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ABSTRACT

Stalk lodging seriously affects yield and quality of crops, and it can be caused by several factors, such as
environments, developmental stages, and internal chemical components of plant stalks. Breeding of stalk
lodging-resistant varieties is thus an important task for maize breeders. To better understand the genetic
basis underlying stalk lodging resistance, several methods such as quantitative trait locus (QTL) mapping
and genome-wide association study (GWAS) have been used to mine potential gene resources. Based on
different types of genetic populations and mapping methods, many significant loci associated with stalk
lodging resistance have been identified so far. However, few work has been performed to compare and
integrate these reported genetic loci. In this study, we first collected hundreds of QTLs and quantitative trait
nucleotides (QTNs) related to stalk lodging traits in maize. Then we mapped and integrated the QTLs and
QTNs in maize genome to identify overlapped hotspot regions. Based on the genomic confidence intervals
harboring these overlapped hotspot regions, we predicted candidate genes related to stalk lodging traits.
Meanwhile, we mapped reported genes to these hotspot regions. Finally, we constructed molecular reg-
ulatory networks underlying stalk lodging resistance in maize. Collectively, this study provides not only
useful genetic loci for deeply exploring molecular mechanisms of stalk lodging resistance traits, but also
potential candidate genes and targeted strategies for improving stalk lodging resistance to increase crop

yields in future.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

(https://www.fao.org/faostat/en/#data). Although maize yield in-
creases annually, it still cannot meet the demands of the rapid po-

Maize (Zea mays L.) originated from a wild grass in central
Mexico at least 7000 years ago and has been globally distributed
nowadays [1]. It is served as an important source of food, fodder and
industrial raw materials. Currently, maize production ranks the top
one among all cereal crops. For example, maize yield reached 1.2
billion tons in 2020, accounting for 38.8 % of the total yield of cereals
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pulation growth and economic development. Moreover, several
environmental and disease factors threaten the maize yield globally,
and stalk lodging has been one of the biggest constraints [2].

Stalk lodging is a phenomenon that stems spontaneously change
from natural growth to permanent bending or breaking status.
According to the bending or breaking region where lodging occurs,
stalk lodging could be divided into two types, stem lodging and root
lodging [3,4] (Fig. 1A). Stem lodging refers to stem bending or
breaking of the basal internodes at or below the ear-bearing node of
the stem. Root lodging refers to the falling down or breaking of the
whole plant which is mainly induced by the loose of root-soil an-
chorage system [5], and it happens during the whole developmental
stages. Stalk lodging has significantly negative effects on maize yield.
In terms of yield, a 1 % increasing of stalk lodging degree would
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Fig. 1. Stalk lodging types, different plant tissues and measurement approaches used to investigate stalk lodging in maize. (A) Three major types of stalk lodging in maize: stem
bending (left), stem breaking (middle) and root lodging (right). The red arrows indicate the third internode above the brace roots in maize. (B) Different plant tissues and
measurement approaches used to investigate the stalk lodging traits in maize. (C) Field performance between stalk lodging resistant (left) and sensitive (right) varieties of maize.

The image on the right represents an example of stem bending-type lodging.

cause a yield loss of about 108 kg/hm [6]. Additionally, stalk lodging
makes maize harvest more difficult and retards mechanical har-
vesting [7]. Thus, exploring the basic genetic resources and culti-
vating stalk lodging-resistant varieties are crucial for enhancing
maize yield in the future [4,8,9].

Multiple biotic or abiotic stressful factors, such as insects, high
wind and floods, can cause stalk lodging [10,11]. Besides, the oc-
currence of maize stalk lodging is related to morphological char-
acteristics and stem breaking usually happens in the third internode
(Fig. 1A) [8]. Xue et al. (2020) found that lodging mainly occurs
between the 2nd to 5th internodes above the brace roots by using a
wind turbine [4]. Usually, the third internodes are utilized for eval-
uating the stalk lodging degrees [6,12,13]. Rind thickness and
strength are significantly negatively correlated with stalk lodging,
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and thus rind penetrometer resistance (RPR) is regarded as the most
direct phenotype to evaluate stalk lodging resistance [14,15]. RPR
refers to the force which is required to pierce a stalk rind with a
spike, and has been used in several studies [6,16-18].

