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A B S T R A C T   

Due to the nonlinear vibration of ultrasound contrast agent bubbles, a nonlinear scattered sound field will be 
generated when bubbles are driven by ultrasound. A bubble cluster consists of numerous bubbles gathering in a 
spherical space. It has been noted that the forward scattering of a bubble cluster is larger than its backscattering, 
and some studies have experimentally found the angular dependence of a bubble cluster’s scattering signal. In 
this paper, a theory is proposed to explain the difference of acoustic scattering at different directions of a bubble 
cluster when it is driven by ultrasound, and predicts the angular distribution of scattered acoustic pressure under 
different parameters. The theory is proved to be correct under circumstances of small clusters and weak in
teractions by comparing theoretical results with numerical simulations. This theory not only sheds light on the 
physics of bubble cluster scattering, but also may contribute to the improvement of ultrasound imaging tech
nology, including ultrasonic harmonic imaging and contrast-enhanced ultrasonography.   

1. Introduction 

Ultrasound contrast agent bubbles are a diagnostic reagent that can 
significantly enhance the signal of medical detection. Multifunctional 
ultrasound microbubbles can be applied in fields of targeted ultrasound 
molecular imaging, ultrasound thrombolysis, targeted gene drug de
livery [1–4], etc. However, their low resolution, inability to pass 
through the vascular wall into the tissue, and failure to pass through a 
narrow vascular embolism [5–7] create obstacles to wider application. 
Nanobubbles are a good solution to the above problems, and have some 
novel properties. For instance, Pellow [8–10] found that coated nano
bubbles have nonlinear scattering behavior dependent on pressure, and 
then made imaging attempts. High solubility and low scattering in
tensity used to be great challenges faced by nanobubbles [11,12], but 
recent studies have made these problems less thorny. Tan’s model [13] 
shows that nanobubbles can exhibit higher stability than microbubbles 
at higher zeta potential. Ma’s research [14] also found that nanobubbles 
can survive longer due to formation of new shell of charged ions. In 
fields of molecular imaging, theranostics, and drug delivery, nano
bubbles can even outperform microbubbles under optimized ultrasound 
exposure parameters [7,15]. In conditions of fundamental imaging or 

subharmonic imaging, microbubbles show more satisfactory perfor
mance [16,17]. 

Increasing bubble concentration will enhance the scattered acoustic 
signal of nanobubbles, but the interaction between bubbles makes the 
problem complicated. Extensive simulations and experiments [18–21] 
have shown that the enhancement of bubble interaction has a nonlinear 
effect on the signal strength and attenuation: the scattered signal grows 
stronger as the bubble concentration increases, plateaus within a con
centration range, and falls down above a certain concentration. Wu [22] 
et al. integrated the Rayleigh-Plesset equation of free bubbles into the 
acoustic equation in fluid and perturbation approach was used to study 
the acoustic nonlinearity in liquids containing uniform bubbles. Yasui 
[23] used a global “coupling strength” to measure the interaction be
tween bubbles, by which means an analytical expression of the natural 
frequencies was given for microbubbles with or without shells, 
explaining that the acoustic pressure threshold for bubble destruction 
rises as bubble concentration increases. Apart from amorphous, diffuse 
bubble clouds mentioned above, stable spherical bubble clusters were 
observed in some experiments and can persist for 5ms under certain 
conditions [24]. Wang and Cheng [25] found that the bubbles inside a 
bubble cluster are subject to the secondary Bjerknes force directed 
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towards the cluster center, which may account for the stability of the 
bubble cluster. D’Agostino and Brennen investigated the dynamics of a 
spherical bubble cluster under the excitation of acoustic pressure [26], 
and calculated the absorption and scattering cross-sections by seeking 
the solution of the fluid dynamic equations with relevant interaction 
terms [27]. An [28] added bubble interaction term to the bubble vi
bration equation in Keller-Miksis form [29,30] and obtained multi- 
bubble motion equation. Sojahrood [31] studied the interaction effects 
of randomly distributed bubbles in a cluster by solving the bubble mo
tion equation in matrix form, showing that different bubbles inside the 
cluster can exhibit different nonlinear behaviors. 

