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a b s t r a c t   

Stalk lodging seriously affects yield and quality of crops, and it can be caused by several factors, such as 
environments, developmental stages, and internal chemical components of plant stalks. Breeding of stalk 
lodging-resistant varieties is thus an important task for maize breeders. To better understand the genetic 
basis underlying stalk lodging resistance, several methods such as quantitative trait locus (QTL) mapping 
and genome-wide association study (GWAS) have been used to mine potential gene resources. Based on 
different types of genetic populations and mapping methods, many significant loci associated with stalk 
lodging resistance have been identified so far. However, few work has been performed to compare and 
integrate these reported genetic loci. In this study, we first collected hundreds of QTLs and quantitative trait 
nucleotides (QTNs) related to stalk lodging traits in maize. Then we mapped and integrated the QTLs and 
QTNs in maize genome to identify overlapped hotspot regions. Based on the genomic confidence intervals 
harboring these overlapped hotspot regions, we predicted candidate genes related to stalk lodging traits. 
Meanwhile, we mapped reported genes to these hotspot regions. Finally, we constructed molecular reg-
ulatory networks underlying stalk lodging resistance in maize. Collectively, this study provides not only 
useful genetic loci for deeply exploring molecular mechanisms of stalk lodging resistance traits, but also 
potential candidate genes and targeted strategies for improving stalk lodging resistance to increase crop 
yields in future. 

© 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).   

1. Introduction 

Maize (Zea mays L.) originated from a wild grass in central 
Mexico at least 7000 years ago and has been globally distributed 
nowadays [1]. It is served as an important source of food, fodder and 
industrial raw materials. Currently, maize production ranks the top 
one among all cereal crops. For example, maize yield reached 1.2 
billion tons in 2020, accounting for 38.8 % of the total yield of cereals 

(https://www.fao.org/faostat/en/#data). Although maize yield in-
creases annually, it still cannot meet the demands of the rapid po-
pulation growth and economic development. Moreover, several 
environmental and disease factors threaten the maize yield globally, 
and stalk lodging has been one of the biggest constraints [2]. 

Stalk lodging is a phenomenon that stems spontaneously change 
from natural growth to permanent bending or breaking status. 
According to the bending or breaking region where lodging occurs, 
stalk lodging could be divided into two types, stem lodging and root 
lodging [3,4] (Fig. 1A). Stem lodging refers to stem bending or 
breaking of the basal internodes at or below the ear-bearing node of 
the stem. Root lodging refers to the falling down or breaking of the 
whole plant which is mainly induced by the loose of root-soil an-
chorage system [5], and it happens during the whole developmental 
stages. Stalk lodging has significantly negative effects on maize yield. 
In terms of yield, a 1 % increasing of stalk lodging degree would 
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cause a yield loss of about 108 kg/hm [6]. Additionally, stalk lodging 
makes maize harvest more difficult and retards mechanical har-
vesting [7]. Thus, exploring the basic genetic resources and culti-
vating stalk lodging-resistant varieties are crucial for enhancing 
maize yield in the future [4,8,9]. 

Multiple biotic or abiotic stressful factors, such as insects, high 
wind and floods, can cause stalk lodging [10,11]. Besides, the oc-
currence of maize stalk lodging is related to morphological char-
acteristics and stem breaking usually happens in the third internode 
(Fig. 1A) [8]. Xue et al. (2020) found that lodging mainly occurs 
between the 2nd to 5th internodes above the brace roots by using a 
wind turbine [4]. Usually, the third internodes are utilized for eval-
uating the stalk lodging degrees [6,12,13]. Rind thickness and 
strength are significantly negatively correlated with stalk lodging, 

and thus rind penetrometer resistance (RPR) is regarded as the most 
direct phenotype to evaluate stalk lodging resistance [14,15]. RPR 
refers to the force which is required to pierce a stalk rind with a 
spike, and has been used in several studies [6,16–18]. 

Plant height, ear height, stem diameter (SD) and stem me-
chanical strength are also related to stalk lodging. SD was found to 
be significantly positively correlated with RPR or lodging re-
sistance. Zhang et al. used 257 maize inbred lines to investigate the 
regulatory factors for stalk lodging resistance, and found that the 
15-cm stem diameter above ground level, approximately in the 
2nd and 3rd internode position, positively affects puncture 
strength and bending strength [19]. Besides RPR, stem bending 
strength (SBS) is another frequently-used parameter for evaluating 
stem strength [20]. 

