized
DNA vaccines is a rather new approach [230]. Usage of naked and NC-complexed DNA was
demonstrated to yield transfection of lung epithelial cells [231]. Hence, so far research focusses
on therapeutic treatment of local gene defects as in case of cystic fibrosis [232].

The skin constitutes an interesting target organ for DNA vaccination due to the rather high
frequency of cutaneous DC. For example, human skin, depending on the specific site, contains
200–1000 LC per square millimeter [233]. Furthermore, in skin (activated) DC are the only cell
populations showing migratory behavior towards draining lymph nodes to evoke T cell responses [234].
Different transdermakl DNA vaccination strategies have been developed, and their suitability is
clinically tested [235]. Needle-free biolistic transfection as mediated by gene gun [69] and PMED
(particle-mediated epidermal delivery [236] devices transfers microparticle-adsorbed DNA into the
epidermal layer by helium force to transfect LC, dermal DC (and keratinocytes). Of note, the physical
stress associated with biolistic transfection, was reported as sufficient to mediate activation and
emigration of directly transfected DC [237]. Microneedles which are produced from various materials
and techniques display lenghts below one micron [238] and tattooing devices [239] address these
cell types as well. Conventional intradermal administration of DNA vaccines by syringes aims to
transfect dermal DC (and fibroblasts). Based on the observation that after intradermal injection of
DNA a short electrical pulse, termed electroporation, mediates several-fold enhanced transfection
has resulted in the development of a number of according devices tested in clinical studies [240].
Similarly, in vaccination studies transfection rates of myocytes after intramuscular injection of DNA,
intended to generate antigen for uptake by APC, were found strongly elevated by electroporation as
well [106]. In general, electroporation in the context of transdermal [241] and intramuscular [242] DNA
vaccination was reported to result in local activation of innate immunity which may be a consequence
of e.g., electroporation-induced cellular stress reactions, including necrosis.

Concerning the success of immunization of different DNA vaccination routes, the recent
phase I trial CUTHIVEC which assessed in a comparative manner the efficacy of different DNA
vaccine administration routes showed increased antigen specific CD4+ and CD8+ responses after
combined intramuscular and transcutaneous injection compared to intramuscular plus intradermal
injections [43]. The former approach was even more efficient than intramuscular administration
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followed by electroporation (EP) at the injection side. EP is frequently used to increase the overall
transfection efficiency at the injection site and was shown to efficiently enhance immune responses
in rhesus macaques after DNA vaccination [243]. In general, the application method itself beyond
mediating APC activation may also influence T cell polarization. In a comparative study, intramuscular
DNA vaccination resulted in a Th1-biased T cell response (see above), whereas biolistic transfection
yielded a Th2 response [244].

With regard to the distribution of DNA vaccines complexed with NC it is noteworthy that small
particles are easily transported into the lymph node, while larger particles remain longer at the site
of administration [245]. In addition, the route of administration can also account for the fate of the
delivery systems. After subcutaneous injection small PEGylated liposomes were found in larger
amount in the lymph node than after intravenous or intraperitoneal injection [246]. Concerning NC
clearance from the body, NC that are smaller than 8 nm are cleared renally [247], and the extent of
renal clearance was shown to correlate with the extent of negative charge [248]. Biliary clearance was
observed especially for particles over 200 nm and for strongly charged particles [249].

7. Targeting of Antigen Presenting Cells

Conventional application routes of naked and NC-complexed DNA may result predominantly
in transfection of non-APC which in turn may generate and release antigen that may be engulfed by
APC [14] [8]. However, only DC populations with cross-presenting potential are able to shuttle a fraction
of extracellular antigen towards MHCI which enables stimulation of CD8+ T cells [16]. Therefore,
pronounced CTL activation requires direct transfection of APC [10]. Due to their pathogen-like
appearance in terms of size and shape, NC-complexed DNA vaccines may passively target APC
like (conventional) DC and macrophages since these cell types are specialized in the uptake of ‘foreign’
material [250]. Usage of either natural ligands or antibodies specific for endocytically active receptors
strongly expressed on APC may enable cell type-focussed targeting [251]. Such moieties may be coupled
to naked DNA or DNA complexing NC.

For targeting, CLR that are predominantly expressed by DC and macrophages constitute suitable
candidates [252]. For example, DC-SIGN [253] and the mannose receptor [254] are expressed by either
cell type at differential intensity, respectively, and mediate internalization of mannosylated particles.
Qiao and coworkers demonstrated that vaccination of mice with a mannosylated cationic liposome
that complexed HIV protein-encoding plasmid DNA resulted in improved immune responses in
mice [255]. Intramuscular application of a DNA vaccine encoding a botulinum neurotoxin fused with
a single chain antibody fragment (scFv) specific for the CLR DEC-205 resulted in improved cellular
and humoral immune responses, and protected vaccinated animals from botulinus infection [256].
Fusion of a tumor antigen encoding DNA vaccine with a CD11c-specific scFv was protective in a
mouse breast cancer model and slowed tumor growth in a therapeutic setting [257].

8. Concluding Remarks

The immunogenicity of DNA vaccines in human ist still to low to yield therapeutically convincing
results. However, in the last 15 years different approaches have shown that optimization of different
parameters contributes to enhanced transfection and hence immunogenicity of DNA vaccines also
in human. Hence, an ideal DNA vaccine will need to be complexed with an APC-targeting NC to
prevent extracellular degradation and to enable direct APC transfection, and will contain a NLS to
facilitate nuclear entry. The DNA vaccine should contain a promoter that facilitates transcriptional
targeting of APC to prevent unwanted antigen expression in tolerance-promoting cell types like
MDSC. Furthermore, the DNA vaccine should include a genetic adjuvant which promotes activation
of the transfected APC to prevent antigen-specific tolerance induction. Of note, several types of NC
bear intrinsic immunostimulatory activity, and the mode of DNA delivery may also result in local
inflammation. Both factors need to be considered since they contribute to shape the character of the
induced immune response, especially with regard to T cell polarization [258]. With regard to tumor
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therapy, recent progress in cost effective deep sequencing now allows to identify patients-specific
tumor antigens [259].

While administration of a DNA vaccine as outlined above aims to induce antigens-specific immune
responses, additional application of agents that inhibit immuno-regulatory myeloid cells like MDSC
and Treg as well as the tumor itself may have synergistic effects [260]. Besides chemotherapeutics,
checkpoint inhibitors that have recently been introduced into clinical therapy are likely candidates for
cotreatment [261].
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Abbreviations

APC antigen presenting cell
AuNP gold nanoparticle
CLR C-type lectin receptor
CPP cell penetrating peptide
CNT carbon nanotube
CTL cytotoxic T lymphocyte Cutaneous and Mucosal HIV Vaccination
CUTHIVAC cutaneous and mucosal HIV vaccination
DC dendritic cell
DC-SIGN dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin
DC-STAMP dendrocyte expressed seven transmembrane protein
DOTAP N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride
IRF interferon-regulatory factor
HLA human leukocyte antigen
LC Langerhans cell
MDSC myeloid-derived suppressor cell
MHC major histocompatibility class
NC nano-carrier
NK natural killer cell
miRNA micro-RNA
NF-κB nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells
NLS nuclear localization signal
PEG polyethyleneglycol
PEI polyethylenimine
PLGA poly-D,L-lactic-coglycolic acid
scFv single chain antibody fragment
SV40 Simian virus 40
TAA tumor-associated antigen
TAM tumor-associated macrophage
Th T helper cell
TLR toll-like receptor
Treg regulatory T cell
VLP virus-like particle
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