Most of the current studies on bubble clusters focus on bubble dy
namics and perform numerical simulations. A phenomenon was 
discovered but not paid attention to. Ma [32] studied the influencing 
factors of bubble cluster scattering by numerical calculation, which 
turned out that acoustic scattering differs in different directions of the 
cluster. Maeda and Colonius [33] generalized the bubble-interaction 
parameter mentioned by d’Agostino and Brennen [26] and performed 
simulations for clusters whose size is similar to ultrasond wavelength, 
showing that the scattering in the forward direction is always larger than 
that in other directions. Ye [34] theoretically derived the acoustic 
scattering function of a single coated bubble, where the anisotropic vi
bration of the bubble shell can explain the difference of acoustic scat
tering in the forward and backward directions at frequencies above the 
resonance. However, although the radial vibration of a single bubble is 
uniform near the resonant frequency, the scattering of bubble clusters is 
still angular dependent, which is beyond the scope of Ye’s theory. 
Sujarittam and Choi [35] let an incident acoustic wave propagate along 
the axis of the cylindrical bubble cloud, and put two receiving trans
ducers in the direction of 45◦ counterclockwise and 135◦ clockwise from 
the propagation direction (called distal sensor and proximal sensor 
respectively in their study). Both experimental and numerical results 
showed that the proximal sensor receives weaker signal than the distal 
one. The phenomenon was attributed to the time delay of bubbles at 
different locations when receiving and emitting signals. To put it more 
specifically, the bubbles closer to the sound source are excited earlier 
than those far away, and meanwhile, the sensor earlier receives the 
signals emitted by closer bubbles. Thus, the phase differences are 
created, allowing acoustic waves to interfere constructively or destruc
tively in different directions. Their descriptive explanation is intuitive 
despite the lack of quantitative accuracy. 

In the present work, a cluster scattering theory is established to 
explain the difference of bubble cluster scattering in different directions. 

In order to verify the correctness of the theory, the scattered acoustic 
field of the bubble clusters is numerically calculated by combining a 
coated bubble model and a modified bubble motion equation. The re
sults predicted by the theory are compared to numerical simulated re
sults with different parameters to test the accuracy of the theory. 

2. Scattering model of a spherical bubble cluster 

Spherical bubble clusters are generally formed in the practice of 
contrast-enhanced ultrasonography. Therefore, the scatter of a spherical 
bubble cluster is calculated below. 

2.1. Model set up 

Fig. 1 shows the schematic of a bubble cluster containing N bubbles 
randomly distributed in a spherical region V with radius a. The co
ordinates of each bubble obey uniform distribution in region V, which is 
to say, the probability density function of a bubble appearing at point (x,
y, z) is 

f (x, y, z) =

⎧
⎨

⎩

0 , x2 + y2 + z2 > a2

3
4πa3 , x2 + y2 + z2 < a2,

(1)  

where the center of the cluster is defined as coordinate origin. When N is 
large enough, the cluster can be regarded as a uniform cloud whose 
bubble number density is a constant n = 3N

4πa3. 
Let’s suppose the incident acoustic wave is a plane wave travelling 

orienting the positive z-axis, written as: 

pac = paej(ωt− kz), (2)  

where pa is the amplitude of the incident wave, and ω = 2πf is the 
angular frequency and k = ω/c is wave number. f and c are the fre
quency and velocity of the incident sound wave, respectively. The 
scattered sound field of the cluster is symmetric about the z-axis, so its 
scattering harmonics in different directions can be calculated in any 
plane which contains the z-axis. In the theoretical analysis, we calculate 
the sound field in the yz-plane shown in Fig. 1. The spherical coordinate 
of an arbitrary point is defined as (r, θ,φ), where r, θ,φ are the distance 
of the point from its origin, the polar angle, and the azimuth angle, 
respectively. 

2.2. Formulae derivation 

Even though the oscillation of a bubble is determined by its position 
in the cluster, almost each bubble in the cluster oscillates in the same 
way at steady state under circumstance of weak interaction. Therefore, 
we assume that each bubble scatters identical sound pressure when 
excited by the incident wave, namely: 

ps,i =
1

r1,i
(A1ejωti +A2ej2ωti +⋯). (3)  

Here the subscript i represents the ith bubble and r1 is the distance from 
the bubble located at B(r0, θ0,φ0) to the field point F(r, θ,0). A1 and A2 
are the amplitude of the fundamental and the second harmonic waves, 
respectively. Bubbles located at different points are excited at different 
times, so the time variable ti is unique for each bubble. 