Plant height, ear height, stem diameter (SD) and stem me-
chanical strength are also related to stalk lodging. SD was found to
be significantly positively correlated with RPR or lodging re-
sistance. Zhang et al. used 257 maize inbred lines to investigate the
regulatory factors for stalk lodging resistance, and found that the
15-cm stem diameter above ground level, approximately in the
2nd and 3rd internode position, positively affects puncture
strength and bending strength [19]. Besides RPR, stem bending
strength (SBS) is another frequently-used parameter for evaluating
stem strength [20].
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The anatomical structure of mature maize stalks is mainly made
up of the cortex, sclerenchyma, vascular system (xylem and phloem)
and parenchyma. Various histochemical techniques and micro-ex-
amination methods have been employed to detect the stem anato-
mical characters. Wang et al. surveyed the morphological structure,
anatomical characters, and chemical compositions of ten maize
inbred lines, analyzed the correlations between these characters and
lodging resistance, and found that thick-wall and mechanical tissue
proportions were positively correlated with lodging resistance,
while stem height and vascular bundle numbers were negatively
corrected [21]. Similarly, the cortex thickness, vascular bundle (VB)
numbers, and the degree of lignification in the cortex region have
been proven to be important factors for lodging resistance [22-25].

Stalk chemical substrates such as lignin (Lig), cellulose (Cel) and
hemicellulose have also been reported to associate with lodging
resistance in maize [26,27]. As the second high-molecular polymer,
lignin mainly accumulates in the secondary cell wall and is the major
component determining cell wall strength and stalk stiffness [28].
The contents and proportions of these chemicals mentioned above
in the stem are regarded as important factors affecting stalk lodging
(Fig. 1B). By detecting cellulose, hemicellulose, and lignin contents of
200 high-oil recombinant inbred lines (RIL) in five different en-
vironments, the lignin and cellulose contents were found to posi-
tively correlate with RPR [29]. However, in other studies, the
contents of cellulose, hemicellulose and soluble sugar are positively
correlated with stem strength but negatively correlated with lodging
resistance [30,31].

The genetic essence is the vital factor determining the stalk
lodging characters of cultivars. Thus, we focused on the genetic
factors controlling stalk lodging traits in this study. Field perfor-
mance tests showed that stalk lodging-resistant varieties could
persist upright, whereas sensitive types fell to the ground with a
significant loss of yield (Fig. 1C). Thus, it is practicable to cultivate
lodging-resistant varieties by combing elite alleles of important ge-
netic loci. Stalk lodging-related traits have been consistently char-
acterized as quantitative traits in previous studies [32,33].
Quantitative trait locus (QTL) mapping and genome-wide associa-
tion study (GWAS) are the most popular methods for discovering
genes controlling quantitative traits [34,35]. They have been used to
identify hundreds of QTLs and quantitative trait nucleotides (QTNs)
for maize stalk lodging traits. For example, phenotypes of two stalk
lodging traits, RPR and ear height, were evaluated across four F,
populations, and then 26 and 20 QTLs were identified for each trait,
respectively [32]. Besides the F, population, many advanced popu-
lations such as F,.3 and RIL populations have also been employed for
QTL mapping [34]. 29, 34 and 48 QTNs associated with SD, SBS and
RPR, respectively, were detected using 48,193 SNPs across 257 inbred
lines representative of the genetic diversity in tropic, subtropic, and
temperate genetic backgrounds [19]. Furthermore, 16 candidate
genes associated with four stalk lodging traits were detected by
using 899,784 SNPs derived from RNA-seq data of 942 inbred lines,
and four of which were associated with plant height, eight with stalk
diameter, one with rind thickness, and three with vascular bundle
density [36].

Although many QTLs, QTNs and genes have been reported to
control maize stalking-related traits, it is not clear whether these
loci or genes are shared or overlapped due to different materials and
reference genomic data used in previously published results. To es-
tablish a whole scope of genetic structure underlying the maize stalk
lodging traits in this study, we firstly collected almost reported QTLs,
QTNs, and cloned genes related to maize stalk lodging resistance.
Meta-analysis was performed to integrate the reported QTLs into
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multiple meta-QTLs (mQTLs). Meanwhile, QTN hotspots were in-
vestigated by combining the reported QTNs in different studies.
Then, information of the meta-QTLs, QTN clusters, and cloned genes
was integrated to identify the candidate genes involved in maize
stalk lodging resistance and finally construct the whole blueprint
underlying stalk lodging-related traits in maize.

2. Materials and methods
2.1. Literature review and QTL/QTN data collection

A deep and thorough bibliographic review was conducted on
maize QTLs/QTNs related to seven stalk lodging traits, including RPR,
SBS, SD, VB, Lig, Cel and detergent fiber (DF) contents from published
literatures. From 2003-2022, 61 independent papers were retained
for further analysis, with 50 papers for QTLs, seven for QTNs, and
four for both. The basic information including traits, populations,
and environmental conditions in each literature was collected and
listed in Supplementary Table S1.