Fig. 1. Stalk lodging types, different plant tissues and measurement approaches used to investigate stalk lodging in maize. (A) Three major types of stalk lodging in maize: stem 
bending (left), stem breaking (middle) and root lodging (right). The red arrows indicate the third internode above the brace roots in maize. (B) Different plant tissues and 
measurement approaches used to investigate the stalk lodging traits in maize. (C) Field performance between stalk lodging resistant (left) and sensitive (right) varieties of maize. 
The image on the right represents an example of stem bending-type lodging. 
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The anatomical structure of mature maize stalks is mainly made 
up of the cortex, sclerenchyma, vascular system (xylem and phloem) 
and parenchyma. Various histochemical techniques and micro-ex-
amination methods have been employed to detect the stem anato-
mical characters. Wang et al. surveyed the morphological structure, 
anatomical characters, and chemical compositions of ten maize 
inbred lines, analyzed the correlations between these characters and 
lodging resistance, and found that thick-wall and mechanical tissue 
proportions were positively correlated with lodging resistance, 
while stem height and vascular bundle numbers were negatively 
corrected [21]. Similarly, the cortex thickness, vascular bundle (VB) 
numbers, and the degree of lignification in the cortex region have 
been proven to be important factors for lodging resistance [22–25]. 

Stalk chemical substrates such as lignin (Lig), cellulose (Cel) and 
hemicellulose have also been reported to associate with lodging 
resistance in maize [26,27]. As the second high-molecular polymer, 
lignin mainly accumulates in the secondary cell wall and is the major 
component determining cell wall strength and stalk stiffness [28]. 
The contents and proportions of these chemicals mentioned above 
in the stem are regarded as important factors affecting stalk lodging 
(Fig. 1B). By detecting cellulose, hemicellulose, and lignin contents of 
200 high-oil recombinant inbred lines (RIL) in five different en-
vironments, the lignin and cellulose contents were found to posi-
tively correlate with RPR [29]. However, in other studies, the 
contents of cellulose, hemicellulose and soluble sugar are positively 
correlated with stem strength but negatively correlated with lodging 
resistance [30,31]. 

The genetic essence is the vital factor determining the stalk 
lodging characters of cultivars. Thus, we focused on the genetic 
factors controlling stalk lodging traits in this study. Field perfor-
mance tests showed that stalk lodging-resistant varieties could 
persist upright, whereas sensitive types fell to the ground with a 
significant loss of yield (Fig. 1C). Thus, it is practicable to cultivate 
lodging-resistant varieties by combing elite alleles of important ge-
netic loci. Stalk lodging-related traits have been consistently char-
acterized as quantitative traits in previous studies [32,33]. 
Quantitative trait locus (QTL) mapping and genome-wide associa-
tion study (GWAS) are the most popular methods for discovering 
genes controlling quantitative traits [34,35]. They have been used to 
identify hundreds of QTLs and quantitative trait nucleotides (QTNs) 
for maize stalk lodging traits. For example, phenotypes of two stalk 
lodging traits, RPR and ear height, were evaluated across four F2 

populations, and then 26 and 20 QTLs were identified for each trait, 
respectively [32]. Besides the F2 population, many advanced popu-
lations such as F2:3 and RIL populations have also been employed for 
QTL mapping [34]. 29, 34 and 48 QTNs associated with SD, SBS and 
RPR, respectively, were detected using 48,193 SNPs across 257 inbred 
lines representative of the genetic diversity in tropic, subtropic, and 
temperate genetic backgrounds [19]. Furthermore, 16 candidate 
genes associated with four stalk lodging traits were detected by 
using 899,784 SNPs derived from RNA-seq data of 942 inbred lines, 
and four of which were associated with plant height, eight with stalk 
diameter, one with rind thickness, and three with vascular bundle 
density [36]. 

Although many QTLs, QTNs and genes have been reported to 
control maize stalking-related traits, it is not clear whether these 
loci or genes are shared or overlapped due to different materials and 
reference genomic data used in previously published results. To es-
tablish a whole scope of genetic structure underlying the maize stalk 
lodging traits in this study, we firstly collected almost reported QTLs, 
QTNs, and cloned genes related to maize stalk lodging resistance. 
Meta-analysis was performed to integrate the reported QTLs into 

multiple meta-QTLs (mQTLs). Meanwhile, QTN hotspots were in-
vestigated by combining the reported QTNs in different studies. 
Then, information of the meta-QTLs, QTN clusters, and cloned genes 
was integrated to identify the candidate genes involved in maize 
stalk lodging resistance and finally construct the whole blueprint 
underlying stalk lodging-related traits in maize. 