The scattered sound pressure from the bubble at point B lags behind 
that from the bubble at point O by r0cosθ0/c, which is exactly the time 
difference it takes for the incident plane wave to propagate from point O 
to point B. In addition, the scattered sound will spend another r1/c 
travelling from point B to point F. As a result, ti can be expressed as: 

ti = t −
r0cosθ0 + r1

c
, (4) 

Fig. 1. Schematic of a bubble cluster.  
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and the scattered sound pressure at the field point F can be expressed as: 

ps =

∫∫∫

V

A1ejω(t− r0 cosθ0+r1
c ) + A2ej2ω(t− r0 cosθ0+r1

c ) + …
r1

nr2
0sinθ0dr0dθ0dφ0, (5)  

where the distance between B and F is 

r1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(rsinθ − r0sinθ0cosφ0)
2
+ r2

0sin2θ0sin2φ0 + (rcosθ − r0cosθ0)
2

√

. (6) 

When the field point F is far away from the cluster, which is to say, 
r0≪r, Eq. (6) can be simplified as 

r1 ≈ r − r0(sinθsinθ0cosφ0 + cosθcosθ0). (7) 

By substituting Eq. (7) into Eq. (5), mainly considering the effect of 
Eq. (7) on phase and ignoring that on amplitude, it can be obtained that 

ps = I1 + I2 + …

=

∫∫∫

V

A1ejω(t− r+r0 cosθ0 − r0 (sinθsinθ0 cosφ0+cosθcosθ0 )
c )

r
nr2

0sinθ0dr0dθ0dφ0

+

∫∫∫

V

A2ej2ω(t− r+r0 cosθ0 − r0(sinθsinθ0 cosφ0+cosθcosθ0 )
c )

r
nr2

0sinθ0dr0dθ0dφ0

+…,

(8)  

where Eq. (5) is divided into several parts: the integral of fundamental 
wave, second harmonic wave, and so on. 

The integral I1 over variable φ0 is firstly calculated as 

I1 =

∫ a

0

∫ π

0

A1nr2
0ejω(t− r+r0 cosθ0 − r0 cosθcosθ0

c )

r

⋅
(∫ 2π

0
ejωr0 sinθsinθ0

c cosφ0 dφ0

)

sinθ0dθ0dr0.

(9) 

The following definite integral is needed here: 

Jν(x) =
1
π

∫ π

0
cos(xsinθ − νθ)dθ. (10) 

By setting ν = 0, Eq. (10) becomes 
∫ 2π

0
eCsinxdx = 2πI0(C), (11)  

where Jν(x) is ν-order Bessel function and Iν(x) is ν-order Bessel function 
of imaginary argument. They can be translated into each other by Iν(x)
= j− νJν(jx). Substituting Eq. (11) into Eq. (9), I1 can be written as: 

I1 =

∫ a

0

∫ π

0

2πA1nr2
0ejω(t− r+r0 cosθ0 − r0 cosθcosθ0

c )

r
I0(jkr0sinθsinθ0)sinθ0dθ0dr0. (12) 

Then we calculate the integral over polar angle θ0: 

I1 =

∫ a

0
−

2πA1nejω(t− r
c)

r

(∫ π

0
eβcosθ0 I0(αsinθ0)dcosθ0

)

r2
0dr0 (13)  

where α = jkr0sinθ, β = − jkr0(1 − cosθ) for the sake of convenience in 
writing. On the assumption of a small cluster, namely a < 0.1λ, we know 
|α|, |β| < kr0 < ka < 0.7. I0(αsinθ0) can be Taylor expanded as 

I0(αsinθ0) ≈ 1+
α2sin2θ0

4
, (14)  

because the third term of Taylor expansion, namely 
α4sin4θ0

64 < 0.74

64 < 0.004, is too small to influence the final result of I1. By 
substituting Eq. (14) into Eq. (13), it can be obtained that 

I1 =

∫ a

0
−

2πA1nejω(t− r
c)

r

[ ∫ π

0

(

1 +
α2

4
−

α2cos2θ0

4

)

eβcosθ0 dcosθ0

]

r2
0dr0.

(15) 

Using substitution method, Eq. (15) can be written as: 

I1 =

∫ a

0

2πA1nejω(t− r
c)

r

[ ∫ 1

− 1

(

1 +
α2

4
−

α2ξ2

4

)

eβξdξ
]

r2
0dr0. (16) 

After simple calculation, Eq. (16) turns into 

I1 =

∫ a

0

2πA1nejω(t− r
c)

r

[(
4 + α2

4β
−

α2ξ2

4β
−

α2

2β3

)

eβξ +
α2

2β2 ξeβξ
]1

− 1
r2

0dr0. (17) 

Using sinhx = 1
2 (e

x − e− x) and coshx = 1
2 (e

x + e− x), Eq. (17) can be 
simplified as 

I1 =
2πA1nejω(t− r

c)

r

∫ a

0

[(
2
β
−

α2

β3

)

sinhβ +
α2

β2 coshβ
]

r2
0dr0. (18) 

Using β = jkr0(cosθ − 1) and α = β sinθ
cosθ− 1, Eq. (18) is transformed into 

an integral over β, written 

I1 =
2πA1nejω(t− r

c)

jk3(cosθ − 1)3r
⋅

∫ jka(cosθ− 1)

0

[((
sinθ

cosθ − 1

)2

− 2

)

βsinhβ −

(
sinθ

cosθ − 1

)2

β2coshβ

]

dβ.

