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Abstract: Since the observation precision of the Global Navigation Satellite System (GNSS) carrier
phase is on the order of millimeters, if the phase ambiguity is correctly solved, while calibrating
the receiver inter-frequency bias, time synchronization on the order of tens of picoseconds is
expected. In this contribution, a method that considers the prior constraints of the between-receiver
inter-frequency bias (IFB) and its random variation characteristics is proposed for the estimation
of the between-receiver clock difference, based on the uncombined GNSS carrier phase and
pseudorange observations of the zero and short baselines. The proposed method can rapidly
achieve the single-difference ambiguity resolution of the zero and short baselines, and then obtain
the high-precision relative clock offset, by using only the carrier phase observations, along with the
between-receiver IFBs being simultaneously determined. Our numerical tests, carried out using GNSS
observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, show that
the method can fix the between-receiver single-difference ambiguity successfully within an average
of fewer than 2 epochs (interval 30 s). Then, a clock difference between two receivers with millimeter
precision is obtained, achieving time synchronization on tens of picoseconds level, and deriving a
frequency stability of 5 × 10−14 for averaging times of 30,000 s. Furthermore, the proposed approach
is compared with the precise point positioning (PPP) time transfer method. The results show that,
for different types of receivers, the agreement between the two methods is between −6.7 ns and 0.2 ns.

Keywords: GNSS carrier phase; time synchronization; tens of picoseconds level; between-receiver
IFB; single-difference ambiguity resolution; zero/short baseline

1. Introduction

Time synchronization plays an important role in our daily life. In particular, communication
systems, power grids and financial networks all rely on precise timing to achieve synchronization
and operation efficiency. Furthermore, in the maintenance of the spatial-temporal reference frame,
the precision of time synchronization is also crucial. In the early 1980s, when the radio signals from the
satellites of the Global Positioning System (GPS) began to be used for timing services, time keeping
changed dramatically [1]. So far, time and frequency transfer based on Global Navigation Satellite
System (GNSS) technology has made great progress. According to [2,3], GNSS time transfer technology
was clarified into three groups, i.e., the common view (CV) method, all in view (AV) method, and carrier
phase (CP) method. Both the CV and AV methods are based on GNSS code pseudorange [4–6]. In case
of GNSS pseudorange, time and frequency transfer is not limited to the distance constraints; as well
as the data processing being simple and easy to operate, and it has been widely used for the timing
service. However, the accuracy is recognized to be limited, and the theoretical precision of the receiver
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clock offset, as determined by pseudorange observations (noise level 30 cm), can reach 1 ns at most.
Additionally, it is generally known that the day-boundary jumps are due to the long-term pseudorange
noise [7,8]. Fortunately, the precision of GNSS carrier phase observation can be less than 1 mm [9].
Compared with the precision of pseudorange, the precision of carrier phase is improved by two orders
of magnitude, which is of great significance for the high-precision timing of real-time applications.

Based on the observation model, that is, whether to make a difference between the observations
of the two stations, the CP time transfer method can be divided into two types: the zero-difference
(ZD) method and the single-difference (SD) method. The ZD method is mainly based on the precise
point positioning (PPP) technology, to estimate the receiver clock offset, which does not require
any observation synchronization. This method is flexible, convenient, and highly accurate [10–12].
Conventionally, the ionospheric-free code and phase combinations are employed for time and frequency
transfer [13–15]. This makes it hard to solve the combined phase ambiguity [16], and the estimated
receiver clock offset is easily affected by the combined measurement noise and receiver hardware
delay [17]. In addition, high-precision satellite orbit and clock products are crucial for the precision
and efficiency of this method [18]. Since there is a need for the accurate correction of various errors, it is
difficult to determine the receiver clock offset quickly and accurately in a short period of time, and hard
to meet the high timeliness requirements of high-precision timing applications. By making a difference
between the observations of two stations, the satellite-dependent errors, such as satellite clock error
and satellite hardware bias, can be completely eliminated. Meanwhile, the space-related errors are
weakened to a certain extent, leading to the fast determination of relative clock offset. The estimation
of between-receiver clock difference using the single-differenced GPS ionosphere-free code and phase
combinations has been investigated [19]. Their numerical results indicated that agreement with the
two-way satellite time and frequency transfer (TWSTFT) at the level of 0.3 nanoseconds could be
achieved even on transatlantic baselines. However, the estimated between-receiver clock difference
was affected by the combined observation noise, and the ambiguity resolution was complicated. If the
uncombined GNSS carrier phase observations are utilized to estimate the receiver clock difference,
the results are expected to be less affected by the measurement noise and other errors. It is of great
significance for the application of tens of picoseconds level time synchronization.