2. Materials and methods 

2.1. Literature review and QTL/QTN data collection 

A deep and thorough bibliographic review was conducted on 
maize QTLs/QTNs related to seven stalk lodging traits, including RPR, 
SBS, SD, VB, Lig, Cel and detergent fiber (DF) contents from published 
literatures. From 2003–2022, 61 independent papers were retained 
for further analysis, with 50 papers for QTLs, seven for QTNs, and 
four for both. The basic information including traits, populations, 
and environmental conditions in each literature was collected and 
listed in Supplementary Table S1. 

2.2. QTL projection and meta-analysis 

QTL confidence interval (CI) is an important parameter of QTL 
mapping result. CIs could not be obtained for QTLs which were 
mapped by single marker analysis or interval mapping method. So 
the CIs of these QTLs were further estimated by the empirical for-
mula as described previously [37]. Then all collected QTLs were 
projected on the IBM2 2008 Neighbors genetic map, which is 
available on the genome browser MaizeGDB (http://maizeGDB.org). 
After QTL projection, BioMercator v4.2 software [38,39] was used to 
perform QTL Meta-analysis. mQTLs were hypothesized based on the 
optimal model with the lowest akaike information criterion (AIC) 
value [40,41]. mQTLs were designated as ‘mQTL-trait-Chr-number’. 
All mQTLs obtained were mapped to B73 reference genome se-
quence (AGPv4 version) by BLASTN analysis performed on Mai-
zeGDB (Supplementary Table S2). The physical position of each 
mQTL was calculated based on flanking markers’ primer sequences. 

2.3. Identification of QTN clusters 

Based on physical positions, all collected QTNs were mapped to 
B73 reference genome sequence (AGPv4 version) for QTL cluster 
analysis. QTN clusters were identified by searching in a sliding 
window of five Mb for the original QTN data. A genomic region was 
defined as a QTN cluster where at least three QTNs were co-loca-
lized. QTN clusters of each trait were scanned on all ten maize 
chromosomes and recorded in Supplementary Table S3. 

2.4. Identification of mQTL and QTN hotspots 

After mQTLs and QTN clusters were identified, they were com-
pared and integrated based on their physical positions 
(Supplementary Tables S2 and S3). Only regions that harbored at 
least two mQTLs, QTN clusters or both of them, regardless of their 
related traits, were declared as overlapped mQTL/QTN hotspots 
(Supplementary Table S4). 

2.5. Prediction of candidate genes 

Gene models within overlapped mQTL/QTN hotspot regions were 
predicted based on the physical positions in B73 reference genome 
(AGPv4 version) (Supplementary Table S4). Gene ontology (GO) 
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enrichment analysis for these investigated gene models was per-
formed using a web-based tool agriGO2.0 (http://system-
sbiology.cau.edu.cn/agriGOv2/index.php#). After GO analysis, those 
gene models involved in any one of three main biological processes, 
including lignin metabolic process, phenylpropanoid metabolic 
process, and hormone-mediated signaling pathway, were used for 
subsequent gene expression analysis. In silico gene expression ana-
lysis was performed with previously published RNA sequencing 
(RNA-seq) data [42]. 

3. Results and discussion 

3.1. Identifying mQTLs related to stalk lodging traits 

As an efficient tool for integrating dense QTLs to discover 
genomic regions [43], meta-QTL analysis has been performed suc-
cessfully for many important agronomic traits in plants, such as 
grain yield-related traits in maize, wheat and rapeseed [43–47], 
flowering time in maize [48,49], drought tolerance in rice, maize, 
wheat and cotton [50–54], abiotic stress in barley and maize [41,55]. 

Here, we firstly collected almost the QTL mapping results of stalk 
lodging traits from 54 published papers (Supplementary Table S1), 
then performed meta-QTL analysis to screen QTL clusters as de-
scribed previously [40,41,43]. 