(19) 

Finally, I1 is calculated as 

I1 =
2πa3A1nejω(t− r

c)

γ3r
⋅

{[

3
(

sinθ
cosθ − 1

)2

− 2

]

(γcosγ − sinγ) +
(

sinθ
cosθ − 1

)2

γ2sinγ

}

,

(20)  

where ka(cosθ − 1) is denoted as γ for short. 
Eq. (20) is the fundamental part of a bubble cluster’s scattered 

acoustic pressure. Similarly, the integral of harmonics can be easily 
acquired by replacing ω and k with nω and nk. For instance, the integral 
of the second harmonic is 

I2 =
2πa3A2nej2ω(t− r

c)

8γ3r
⋅

{[

3
(

sinθ
cosθ − 1

)2

− 2

]

(2γcos2γ − sin2γ) +
(

sinθ
cosθ − 1

)2

4γ2sin2γ

}

(21) 

By incorporating the angular dependent coefficients into two 
renewed amplitude parameters, Eq. (20) and Eq. (21) can be written in 
an intuitive form, namely 

I1 =
A1

′

ejω(t− r
c)

r
(22)  

and 

I2 =
A2

′

ej2ω(t− r
c)

r
, (23)  

where the renewed amplitude parameters A′

1 and A′

2 are written as: 

A′

1 =
2πa3nA1

γ3 ⋅

{[

3
(

sinθ
cosθ − 1

)2

− 2

]

(γcosγ − sinγ) +
(

sinθ
cosθ − 1

)2

γ2sinγ

} (24)  

and 
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A
′

2 =
2πa3nA2

8γ3 ⋅

{[

3
(

sinθ
cosθ − 1

)2

− 2

]

(2γcos2γ − sin2γ) +
(

sinθ
cosθ − 1

)2

4γ2sin2γ

}

.

(25)  

2.3. Deductions 

When θ = 0, Eq. (20) can be simplified by Taylor expanding the 
trigonometric functions to the 6th order, written as: 

I1 =
32πa3A1nejω(t− r

c)

r
⋅

[

−
1
3

((

−
1
2
+

θ2

24
)

)3 ]

=
A1ejω(t− r

c)

r
⋅n

4
3

πa3, (26)  

and the second harmonic can be written as: 

I2 =
A2e

j2ω
(

t− r
c

)

r
⋅n

4
3

πa3. (27) 

Eqs. (26) and (27) suggest that the forward scattering of a bubble 
cluster is equivalent to a simple superposition of the scattered acoustic 
pressure of all bubbles vibrating in a sphere whose volume is 43 πa3. 

After obtaining the expression of the scattered acoustic pressure of a 
bubble cluster, we can predict how the scattered signal of different 
frequencies decays as the scattering angle increases. We define Rp as the 
ratio of the second harmonic component to the fundamental component 
of the scattered acoustic pressure. The bubbles have an Rp originated in 
Eq. (3), written 

Rp =
A2

A1
, (28)  

which is decided by a modified bubble motion equation and indepen
dent of direction. When bubbles gather into a cluster, the ratio Rp be
comes angular dependent and changes into 

R′

p(θ) =
A2

′

A′

1

=
A2

A1

[

3
(

sinθ
cosθ − 1

)2

− 2

]

[cos2γ − sinc(2γ) ]+
(

sinθ
cosθ − 1

)2

2γsin2γ

4

{[

3
(

sinθ
cosθ − 1

)2

− 2

]

[cosγ − sinc(γ) ]+
(

sinθ
cosθ − 1

)2

γsinγ

} .