To summarize, using the carrier phase observation for time synchronization can achieve higher
precision, but there are generally problems of poor timeliness due to the difficulty of solving the
phase ambiguity, and easily being affected by the receiver hardware delay. In order to improve the
precision and efficiency of the receiver clock offset estimation, two key issues need to be resolved:
one is to deal with the receiver hardware bias reasonably, and the other is to fix the phase integer
ambiguity rapidly and successfully. In this study, we assessed the precision and efficiency of the CP
time-frequency synchronization using the uncombined GNSS carrier phase observations, considering
the prior constraints of the between-receiver inter-frequency biases (IFBs). The mathematical principle
and the data processing strategies for estimating the between-receiver clock difference were addressed.
First, we analyzed and modeled the temporal variation characteristics of the between-receiver IFBs.
Then, a method that took the prior constraints of between-receiver IFB and its random variation
characteristics into account was proposed to obtain the between-receiver clock difference, by using
only the uncombined GNSS carrier phase observation, which pays special attention to the resolution of
the between-receiver single-difference ambiguity.

In Section 2, we describe the principles of time synchronization using the uncombined GNSS
carrier phase and pseudorange observations of a short baseline, with special attention paid to the
handling of the between-receiver IFBs and the resolution of the between-receiver single-difference
ambiguity. In the subsequent Section 3, we detail the experimental design and data processing strategies
used to assess the performance of the proposed method. Following this, the numerical results are
presented and discussed in Section 4. Finally, some conclusions are given in Section 5.
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2. Principles of the between-Receiver Clock Difference Estimation

This section begins with the general observation models of GNSS signals. Then, the CP time
synchronization model based on the uncombined carrier phase observations of the short baseline are
developed in detail, which considers the prior constraints of the between-receiver IFB and its random
variation characteristics. Finally, the method of parameter estimation is given.

2.1. Observation Equation

For a short baseline, the between-receiver single-difference equations of GNSS carrier phase and
pseudorange observations can be described as [20]:

Ls
ur, j(t) = ρs

ur + ζs
ur, j + cdtur + δur, j +ωs

ur, j + λ jNs
ur, j + εs

ur, j
Ps

ur, j(t) = ρs
ur + ζs

ur, j + cdtur + dur, j + υs
ur, j

(1)

where (·)s
ur = (·)s

u − (·)
s
r denotes the across-receiver difference, which is the difference of simultaneous

observations taken at stations u and r to the satellite s. The subscript j denotes the corresponding
frequency band, t denotes the epoch, L and P are the carrier phase and pseudorange observations, ρ is
the geometric range, which refers to the satellite center of mass and the receiving antenna reference
point, and ζ contains the correction due to phase center offsets of the transmitting and receiving
antennas. ω is the phase wind-up correction, which accounts for a change in the measured phase for
the case of the rotations of the antennas and can be accurately modeled as described in [21]. c is the
light speed in the vacuum, dt is the receiver clock error, δ is the receiver phase hardware bias; d is the
receiver code hardware bias, λ is the wavelength, N denotes the phase integer ambiguity, ε and υ are
the phase and code measurement noise, respectively.

As is known, the spatial correlation between the observation error sources of two neighborhood
stations are highly related to the length of the baseline. Since the length of baseline studied in this
research is tens of meters and the heights of the two stations are basically the same, the single-difference
tropospheric and ionospheric delays in (1) were ignored. Because the satellite-dependent part is
assumed to be equal for every receiver tracking the corresponding signal, the terms for the satellite
clock offset and the relativistic correction for the satellite clock due to noncircular orbits are dropped
out of (1). Besides, for signals, e.g., BeiDou Navigation Satellite System (BDS) signals and GPS signals,
that are based on code division multiple access (CDMA) technology, the frequency is identical for
all channels, and the satellite hardware bias of a single signal can thus be eliminated by making a
difference between two receivers [22].