Seven commonly used traits, including RPR, SBS, SD, Lig, VB, Cel, 
and DF were chosen for further analysis (Table 1). The number of 
QTLs per trait ranged from 18 to 200, and a total of 771 QTLs were 
obtained for all the seven traits. These QTLs distributed on ten maize 
chromosomes, with the highest number (164) on Chromosome 1 
(Chr1) and the least number (39) on Chr9. As the limited primary 
QTL numbers of the SBS trait, no meta-QTL was detected. Finally, a 
total of 123 mQTLs, including 19 RPR mQTLs, 41 SD mQTLs, seven VB 
mQTLs, 34 Lig mQTLs, three Cel mQTLs and 19 DF mQTLs, were 
obtained (Table 1 and Supplementary Table S2). 

All these mQTLs distributed on all the ten chromosomes, and the 
largest number of mQTLs (24) located on Chr2, and followed by 22 
on Chr1, 16 on Chr8, 13 on Chr6 and 12 on Chr7, respectively (Fig. 2). 
79 mQTLs were repeatedly detected in independent studies, 43 of 
which were detected twice, 20 for three times, nine for four times, 
and seven for five times (Supplementary Table S2). These results 
suggest that many genetic loci with different genetic effects work 
together to control the stalk lodging traits in maize. 

3.2. Identifying QTN clusters related to stalk lodging traits 

A total of 1306 original QTNs related to the seven traits were 
collected, and they distributed on all ten maize chromosomes. 
Among them, 411 QTNs with the highest number were detected to 
be associated with the RPR trait, and 33 QTNs with the lowest 
number were detected to be associated with the Lig trait (Table 1). 
As researchers used different versions of B73 genome sequences to 
perform GWAS analysis, these original QTNs could not be compared 
and integrated directly. Thus, we first projected all the detected 
QTNs onto the same reference genome sequence (B73, AGPv4), and 
the obtained QTNs mainly distributed on chromosomes 4, 1, 3, 8, and 
9 (Fig. 3A). 

A QTN cluster region was defined as a 5-Mb long region har-
boring more than three QTNs. After the QTN cluster analysis, all the 
1306 QTNs were grouped into 140 clusters (Table 1, Fig. 3B, and  
Supplementary Table S3). Among them, 57 QTN clusters were de-
tected to be associated with the RPR trait, followed by 33 with VB, 17 
with SD, 12 with SBS, ten with each of Cel and DF, and only one with 
Lig. Only two traits (RPR and VB), their QTN clusters distributed on 
all ten maize chromosomes, and the QTN clusters of other five traits 
were scattered on some of the ten chromosomes. For example, 14 
QTN clusters distributed on eight chromosomes except Chr4 and 
Chr10. 

3.3. Identification of mQTL and QTN hotspots and prediction of 
candidate genes 

To gain a whole scope of genetic structure underlying stalk lod-
ging-related traits, all the identified 123 mQTLs and 140 QTN clusters 
were integrated to screen overlapped consensus hotspots (Fig. 4A). 
As a result, we identified 85 hotspots harboring at least two over-
lapped mQTLs/QTN clusters. Among these hotspot regions, 25 hot-
spots were associated with more than three regions and two of 
which possessed the highest number (6) (Fig. 4B and Supplementary 
Table S4). 

Based on genomic sequence information of physical intervals 
harboring these overlapped regions, more than 8000 candidate 
genes were predicted and used for subsequent GO enrichment 

Table 1 
Summary of QTLs and QTNs distributed on maize chromosomes.            

Chr Type Traita 

RPR SBS SD VB Lig Cel DF Total  

Chr1 QTL  20  4  41  17  43  13  21  159 
mQTL  7   2  7  3  3   22 
QTN  81  17  35  31  4  14  2  184 
QTN cluster  12   4  3     19 

Chr2 QTL  16   17  3  33  9  19  97 
mQTL  2   8   8   6  24 
QTN  28  20  25  30  4  11  1  119 
QTN cluster  5  1  3  4   1   14 

Chr3 QTL  16  3  31  2  24  6  5  87 
mQTL  5   7   2    14 
QTN  51  31  15  27   24   148 
QTN cluster  6  1  1  4   3   15 

Chr4 QTL  9   8  2  13  5  4  41 
mQTL      2    2 
QTN  40  23  12  31  2  14  66  188 
QTN cluster  4  3   5   2  3  17 

Chr5 QTL  15  1  15  6  13  5  17  72 
mQTL  1   4   2   2  9 
QTN  33  16  15  34  2  11  9  120 
QTN cluster  5  2  2  3   1  1  14 