(29) 

In Eq. (29), θ=0 corresponds to the forward scattering of a bubble 
cluster, where R′

p = Rp =
A2
A1

, because both the fundamental and the 
second harmonic components do not change in the forward direction, 
just as Eq. (26) and Eq. (27) reveal. θ= π corresponds to backscattering, 

where A2
′

A′

1
= A2

A1
⋅[cos(4ka) − sinc(4ka) ]/[4cos(2ka) − 4sinc(2ka)]. When 

ka→0, A2
′

A′

1
= A2

A1
, indicating that a very small cluster scatters just the same 

acoustic pressure behind and in front of it. Nevertheless, in most cases of 

backscattering, A2
′

A′

1 
is smaller than A2

A1
, which means the second harmonic 

component decreases greater than the fundamental component does as θ 
incresaes. 

3. Numerical simulation 

3.1. Numerical methods 

In order to verify the correctness of the theory and test its applica
bility, simulations on coated bubble clusters are conducted. Here coated 
bubbles are choosed rather than free bubbles because of their stability 

under ultrasonic excitation [18], so that the bubble clusters they form 
can live longer in medical practice. 

The effect of bubble interaction is significant to numerically simulate 
the scattering of coated bubble clusters. Yasui’s model [23] regards each 
bubble as the center of a spherical cluster to get a global “coupling 
strength”, which neglects the difference of bubbles at different positions 
in the cluster. Sojahrood’s model [31], which expresses the bubble 
motion equation in matrix form, is more accurate, but requires large 
computation when there are too many bubbles due to the time 
complexity of computing matrix inversion. Therefore, we choose a more 
convenient model derived by An [28]. Based on An’s model, many 
simulations concerning bubble clusters have been done to study the 
secondary Bjerknes force [25], the acoustic scattering [32], the acoustic 
Lichtenberg figure [36], etc. The model not only fits other models under 
certain conditions [37,38], but also fits well with some experimental 
phenomena [36,39]. In An’s model, the motion equation for a bubble at 
radius r0 a bubble cluster of radius a with N bubbles is written as: 

(1 − M +
3
2
M0)RR̈ +

3
2
(1 −

M
3
+ 2M0)Ṙ

2

= (1 + M)
1
ρl
[pl − p0 − pac(t + tR)] +

tR

ρl
ṗl.

(30)  

Here R, ρl, p0, pac(t), pl, pg are the bubble radius, the liquid density, the 
ambient pressure, the driving acoustic pressure, the pressure on the 
outside of the bubble–liquid interface, and the gas pressure inside it, 
respectively. tR equals R/c, where c is the sound speed in the liquid. M0 is 

a correction factor for bubble interaction, which is equal to N R
a(1 −

r2
0

3a2), 
with N,R, a respectively representing the number of bubbles, the 
instantaneous radius of the bubble and the radius of the cluster. M = Ṙ

c is 
the Mach number of the bubble wall, which is negligible when Ṙ is much 
smaller than c. 

Here we apply Eq. (30) to solve the interaction of coated bubbles. As 
to the radial dynamics of coated bubbles, the Marmottant model [40] is 
a widely used model, which can be applied not only to microbubbles, but 
also to nanobubbles. In many studies, simulations and experiments 
based on the Marmottant model have been performed on both micro
bubbles and nanobubbles [41,10,9,42]. Besides verifying the validity of 
the model, the experiments also confirmed some novel characteristics 
predicted by simulations, such as “pressure threshold effect”. Although 
the validity of the model for nanobubbles has not been thoroughly 
tested, it has successfully been used to numerically explain the experi
mentally detected nanobubble behaviors [8,15,41]. The significant 
changes in the surface tension and curvature in case of nanobubbles may 
necessitate adding extra terms to the model in future studies. The core of 
the Marmottant model is that, the surface tension of a bubble is related 
to its radius, expressed as [40]: 

σ(R) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if R⩽Rbuckling

χ( R2

R2
buckling

− 1) if Rbuckling⩽R⩽Rbreak− up

σwater if ruptured and R⩾Rruptured .

(31)  

Here Rbuckling = R0/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + σ(R0)/χ

√
is the critical radius below which the 

bubble coating would buckle; Rbreak− up = R0/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + σbreak− up/χ

√
is the 

critical radius above which the bubble coating would break up and 
Rruptured = R0/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + σwater/χ

√
is the critical radius to maintain ruptured. 

R0 is the original radius of the bubble. χ, σbreak− up, σwater respectively 
represent the elastic modulus of bubble coat, critical break-up tension of 
the bubble and the surface tension of water. 