Due to the receiver phase or code hardware bias of a single signal linearly corelated to the receiver
clock offset, the absolute quantities of the two cannot be separated without external observation
information. Thus, for the dual-frequency band ( j = 1, 2) receiver, the receiver phase hardware bias on
the L1 carrier phase is lumped to the receiver clock offset parameter based on (1). Then, we can obtain
the re-parameterized equations of the dual-frequency carrier phase and pseudorange observations,
as shown below:

Ls
ur,1(t) = ρs

ur + cτur + λ1Ns
ur,1 + εs

ur,1
Ls

ur,2(t) = ρs
ur + cτur + bur,L2−L1 + λ2Ns

ur,2 + εs
ur,2

Ps
ur,1(t) = ρs

ur + cτur + bur,P1−L1 + υur,1

Ps
ur,2(t) = ρs

ur + cτur + bur,P2−L1 + υur,2

(2)

in which, the re-parameterized parameters were

cτur = cdtur + δur,1

bur,L2−L1 = δur,2 − δur,1

bur,P1−L1 = dur,1 − δur,1

bur,P2−L1 = dur,2 − δur,1

(3)
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with cτur as the re-parameterized between-receiver clock difference, that contains the relative clock
offset and the between-receiver phase hardware bias of L1 carrier phase, bur,L2−L1 is the between-receiver
phase-to-phase IFB (∆IFBL2−L1), bur,P1−L1 and bur,P2−L1 are the between-receiver code-to-phase IFBs
(∆IFBP1−L1 and ∆IFBP2−L1). Here, the equations for the estimation of the interested parameters
were established by a re-parameterization processing. Following this, the between-receiver IFBs
should be proper handled in order to achieve the accurate and reliable estimates of between-receiver
clock difference.

2.2. Prior Constraints and State Models of the between-Receiver IFBs

When the station coordinates were accurately known, the unknown parameters in (2) included
the between-receiver clock difference, between-receiver IFBs, and between-receiver single-difference
ambiguities. Among them, the receiver hardware bias is closely related to the hardware characteristics of
the receiver itself. For two receivers of the same type, their correlators and font-end designs are essentially
the same, so the hardware bias of the two receivers for the same observation is roughly the same. It is
reasonable to assume that the mathematical expectation of the relative deviation, after differencing values
from two receivers of the same type, should be close to zero. Furthermore, the existing studies of the
GLONASS receiver IFB have shown that the quantity of receiver inter-frequency phase bias is in the range
of centimeters to decimeters [23,24]. Even for different types of receiver pairs, it is possible to constrain
the between-receiver IFBs and set a reasonable variance. Therefore, the between-receiver phase-to-phase
IFB and code-to-phase IFB can be restricted as follows:

b0
ur,L2−L1

= bur,L2−L1 , σ2
b0

ur,L2−L1

b0
ur,P1−L1

= bur,P1−L1 , σ2
b0

ur,P1−L1

b0
ur,P2−L1

= bur,P2−L1 , σ2
b0

ur,P2−L1

(4)

in which, the item b0
ur,L2−L1

is the priori value of ∆IFBL2−L1 , b0
ur,P1−L1

and b0
ur,P2−L1

are the priori

values of ∆IFBP1−L1 and ∆IFBP2−L1 , respectively. Then, a variance ( σ2
b0

ur,L2−L1

, σ2
b0

ur,P1−L1

or σ2
b0

ur,P2−L1

) was

given to describe the uncertain parts of the priori constraint. According to the existing research
efforts, if the priori values of the between-receiver IFBs were set as zeroes, the standard deviation
of the between-receiver phase-to-phase IFB was at decimeter level, and that of the between-receiver
code-to-phase IFB was at the several meters level [25].

Above, we described the establishment of the observation equations and the addition of prior
constraints to the receiver IFBs, to estimate the interest parameters. After that, the state model of the
estimated parameters should be determined correctly. In a short time, a linear model (estimating
the velocity of the relative clock offset) can be used to describe the state change of the receiver
clock error. In continuous arcs without cycle slips, the ambiguity was usually treated as a constant.
However, the between-receiver phase-to-phase IFB and code-to-phase IFB, especially the state change
characteristics of the latter, is relatively lacking. Therefore, it is necessary to analyze the temporal
variation characteristics of the between-receiver IFBs, and then model their state change process
well [26].