Chr6 QTL  13  3  15  8  9  3  15  66 
mQTL  4   3     6  13 
QTN  42  14  19  15  6  6  9  111 
QTN cluster  4   2  2    1  9 

Chr7 QTL  8  1  16  7  13  2  15  62 
mQTL    6   4   2  12 
QTN  32  13  12  31  4  8  9  109 
QTN cluster  7  1  1  3   1  2  15 

Chr8 QTL  10  3  19  7  25  3  12  79 
mQTL    6   7   3  16 
QTN  41  19  17  27  3  18  3  128 
QTN cluster  7  2  3  1   1  1  15 

Chr9 QTL  9  3  5  3  12  3  4  39 
mQTL      2    2 
QTN  34  12  12  35  3  14  14  124 
QTN cluster  4  2  1  6   1  2  16 

Chr10 QTL  7   30  7  15   10  69 
mQTL    5   4    9 
QTN  29  11  3  23  5  3  1  75 
QTN cluster  3    2  1    6 

a RPR, rind penetrometer resistance; SBS, stalk bending strength; SD, stem dia-
meter; VB, vascular bundle; Lig, lignin content; Cel, cellulose content; DF, detergent 
fiber content.  
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analysis. The results successfully annotated 6173 unigenes into 3578 
available terms. Among them, 2426 terms were involved in biolo-
gical processes (BP), 717 terms were involved in cellular components 
(CC), and 435 were associated with molecular functions (MF). Most 
unigenes were gathered in cellular process, metabolic process and 
biological regulation. To better screen genes controlling maize stalk 
lodging, some of them involved in three pathways were further se-
lected, namely lignin metabolic process (29 genes), phenylpropanoid 
metabolic process (127 genes) and hormone-mediated signaling 
pathway (380 genes) (Supplementary Table S5). 

To further investigate potential relationships between these 536 
candidate genes and stalk lodging-related traits, their gene expres-
sion data from the published RNA-seq data were extracted 
(Supplementary Table S5) [42]. Then we selected nine of these genes 
with high expression in the internodes, including lignin pathway 
genes Zm00001d009146, Zm00001d003016 and Zm00001d011965, 
phenylpropanoid pathway genes Zm00001d031701, Zm00001d019139 
and Zm00001d005347, and hormone pathway genes 
Zm00001d041711, Zm00001d038923 and Zm00001d044172, which 
could be considered as potential targeted genes for stalk lodging 

Fig. 2. Meta-QTL analysis results of maize stalk lodging related traits. The lines on the left of the linkage group represent the meta-QTLs of the six maize stalk lodging traits. 
Different colors represent different traits. Black bars within chromosomes represent molecular markers. RPR, rind penetrometer resistance; SD, stem diameter; VB, vascular 
boundary related traits; Lig, lignin content; Cel, cellulase content; DF, detergent fiber content. 
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resistance. These nine genes may have direct effects on stalk lodging 
resistance, nevertheless, this hypothesis needs to be further vali-
dated by experiments. 

3.4. Cloned genes and potential genetic networks related to stalk 
lodging resistance 

To comprehensively reveal genetic architecture underlying maize 
stalk lodging resistance, we investigated almost the related known 
genes and regulatory pathways (Table 2 and Fig. 4B). A total of 25 
cloned genes with diverse biological functions were mapped to eight 
maize chromosomes based on their physical positions. These genes 
have been demonstrated to be involved in cellulose biosynthesis, 
lignin biosynthesis, plant hormone signaling and small RNA reg-
ulatory pathways. 

The phenylpropane pathway provides precursors for lignin bio-
synthesis. Five phenylpropane pathway genes, CAD, MTHFR, COMT, 
FPGS, and Zm4CL1, were cloned by using mutants bm1 to bm5. All 
these five mutants showed decreased lignin contents in stalk and 
brown vein phenotypes, suggesting that the phenylpropane pathway 
controls stalk lodging resistance in maize [56]. However, ZmCtl1, 
interacting with another cellulose synthase gene CesA, caused fragile 
stalk phenotypes [26]. Plant hormones, including gibberellin (GA), 
auxin (IAA) and brassinosteroid (BR), were also reported to be in-
volved in stalk lodging resistance. Mutants of GA pathway, an1, 
dwarf3, dwarf8 and dwarf9, were found to be involved in internode 
decreasing [57–60]. Br2 mutant of IAA pathway was found to show 
significant decrease of the internode length [61]. Several BR pathway 

related mutants such as na1 and na2 were found to display severely 
dwarfing phenotypes but increased lodging resistance [62,63]. 