For a coated bubble, the pressure pg of the gas inside and the pressure 
pl of the liquid side at the interface meet the following relationship [40]: 

pl = pg −
2σ(R)

R
+ 4μ Ṙ

R
+ 4κs

Ṙ
R2, (32) 

X. Xu et al.                                                                                                                                                                                                                                       



Ultrasonics Sonochemistry 94 (2023) 106308

5

where μ and κs are the viscosity of the surrounding liquid and the surface 
dilatational viscosity from the monolayer, respectively. The gas in the 
bubble is assumed to satisfy the ideal polytropic gas law, its pressure is 
expressed as [30]: 

pg =

[

p0 +
2σ(R0)

R0

](
R
R0

)− 3κ

. (33)  

Here κ is the polytropic gas exponent and equals the ratio of specific 
heats for bubbles behaving adiabatically [43]. 

Substituting Eq. (32) into Eq. (30), we obtain the modified bubble 
motion equation taking into account the interactions of bubbles, which 
is described as 
(

1 − M +
3
2

M0

)

RR̈ +
3
2

(

1 −
M
3
+ 2M0

)

Ṙ2

= (1 + M)
1
ρl

[

−
2σ(R)

R
−

4μṘ
R

−
4κsṘ
R2 − p0 − pac

]

+
1 + M − 3κM

ρl

(

p0 +
2σ(R0)

R0

)(
R
R0

)− 3κ

+
R

ρlc
d
dt

[

−
2σ(R)

R
−

4μṘ
R

−
4κsṘ
R2

]

.

(34) 

The specific steps of simulation are given below. First, set all the 

Table 1 
List of fixed parameters used in simulations.  

Parameters Values 

c 1.50 × 103 m/s 
ρl 1.00 × 103 kg/m3 

μ 2.98 × 10− 3 Pa⋅s 
σwater 7.29 × 10− 2 N/m 
σ(R0) 1.00 × 10− 3 N/m 
σbreak 1.10σwater 

χ 2.00 N/m 
κs 5.00 × 10− 10 N 
p0 1.01 × 105 Pa 
κ 1.095  

Fig. 2. Oscillation of one single bubble in the cluster(with or without interaction): (a) radius versus time of the bubble, (b) scattered acoustic pressure and (c) 
its spectrum. 

Fig. 3. (a) Scattered acoustic field of a bubble cluster. 10 images are captured at equal time intervals within one vibration cycle T = 1/f . (b) The waveform of the 
acoustic pressure at 0T on the red line marked in (a). 

Fig. 4. Scattering pattern of the bubble cluster, including (a) normalized fundamental amplitude, and (b) normalized second harmonic amplitude. The solid blue line 
and dashed red line represent the results of numerical simulation and theoretical calculation, respectively. 
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involved parameters and generate N bubbles in the sphere using a 
random function according to the probability density function of Eq. (1). 
Since the interaction parameter M0 in Eq. (34) depends on the positions 
of bubbles, there are N different motion equations. Then, the fourth 
order Runge–Kutta method [44] is used to solve the vibration of each 
bubble separately, and the resulting radius versus time Ri(t) of bubble i is 
stored. The scattered acoustic pressure of each bubble as a function of 
Ri(t) is expressed as [45]: 

ps,i(r, t) =
ρ
r

[
Ri(r, τ)2R̈i(r, τ) + 2Ri(r, τ)Ṙi(r, τ)2

]
, (35)  

where τ = t − r/c is the travel time of scattered acoustic wave from 
bubble i to a point which has a distance of r away from it. After that, the 
acoustic pressure at a field point F can be obtained by superimposing the 
acoustic pressure ps,i emitted by all bubbles: 

pF =
∑N

i=1
ps,i(ri→F , t − ri→F

/

c). (36)  

Here, ri→F means the distance from bubble i to point F. The scattered 
acoustic field of the bubble cluster in a certain region can be obtained by 
taking lattice points in the region and performing the above sum 
calculation point by point. 

In the numerical simulation, some parameters are fixed for further 

exploration of other parameters’ effect on the precision of the theory. 
Table 1 presents reasonable values for the ultrasound contrast agents 
shell properties according to references [41,31,46–48,42] while with 
sulphur hexafluoride as the gas core instead of C3F8 [40]. Moreover, the 
incident wave is expressed as pac = − pasin(ωt − kz) instead of Eq. 2, 
which has little effect but simplifies the calculation. 

3.2. Results 

In a cluster with radius a = 0.05 mm, 50 coated bubbles are 
randomly distributed according to the probability density function of 
Eq. (1). The radius of the bubbles is R0 = 1μm, which corresponds to a 
resonant frequency of 3 MHz [41]. A plane wave with pa = 0.1p0 and 
f = 3 MHz, propagating along the positive z-axis, is used to activate the 
nonlinear oscillation of the bubble cluster. 