2.2. QTL projection and meta-analysis

QTL confidence interval (CI) is an important parameter of QTL
mapping result. CIs could not be obtained for QTLs which were
mapped by single marker analysis or interval mapping method. So
the ClIs of these QTLs were further estimated by the empirical for-
mula as described previously [37]. Then all collected QTLs were
projected on the IBM2 2008 Neighbors genetic map, which is
available on the genome browser MaizeGDB (http://maizeGDB.org).
After QTL projection, BioMercator v4.2 software [38,39] was used to
perform QTL Meta-analysis. mQTLs were hypothesized based on the
optimal model with the lowest akaike information criterion (AIC)
value [40,41]. mQTLs were designated as ‘mQTL-trait-Chr-number’.
All mQTLs obtained were mapped to B73 reference genome se-
quence (AGPv4 version) by BLASTN analysis performed on Mai-
zeGDB (Supplementary Table S2). The physical position of each
mQTL was calculated based on flanking markers’ primer sequences.

2.3. Identification of QTN clusters

Based on physical positions, all collected QTNs were mapped to
B73 reference genome sequence (AGPv4 version) for QTL cluster
analysis. QTN clusters were identified by searching in a sliding
window of five Mb for the original QTN data. A genomic region was
defined as a QTN cluster where at least three QTNs were co-loca-
lized. QTN clusters of each trait were scanned on all ten maize
chromosomes and recorded in Supplementary Table S3.

2.4. Identification of mQTL and QTN hotspots

After mQTLs and QTN clusters were identified, they were com-
pared and integrated based on their physical positions
(Supplementary Tables S2 and S3). Only regions that harbored at
least two mQTLs, QTN clusters or both of them, regardless of their
related traits, were declared as overlapped mQTL/QTN hotspots
(Supplementary Table S4).

2.5. Prediction of candidate genes
Gene models within overlapped mQTL/QTN hotspot regions were

predicted based on the physical positions in B73 reference genome
(AGPv4 version) (Supplementary Table S4). Gene ontology (GO)
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Table 1
Summary of QTLs and QTNs distributed on maize chromosomes.
Chr Type Trait”
RPR SBS SD VB Lig Cel DF Total
Chr1 QTL 20 4 41 17 43 13 21 159
mQTL 7 2 7 3 3 22
QTN 81 17 35 31 4 14 2 184
QTN cluster 12 4 3 19
Chr2 QTL 16 17 3 33 9 19 97
mQTL 2 8 8 6 24
QTN 28 20 25 30 4 11 1 119
QTN cluster 5 1 3 4 1 14
Chr3 QTL 16 3 31 2 24 6 5 87
mQTL 5 7 2 14
QTN 51 31 15 27 24 148
QTN cluster 6 1 1 4 3 15
Chr4 QTL 9 8 2 13 5 4 11
mQTL 2 2
QTN 40 23 12 31 2 14 66 188
QTN cluster 4 3 5 2 3 17
Chr5 QTL 15 1 15 6 13 5 17 72
mQTL 1 4 2 2 9
QTN 33 16 15 34 2 11 9 120
QTN cluster 5 2 2 3 1 1 14
Chr6 QTL 13 3 15 8 9 3 15 66
mQTL 4 3 6 13
QTN 42 14 19 15 6 6 9 111
QTN cluster 4 2 2 1 9
Chr7 QTL 8 1 16 7 13 2 15 62
mQTL 6 4 2 12
QTN 32 13 12 31 4 8 9 109
QTN cluster 7 1 1 3 1 2 15
Chr8 QTL 10 3 19 7 25 3 12 79
mQTL 6 7 3 16
QTN 41 19 17 27 3 18 3128
QTN cluster 7 2 3 1 1 1 15
Chr9 QTL 9 3 5 3 12 3 4 39
mQTL 2 2
QTN 34 12 12 35 3 14 14 124
QTN cluster 4 2 1 6 1 2 16
Chr10  QTL 7 30 7 15 10 69
mQTL 5 4 9
QTN 29 11 3 23 5 3 1 75
QTN cluster 3 2 1 6

2 RPR, rind penetrometer resistance; SBS, stalk bending strength; SD, stem dia-
meter; VB, vascular bundle; Lig, lignin content; Cel, cellulose content; DF, detergent
fiber content.

enrichment analysis for these investigated gene models was per-
formed wusing a web-based tool agriGO2.0 (http://system-
sbiology.cau.edu.cn/agriGOv2/index.php#). After GO analysis, those
gene models involved in any one of three main biological processes,
including lignin metabolic process, phenylpropanoid metabolic
process, and hormone-mediated signaling pathway, were used for
subsequent gene expression analysis. In silico gene expression ana-
lysis was performed with previously published RNA sequencing
(RNA-seq) data [42].