Besides these functional genes, other regulatory factors also in-
fluence lodging resistance. Four transcriptional factors (TFs) have 
been identified, including Zmm22, ZmNST3, ZmNST4 and ZmSPL12. 
Among them, ZmNST3 and ZmNST4 belong to NAC type TFs. Over- 
expression of both genes can thicken secondary wall in the stem, 
while knockdown of them shows defective secondary wall deposi-
tion in maize. Meanwhile, both TFs are found to regulate expression 
of cellulose synthetic genes ZmMYB109/128/149 [72]. ZmSPL12 is 
found to directly interact with D1 (ZmGA3ox2), and thus affects 
plant height and lodging resistance [74]. Additionally, one mono-
cotyledon-specific microRNA, ZmmiR528, is found to affect lodging 
resistance via regulating lignin content in the stem [64]. 

We finally compared the known functional genes with the mQTLs 
and QTN hotspot regions. Three genes bm5, An1 and ZmNR2 were 
found to be located in the confidence intervals of the overlapped 
regions (Fig. 4B), suggesting that combining QTL and QTN results can 
provide more accurate regions for fine mapping of stalk lodging- 
related genetic loci. Based on cloned genes and QTL/QTN hotspot 
regions, we proposed a potential genetic network that controls the 
stalk lodging-related traits. Two major parts are included in the 
network. The first part is lignin synthesis pathway. As lignin is the 
major chemical substrate and its regulatory pathway is relatively 
clear, the cloned genes from maize were combined and their posi-
tions were marked (Fig. 5A). The second pathway involves complex 
crosstalk among phytohormones. Several hormones such as GA, BR, 
IAA and JA have been demonstrated to play fundamental roles in 

Fig. 3. Graphic illustrations of QTNs and QTN clusters of maize stalk lodging traits. (A) Mapped QTNs on the chromosomes for seven maize stalk lodging traits. Each vertical line 
represents a single QTN site. (B) Distribution of QTN clusters controlling seven maize stalk lodging traits on chromosomes based on the combining analysis. Different colors 
represent different traits. RPR, rind penetrometer resistance; SBS, stalk bending strength; SD, stem diameter; VB, vascular boundary related traits; Lig, lignin content; Cel, cellulose 
content; DF, detergent fiber content. 
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Fig. 4. Correspondence diagram of mQTLs, QTN clusters, and cloned genes related to maize stalk lodging traits. (A) Distribution of mQTLs, QTN clusters and cloned genes on each 
chromosome. Different colors represent different traits or different approaches. (B) Combining analyzed diagrams of mQTLs, QTN clusters, and cloned genes. Different colors 
represent consensus regions of mQTLs and QTN clusters with different numbers. RPR, rind penetrometer resistance; SBS, stalk bending strength; SD, stem diameter; VB, vascular 
boundary related traits; Lig, lignin content; Cel, cellulose content; DF, detergent fiber content. 
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Table 2 
Summary of cloned genes involved in stalk lodging resistance in maize.         

Gene namea Gene Code Annotation Chr. Start End Refs.  