One bubble is randomly selected from the cluster to observe its 
oscillation characteristics. As shown in Fig. 2(a), the radius of the 
selected bubble changes drastically when R < R0, called “compression- 
only” behavior [40]. In Fig. 2(b), sharp and deep “valleys” can be seen, 
which are actually very large negative acoustic pressure. The nonlinear 
oscillation of the bubble leads to its rich harmonic components, see 
Fig. 2(c), making it possible to calculate the cluster’s scattered acoustic 
pressure of different frequency components. The scattered sound pres
sure of a unique bubble without interaction is stronger in amplitude and 

Fig. 5. Scattering pattern at different ka. R0 = 1 μm,f = 3 MHz. (a)(c)(e) are fundamentals; (b)(d)(f) are second harmonics. In (a)(b), (c)(d), (e)(f), ka = 0.2,0.9,1.5,
N = 12,54,89, a = 15.9 μm,71.6 μm,119 μm, respectively. 
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advanced in phase, and its harmonics are much stronger, so it is indeed 
necessary to add bubble interaction terms in the simulations of bubble 
clusters. 

The scattered acoustic field as a function of time in the yz-plane is 
shown in Fig. 3(a). A cluster with a diameter of 2a lies right in the middle 
of yz-plane (too small to mark it). A square area with sides of 16a 
demonstrates the scattered acoustic field, and during one oscillation 
cycle, 10 images in sequence are captured. It can be observed visually 
that the acoustic pressure is asymmetric in front of (z > 0) and behind 
(z < 0) the bubble cluster. This feature is shown more clearly in Fig. 3 
(b). The negative acoustic pressure travelling forward, which looks like a 
“valley”, is narrower and deeper than that travelling backward. The 
difference between the forward scattering and backscattering of the 
cluster can be described quantitatively by calculating the spectrum. 
Furthermore, the scattering of the bubble cluster in different directions 

will be calculated and compared with the theoretical values. 
The amplitudes of the fundamental and second harmonic of far-field 

scattered acoustic pressure in different directions are monitored at a 
distance of 20a from the center of the cluster, and compared with 
theoretical values, see Fig. 4. Both the fundamental wave and the second 
harmonic wave have larger amplitude in front of the cluster (θ = 0◦) 
than behind it (θ = 180◦). As θ increases from 0 to π, the second har
monic component decreases faster than the fundamental component 
does, and the backscattered second harmonic amplitude is even less than 
half of the forward scattering. This phenomenon has been predicted in 
Section 2.3. The results of numerical simulation and theoretical calcu
lation are well matched, indicating that the theory not only successfully 
explained the difference of scattered field in different directions quali
tatively, but also has the ability to precisely predict the angular distri
bution of a bubble cluster’s scattering. 

Fig. 6. Scattering pattern at different M̃0. R0 = 1 μm, f = 3 MHz,a = 47.7 μm. (a)(c)(e) are fundamentals; (b)(d)(f) are second harmonics. In (a)(b), (c)(d), (e)(f), 
M̃0 = 0.25,0.9, 1.4,N = 12,43,67, respectively. 
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For the purpose of further verifying the correctness of the theory and 
exploring the influencing parameters of the precision of the theory, more 
numerical simulations are implemented. 

From Eqs. (20) and (21), it can be found that I1 and I2 are mainly 
determined by ka. In addition, due to the interaction between bubbles, 
when M0 in Eq. (34), indicating the strength of bubble interaction, is too 
large, the oscillation amplitude of bubbles at the center and on the fringe 
of the cluster may be quite different, violating the assumption that “each 
bubble scatters identical acoustic pressure”. As a result, a parameter that 
can measure the interaction of bubbles is required. M0 varies with the 
location and radius of a specific bubble, so its form is changed into 

M0 =
NR0

a
⋅
R
R0

(

1 −
r2

0

3a2

)

= M̃0⋅
R
R0

(

1 −
r2

0

3a2

)

, (37)  

where M̃0 = NR0/a is a parameter independent of the position and 
radius of a single bubble, and can be used to globally measure the 
strength of bubble interactions in a cluster. For the reasons mentioned 
above, the influence of ka and M̃0 on the scattering theory will be 
investigated. 