Usually, the researchers constructed the geometry-free phase/code combination to estimate the
receiver differential phase/code bias (DPB/DCB) based on (1). Then, the variation characteristics of
the receiver DCB/DPB were analyzed, and the factors that affected the variation were investigated.
The retrieval of between-receiver DCB and modeling its variation characteristics have been explored
using the zero and short baselines [27]. It was found that the change process of the between-receiver
DCB could be described by random walk, and the empirical variance of the receiver DCB state transition
noise was given. For the DPB, a strategy to obtain the biased estimation of the between-receiver DPB
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was developed in [28]. By using this method, the biased estimates of the between-receiver IFBs in (2)
can be obtained. Their forms are written as:

b̃ur,L2−L1(t) = bur,L2−L1 + λ2Ns
ur,2 − λ1Ns

ur,1

b̃ur,P1−L1(t) = bur,P1−L1 − λ1Ns
ur,1

b̃ur,P2−L1(t) = bur,P2−L1 − λ1Ns
ur,1

(5)

They are biased because the phase ambiguities of the reference satellite in the first epoch are
contained in the estimation. Since the ambiguity remains constant in continuous arcs without cycle
slips, the actual epoch variation of the between-receiver IFBs can be obtained by performing time
difference on the biased estimates, which read as:

∇bur,L2−L1(t) = b̃ur,L2−L1(t) − b̃ur,L2−L1(t− 1)
∇bur,P1−L1(t) = b̃ur,P1−L1(t) − b̃ur,P1−L1(t− 1)
∇bur,P2−L1(t) = b̃ur,P2−L1(t) − b̃ur,P2−L1(t− 1)

(6)

where, the terms ∇bur,L2−L1 , ∇bur,P1−L1 and ∇bur,P2−L1 are the epoch variations of ∆IFBL2−L1 , ∆IFBP1−L1

and ∆IFBP2−L1 at epoch t, respectively. Then, the obtained epoch variations of between-receiver IFBs
will be statistically analyzed with reference to the analysis strategies presented in [27], and their
dynamic characteristics are summarized. Following these statistical analyses, the state equations and
state process noise variances of the between-receiver IFBs are determined.

2.3. Parameter Estimation

In conjunction with the observation equation and the state change process of the parameters to be
estimated, the matrix form of the parameter estimation for Kalman filtering can be expressed as:[

ZL

ZP

]
=

[
AL λ
AP 0

][
Xi
Ni

]
+ Vi Vi ∼ N(0, Q)[

F 0
0 E

][
X̂i−1

N̂i−1

]
=

[
Xi
Ni

]
+ Wi Wi ∼ N(0, R)

(7)

with i is the epoch number; X =
[
τur, vτur , bur,L2−L1 , bur,P1−L1 , bur,P2−L1

]T
is the parameter vector to

be estimated, in which, the term vτur denotes the velocity of the between-receiver clock difference;

N =
[
Ns

ur,1, Ns
ur,2

]T
is the vector of the between-receiver single-difference phase ambiguity; ZL and

ZP are the vectors of the carrier phase and pseudorange observations, respectively; Correspondingly,
AL and AP are the coefficient matrixes of the carrier phase and pseudorange observation equations; λ is
a block-diagonal matrix formed by the wavelength of the carrier signal; V represents the observation
noise matrix; Q is the variance matrix of the observations, and the diagonal elements are determined by

the satellite elevation weighted model; F =


1 ∆t 0
0 1 0
0 0 I

 is the matrix of the state transition coefficient

with five rows and five columns, in which ∆t is the time interval between two adjacent epochs, and I is
a unit matrix with three rows and three columns; E is a unit matrix; W is the state transition process
noise matrix of the estimated parameters, and the corresponding variance matrix of the state transition
process noise is R. In the next section, when dealing with the measured GNSS observations, we discuss
and give the specific settings of the initial state value, initial variance of the estimable parameters,
and the noise variance of the state transition process.

A Kalman filter was deployed to estimate the parameters on a satellite-by-satellite and
epoch-by-epoch basis. In each epoch, the float solution N̂ and its variance-covariance matrix QN
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were obtained. Then, the least-squares ambiguity decorrelation adjustment (LAMBDA) method was
employed to search for the reduced correlation ambiguity [29], which yielded:

^
N = LAMBDA

(
N̂, QN

)
(8)

in which,
^
N is the integer option of the single-difference ambiguity. The integer solution of the ambiguity

was determined according to the ratio function [30]. Once it passed the test, the integer solution of the
ambiguity was substituted into the carrier phase observation equation, to recalculate the between-receiver
clock difference and other parameters. The variance-covariance matrix of the fixed solution of the
parameters was given in [29]. Using this formula, we calculated the root mean square (RMS) values of the
fixed solution of the estimated parameters as an index to evaluate the precision of the estimation.