ZmmiR528    1  6410784  6413906 [64] 
bm5/Zm4CL1 Zm00001d032103 Phenylpropanoid biosynthesis  1  213125276  213130733 [65] 
bm3 Zm00001d049541 Suberin monomers biosynthesis  4  33816269  33821595 [66] 
bm1 Zm00001d015618 Cinnamyl alcohol dehydrogenase  5  101492053  101499509 [67] 
Br2 Zm00001d031871 ABC transporter like protein  1  204746911  204757135 [61] 
ZmDET2 (na1) Zm00001d042843 Steroid 5-alpha-reductase DET2  3  181819922  181824570 [62] 
na2 Zm00001d014887 24-methylenecholesterol isomerase/reductase  5  67024671  67031523 [63] 
BR1a Zm00001d011721 Brassinosteroid insensitive1a  8  159897928  159904296 [68] 
An1 Zm00001d032961 Diterpene phytoalexins precursors biosynthesis  1  244857295  244868917 [57] 
Dwarf8 Zm00001d033680 Gibberellin signaling  1  270916585  270921477 [59] 
Dwarf3 Zm00001d045563 Gibberellin A12 biosynthesis  9  26820540  26827180 [58] 
Dwarf9 Zm00001d013465 DELLA protein DWARF8-like  5  12226829  12231706 [60] 
Bk2 Zm00001d047276 COBRA-like protein  9  125268707  125273739 [27] 
ZmCLA4 (la1) Zm00001d049174 Lazy plant1  4  19151520  19161045 [69] 
ZmPIN1a Zm00001d044812 Putative auxin efflux carrier  9  3290263  3296559 [70] 
stiff1 Zm00001d036653 Stiff stalk protein  6  96506012  96510491 [71] 
ZmCtl1 (bk4) Zm00001d020974 Chitinase  7  138258586  138263259 [26] 
Zmm22 Zm00001d042315 MADS-box transcription factor 56  3  160589989  160593201 [36] 
ZmNST4 Zm00001d045463 NAC domain-containing protein 43  9  23150361  23158237 [72] 
ZmNST3 Zm00001d036050 Putative NAC domain transcription factor superfamily protein  6  68997381  69003222 [73] 
ZmSPL12 Zm00001d015410 Squamosa promoter-binding-like protein 2  5  89048094  89054597 [74] 
bm2 Zm00001d034602 Folate transformations II (plants)  1  297603677  297612907 [75] 
bm4 Zm00001d048514 Folylpolyglutamate synthase  9  157622800  157631307 [76] 
ZmNR2 Zm00001d018206 Nitrate reductase 1  5  216587777  216593902 [77] 
bv1 Zm00001d016487 Retrovirus-related Pol polyprotein LINE-1  5  164504121  164509606 [78] 

Fig. 5. Proposed genetic work model for maize stalk lodging resistance by integrating current knowledges. (A) The lignin synthesis pathway which is regarded as the important 
pathway influencing stalk lodging in maize. PAL, phenylalanine ammonia-lyase; C4H, cinnamate 4-hudroxylase; 4CL, 4-coumarate: CoA ligase; CCR, cinnamoyl CoA reductase; CAD, 
cinnamyl alcohol dehydrogenase; HCT, p-hydroxycinnamoyl-CoA; C3H, p-coumarate 3-hydroxylase: CCoADMT, caffeoyl-CoA O-methyltransferase. (B) The combined phytohormone 
metabolic pathways that work together to influence stalk lodging traits. GGPP, geranylgeranyl diphosphate; TPS, trehalose-6-phosphate synthase; P450, cytochrome p450; GA2ox, GA 
2-oxidase; GA20ox, GA 20-oxidase; GA3ox, GA 3-oxidase; PIN, PIN-formed protein; JAZ, jasmonate ZIM-domain protein; MYC2, bHLHzip transcription factor MYC2; BZR1, brassi-
nazole resistant 1; AN1, anther ear1; D3, dwarf plant 3; D8, dwarf plant8; D9, dwarf plant9; D14, strigolactone receptor D14; NA1, nana plant1; NA2, nana plant2. The enzymes 
involved in the lignin biosynthesis pathways in maize are shown in orange letters. The known proteins involved in hormone metabolic pathways are shown in red. 
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stalk lodging resistance (Fig. 5B). It means that different regulatory 
pathways work together to control the stalk lodging resistance traits 
in maize, and more genetic factors remain to be discovered in the 
future. 

4. Conclusions 

Stalk lodging is one of the most complex traits in maize and in-
fluenced by various factors such as genetic loci and environmental 
conditions. Although three major types of phenotypes (stem 
bending, stem breaking and root lodging) have been widely used for 
evaluating the stalk lodging resistance, fast and precise phenotype 
measuring methods are still limiting factors for dissecting the 
characteristics of stalk lodging-related traits. With development of 
high-throughput phenomics, it is possible to precisely and high- 
throughput investigate the stalk lodging resistance traits. 
Meanwhile, more developed genetic populations and mapping 
methods would be developed for accurate mapping and candidate 
gene cloning. Besides traditional gene cloning methods, gene editing 
technologies like CRISPR/Cas9 could also be used for discovering 
stalk lodging resistance genes with more efficiency [79–82]. Besides 
the cloned genes, the QTL/QTN hotspot regions identified here could 
be used for maker-assisted breeding or genomic selection in maize 
breeding. In summary, the integrated QTLs, QTNs and genes would 
help to better understand genetic architectures underlying the stalk 
lodging-related traits and finally guide breeding of stalk lodging- 
resistant varieties in maize. 
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