3. Results and discussion
3.1. Identifying mQTLs related to stalk lodging traits

As an efficient tool for integrating dense QTLs to discover
genomic regions [43], meta-QTL analysis has been performed suc-
cessfully for many important agronomic traits in plants, such as
grain yield-related traits in maize, wheat and rapeseed [43-47],
flowering time in maize [48,49], drought tolerance in rice, maize,
wheat and cotton [50-54], abiotic stress in barley and maize [41,55].
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Here, we firstly collected almost the QTL mapping results of stalk
lodging traits from 54 published papers (Supplementary Table S1),
then performed meta-QTL analysis to screen QTL clusters as de-
scribed previously [40,41,43].

Seven commonly used traits, including RPR, SBS, SD, Lig, VB, Cel,
and DF were chosen for further analysis (Table 1). The number of
QTLs per trait ranged from 18 to 200, and a total of 771 QTLs were
obtained for all the seven traits. These QTLs distributed on ten maize
chromosomes, with the highest number (164) on Chromosome 1
(Chr1) and the least number (39) on Chr9. As the limited primary
QTL numbers of the SBS trait, no meta-QTL was detected. Finally, a
total of 123 mQTLs, including 19 RPR mQTLs, 41 SD mQTLs, seven VB
mQTLs, 34 Lig mQTLs, three Cel mQTLs and 19 DF mQTLs, were
obtained (Table 1 and Supplementary Table S2).

All these mQTLs distributed on all the ten chromosomes, and the
largest number of mQTLs (24) located on Chr2, and followed by 22
on Chr1, 16 on Chr8, 13 on Chr6 and 12 on Chr7, respectively (Fig. 2).
79 mQTLs were repeatedly detected in independent studies, 43 of
which were detected twice, 20 for three times, nine for four times,
and seven for five times (Supplementary Table S2). These results
suggest that many genetic loci with different genetic effects work
together to control the stalk lodging traits in maize.

3.2. Identifying QTN clusters related to stalk lodging traits

A total of 1306 original QTNs related to the seven traits were
collected, and they distributed on all ten maize chromosomes.
Among them, 411 QTNs with the highest number were detected to
be associated with the RPR trait, and 33 QTNs with the lowest
number were detected to be associated with the Lig trait (Table 1).
As researchers used different versions of B73 genome sequences to
perform GWAS analysis, these original QTNs could not be compared
and integrated directly. Thus, we first projected all the detected
QTNs onto the same reference genome sequence (B73, AGPv4), and
the obtained QTNs mainly distributed on chromosomes 4, 1, 3, 8, and
9 (Fig. 3A).

A QTN cluster region was defined as a 5-Mb long region har-
boring more than three QTNs. After the QTN cluster analysis, all the
1306 QTNs were grouped into 140 clusters (Table 1, Fig. 3B, and
Supplementary Table S3). Among them, 57 QTN clusters were de-
tected to be associated with the RPR trait, followed by 33 with VB, 17
with SD, 12 with SBS, ten with each of Cel and DF, and only one with
Lig. Only two traits (RPR and VB), their QTN clusters distributed on
all ten maize chromosomes, and the QTN clusters of other five traits
were scattered on some of the ten chromosomes. For example, 14
QTN clusters distributed on eight chromosomes except Chr4 and
Chr10.

3.3. Identification of mQTL and QTN hotspots and prediction of
candidate genes

To gain a whole scope of genetic structure underlying stalk lod-
ging-related traits, all the identified 123 mQTLs and 140 QTN clusters
were integrated to screen overlapped consensus hotspots (Fig. 4A).
As a result, we identified 85 hotspots harboring at least two over-
lapped mQTLs/QTN clusters. Among these hotspot regions, 25 hot-
spots were associated with more than three regions and two of
which possessed the highest number (6) (Fig. 4B and Supplementary
Table S4).