By fixing M̃0 = 0.75 and changing ka from 0.2 to 1.5, the scattering 
pattern of the bubble cluster is numerically and theoretically calculated, 
see Fig. 5. When ka is close to zero, the bubble cluster scatters almost 
identical acoustic pressure in all directions. This is reflected in Fig. 5(a) 
(b), where the curves are almost perfect circles. When ka increases, the 
power of backscattering diminishes. These results are all consistent with 
the deductions in Section 2.3. In the case of different values of ka, the 
theoretical results and the simulation results are in good agreement. 
Only when ka is large, as shown in Fig. 5(e)(f), the gap between two lines 
becomes discernible. 

The effect of the interaction between bubbles on the theory is studied 
by changing M̃0, and the results are shown in Fig. 6. Here ka is chosen to 
be 0.6, while M̃0 varies from 0.25 to 1.4. Since the value of ka is un
changed, the scattering pattern has little difference in Fig. 6(a), (c), (e), 
as well as in Fig. 6(b), (d), (f). However, when M̃0 > 1, the backscat
tering of the second harmonic can not be predicted accurately any more. 

Fig. 5 shows that the scattering pattern is mainly determined by ka. 
As a result, the ratio of backscattered sound pressure to forward scat
tered sound pressure of a bubble cluster, namely A′

1(θ = π)/A′

1(θ = 0), 
is determined by ka. Fig. 7 shows this ratio as a function of ka values and 
would be useful for a direct use of the theoretical results in several ul
trasound fields. M̃0 is set to be 0.75 to avoid strong interaction between 

bubbles. The theoretical curve is smooth, but the simulation curve is 
biased near the theoretical curve. Since bubbles are randomly distrib
uted in clusters, uneven distribution will inevitably occur, leading to 
deviations between simulation values and theoretical values. 

4. Discussion and conclusion 

Although the theory performs well in the case of small ka and M̃0, the 
error in other cases needs further investigation. On the one hand, the gap 
between theoretical and numerical lines in Fig. 5(e)(f) can be attributed 
to the neglect of terms above the third order in the Taylor expansion Eq. 
(14), which is accurate only under the circumstance of small ka. Keeping 
more terms in Eq. (14) will narrow the gap, but it will increase 
computation. On the other hand, the failure to predict the bubble clus
ter’s scattering in Fig. 6(f) can be put down to bubble interaction since it 
violates our assumption. In the context of large interaction between 
bubbles, the scattered acoustic pressure of each bubble in the cluster can 
not be regarded as identical, but should gradually increase from the 
center of the sphere to the fringe of it. Consequently, the integral in Eq. 
(5) should be multiplied by a dimensionless function monotonically 
increasing with r0 to regulate the effect of bubble interaction. As for the 
specific form of this regulation function, and subsequent calculation of 
the amended integral, further researches remain to be conducted. 

In this work, only the time delay of receiving and radiating sound 
pressure due to different positions of bubbles was considered. In fact, 
there is another time delay in the process of bubble interaction because 
the scattered sound radiated by one bubble needs a travel time to in
fluence another bubble. We neglected this effect just as most studies did 
[28,33,19,23]. The effect of time delays were studied by introducing a 
radiation damping term ( 1

4πc0
d3V
dt3

) and including the time delay (t − dij/c0) 
in the interaction term in the bubble motion differential equation 
[49–51], where V, c0 and dij are the bubble volume, sound speed and 
distance between bubble i and j. Although the time delay effect can be 
estimated by an approximate method [51], introducing time delays still 
requires a lot of computation [31] and may lead to instability [52]. In 
the scope of this work, because of low bubble concentration and small 
bubble cluster, the influence of time delay effects in bubble interaction is 
neglectable compared with the time delay caused by bubble receiving 
and radiating sound pressure at different locations. 

In summary, we present a theory for the scattering of bubble clusters, 
and the difference of scattered field in different directions is explained. 
The scattered acoustic pressure of a bubble cluster is theoretically 
derived, including fundamental and harmonic components. Numerical 
simulations are conducted by combining a modified bubble motion 
equation and a model for coated bubbles. Some phenomena deduced 
from the theory are observed in the simulation, including the faster 
decreasing of the second harmonic component than the fundamental 
component and the nondirectional scattering at small ka values. The 
phenomenon that the forward scattering of a bubble cluster is greater 
than its backscattering is successfully explained. The correctness of the 
theory is verified under circumstances of different parameters. In case of 
small clusters (ka < 1) and weak interactions (M̃0 < 1), the theory can 
precisely predict the scattered acoustic pressure from a bubble cluster, 
while has some bias in other cases. This research provides theoretical 
basis for the application of nanobubbles, and may contribute to the 
development of ultrasonography. 
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