Based on genomic sequence information of physical intervals
harboring these overlapped regions, more than 8000 candidate
genes were predicted and used for subsequent GO enrichment
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Fig. 2. Meta-QTL analysis results of maize stalk lodging related traits. The lines on the left of the linkage group represent the meta-QTLs of the six maize stalk lodging traits.
Different colors represent different traits. Black bars within chromosomes represent molecular markers. RPR, rind penetrometer resistance; SD, stem diameter; VB, vascular
boundary related traits; Lig, lignin content; Cel, cellulase content; DF, detergent fiber content.

analysis. The results successfully annotated 6173 unigenes into 3578
available terms. Among them, 2426 terms were involved in biolo-
gical processes (BP), 717 terms were involved in cellular components
(CC), and 435 were associated with molecular functions (MF). Most
unigenes were gathered in cellular process, metabolic process and
biological regulation. To better screen genes controlling maize stalk
lodging, some of them involved in three pathways were further se-
lected, namely lignin metabolic process (29 genes), phenylpropanoid
metabolic process (127 genes) and hormone-mediated signaling
pathway (380 genes) (Supplementary Table S5).
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To further investigate potential relationships between these 536
candidate genes and stalk lodging-related traits, their gene expres-
sion data from the published RNA-seq data were extracted
(Supplementary Table S5) [42]. Then we selected nine of these genes
with high expression in the internodes, including lignin pathway
genes Zm00001d009146, Zm00001d003016 and Zm00001d011965,
phenylpropanoid pathway genes Zm00001d031701, Zm00001d019139
and Zm00001d005347, and hormone pathway  genes
Zm00001d041711, Zm00001d038923 and Zm00001d044172, which
could be considered as potential targeted genes for stalk lodging
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resistance. These nine genes may have direct effects on stalk lodging
resistance, nevertheless, this hypothesis needs to be further vali-
dated by experiments.

3.4. Cloned genes and potential genetic networks related to stalk
lodging resistance

To comprehensively reveal genetic architecture underlying maize
stalk lodging resistance, we investigated almost the related known
genes and regulatory pathways (Table 2 and Fig. 4B). A total of 25
cloned genes with diverse biological functions were mapped to eight
maize chromosomes based on their physical positions. These genes
have been demonstrated to be involved in cellulose biosynthesis,
lignin biosynthesis, plant hormone signaling and small RNA reg-
ulatory pathways.

The phenylpropane pathway provides precursors for lignin bio-
synthesis. Five phenylpropane pathway genes, CAD, MTHFR, COMT,
FPGS, and Zm4CL1, were cloned by using mutants bm1 to bmb5. All
these five mutants showed decreased lignin contents in stalk and
brown vein phenotypes, suggesting that the phenylpropane pathway
controls stalk lodging resistance in maize [56]. However, ZmCtl1,
interacting with another cellulose synthase gene CesA, caused fragile
stalk phenotypes [26]. Plant hormones, including gibberellin (GA),
auxin (IAA) and brassinosteroid (BR), were also reported to be in-
volved in stalk lodging resistance. Mutants of GA pathway, anl,
dwarf3, dwarf8 and dwarf9, were found to be involved in internode
decreasing [57-60]. Br2 mutant of IAA pathway was found to show
significant decrease of the internode length [61]. Several BR pathway

490

related mutants such as nal and na2 were found to display severely
dwarfing phenotypes but increased lodging resistance [62,63].

Besides these functional genes, other regulatory factors also in-
fluence lodging resistance. Four transcriptional factors (TFs) have
been identified, including Zmm?22, ZmNST3, ZmNST4 and ZmSPL12.
Among them, ZmNST3 and ZmNST4 belong to NAC type TFs. Over-
expression of both genes can thicken secondary wall in the stem,
while knockdown of them shows defective secondary wall deposi-
tion in maize. Meanwhile, both TFs are found to regulate expression
of cellulose synthetic genes ZmMYB109/128/149 [72]. ZmSPL12 is
found to directly interact with D1 (ZmGA3o0x2), and thus affects
plant height and lodging resistance [74]. Additionally, one mono-
cotyledon-specific microRNA, ZmmiR528, is found to affect lodging
resistance via regulating lignin content in the stem [64].

We finally compared the known functional genes with the mQTLs
and QTN hotspot regions. Three genes bm5, An1 and ZmNR2 were
found to be located in the confidence intervals of the overlapped
regions (Fig. 4B), suggesting that combining QTL and QTN results can
provide more accurate regions for fine mapping of stalk lodging-
related genetic loci. Based on cloned genes and QTL/QTN hotspot
regions, we proposed a potential genetic network that controls the
stalk lodging-related traits. Two major parts are included in the
network. The first part is lignin synthesis pathway. As lignin is the
major chemical substrate and its regulatory pathway is relatively
clear, the cloned genes from maize were combined and their posi-
tions were marked (Fig. 5A). The second pathway involves complex
crosstalk among phytohormones. Several hormones such as GA, BR,
IAA and JA have been demonstrated to play fundamental roles in
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Table 2
Summary of cloned genes involved in stalk lodging resistance in maize.
Gene name?® Gene Code Annotation Chr. Start End Refs.
ZmmiR528 1 6410784 6413906 [64]
bm5/Zm4CL1 Zm00001d032103 Phenylpropanoid biosynthesis 1 213125276 213130733 [65]
bm3 Zm00001d049541 Suberin monomers biosynthesis 4 33816269 33821595 [66]
bm1 Zm00001d015618 Cinnamyl alcohol dehydrogenase 5 101492053 101499509 [67]
Br2 Zm00001d031871 ABC transporter like protein 1 204746911 204757135 [61]
ZmDET2 (nal) Zm00001d042843 Steroid 5-alpha-reductase DET2 3 181819922 181824570 [62]
na2 Zm00001d014887 24-methylenecholesterol isomerase/reductase 5 67024671 67031523 [63]
BR1a Zm00001d011721 Brassinosteroid insensitivela 8 159897928 159904296 [68]
Anl Zm00001d032961 Diterpene phytoalexins precursors biosynthesis 1 244857295 244868917 [57]
Dwarf8 Zm00001d033680 Gibberellin signaling 1 270916585 270921477 [59]
Dwarf3 Zm00001d045563 Gibberellin A12 biosynthesis 9 26820540 26827180 [58]
Dwarf9 Zm00001d013465 DELLA protein DWARF8-like 5 12226829 12231706 [60]
Bk2 Zm00001d047276 COBRA-like protein 9 125268707 125273739 [27]
ZmCLA4 (lal) Zm00001d049174 Lazy plant1 4 19151520 19161045 [69]
ZmPIN1a Zm00001d044812 Putative auxin efflux carrier 9 3290263 3296559 [70]
stiff1 Zm00001d036653 Stiff stalk protein 6 96506012 96510491 [71]
ZmCtl1 (bk4) Zm00001d020974 Chitinase 7 138258586 138263259 [26]
Zmm22 Zm00001d042315 MADS-box transcription factor 56 3 160589989 160593201 [36]
ZmNST4 Zm00001d045463 NAC domain-containing protein 43 9 23150361 23158237 [72]
ZmNST3 Zm00001d036050 Putative NAC domain transcription factor superfamily protein 6 68997381 69003222 [73]
ZmSPL12 Zm00001d015410 Squamosa promoter-binding-like protein 2 5 89048094 89054597 [74]
bm2 Zm00001d034602 Folate transformations II (plants) 1 297603677 297612907 [75]
bm4 Zm00001d048514 Folylpolyglutamate synthase 9 157622800 157631307 [76]
ZmNR2 Zm00001d018206 Nitrate reductase 1 5 216587777 216593902 [77]
bvi Zm00001d016487 Retrovirus-related Pol polyprotein LINE-1 5 164504121 164509606 [78]
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stalk lodging resistance (Fig. 5B). It means that different regulatory
pathways work together to control the stalk lodging resistance traits
in maize, and more genetic factors remain to be discovered in the
future.

4. Conclusions

Stalk lodging is one of the most complex traits in maize and in-
fluenced by various factors such as genetic loci and environmental
conditions. Although three major types of phenotypes (stem
bending, stem breaking and root lodging) have been widely used for
evaluating the stalk lodging resistance, fast and precise phenotype
measuring methods are still limiting factors for dissecting the
characteristics of stalk lodging-related traits. With development of
high-throughput phenomics, it is possible to precisely and high-
throughput investigate the stalk lodging resistance traits.
Meanwhile, more developed genetic populations and mapping
methods would be developed for accurate mapping and candidate
gene cloning. Besides traditional gene cloning methods, gene editing
technologies like CRISPR/Cas9 could also be used for discovering
stalk lodging resistance genes with more efficiency [79-82]. Besides
the cloned genes, the QTL/QTN hotspot regions identified here could
be used for maker-assisted breeding or genomic selection in maize
breeding. In summary, the integrated QTLs, QTNs and genes would
help to better understand genetic architectures underlying the stalk
lodging-related traits and finally guide breeding of stalk lodging-
resistant varieties in maize.
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