3. Experiment Data and Processing Strategy

In order to verify the precision and reliability of the proposed method, the GNSS carrier phase
and pseudorange observations recorded by the zero and short baselines composed of different types of
receivers were dedicatedly selected. The strategies of data processing were then described in detail.

3.1. Data Collection

The details of the selected stations, including the site names, receiver and antenna types,
observations, and time period of the observations, were summarized in Table 1. Among them, the two
stations CUT0 and CUT2 are co-located at the main campus of Curtin University in Perth, Australia.
They share one antenna (TRM59800.00) to constitute a zero baseline. The last two stations YARR and
YAR3, participating in the International GNSS Service (IGS) network, create a short baseline, with
an approximate distance of 20.21 m. For all the cases, these receivers can acquire code and phase
observations at the BDS B1 (1561.098 MHz) and B2 (1207.14 MHz) frequencies, along with GPS ones at
L1 (1575.42 MHz) and L2 (1227.60 MHz) frequencies. The sampling interval of the experimental data is
30 s. The selected observation data covered a three-day period of DOY (Day of Year) 12–14 in 2018.

Table 1. Details of Global Navigation Satellite System (GNSS) data sets used in the experiment of
time synchronization.

Station Receiver Antenna Observation Time Period

CUT0 TRIMBLE NETR9
TRM59800.00 BDS: C2I, C7I, L2I, L7I

GPS: C1C, C2W, L1C, L2W
2018, days 12–14CUT2 TRIMBLE NETR9

YARR SEPT POLARX5 LEIAT504
YAR3 SEPT POLARX5 LEIAR25

3.2. Data Processing Strategy

Table 2 summarizes the detailed GNSS data processing strategies. The between-receiver clock
difference, along with the between-receiver phase-to-phase IFB, between-receiver code-to-phase IFB,
and between-receiver single-difference ambiguity, were taken as the unknown parameters to be
estimated, based on the estimation method described in the above section. Among them, the state
change of the relative clock offset between two adjacent epochs was described by the linear model
(estimating the velocity of the relative clock offset). Since existing research shows that there are
short-term changes in receiver IFBs due to some factors [31], the state change of between-receiver
phase-to-phase IFB and code-to-phase IFB was treated by random walk model, whereas the noise
variance of the state transition process was set according to the statistical analysis in the next section.
The phase ambiguity was treated as a constant in a continuous arc. The position of the satellite was
calculated with the precise orbit product released by the Helmholtz-Centre Potsdam (GFZ), and the
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coordinates of the station under the ITRF 2014 reference frame were known. The specific processing
strategies of other errors were shown in Table 2.

Table 2. Data processing strategies.

Items Strategies

Between-receiver clock difference Estimated, linear model

Between-receiver phase-to-phase
inter-frequency bias (IFB) Estimated, random walk model

Between-receiver code-to-phase IFB Estimated, random walk model

Ambiguities Estimated, constants

Satellite orbit Fixed by Helmholtz-Centre Potsdam (GFZ) precise orbit products

Station coordinates Fixed by known position (ITRF 2014)

Phase wind-up effect Corrected

Antenna offset International GNSS Service (IGS) values

Observations Single-difference code and phase observations

Observations weight Elevation weight

Estimator Kalman filter

4. Results and Analysis

In this section, the numerical tests were carried out, and the experimental results were illustrated.
Prior to our analysis, proper handling of the between-receiver IFBs had to be in place. Thus, we first
analyzed and molded the temporal variation characteristics of the between-receiver IFBs, and then the
ambiguity fixed solutions of the between-receiver clock difference and between-receiver IFBs were
presented and discussed. In the end, we assessed the consistency of our proposed method with the
PPP solution.

4.1. Temporal Variation Characteristics of the between-Receiver IFBs

In order to better constrain and describe the change process of the receiver IFBs and to set
a reasonable configuration for parameter filtering, we first used the measured data to analyze
and model the temporal variation characteristics of the between-receiver IFBs. The BDS carrier
phase and pseudorange observations, collected from the zero baseline CUT0–CUT2 and the short
baseline YARR–YAR3, were processed to obtain the biased estimation of the between-receiver IFBs,
as demonstrated in (5). Since the between-receiver IFB is principally the same for all satellites of
one constellation, the carrier phase and pseudorange observations of the satellite with the highest
elevation angle were selected for the parameter estimation in each epoch, for the purpose of reducing
the influence of the measurement noise.

As shown in Figure 1, the time series of the biased estimation of the between-receiver phase-to-phase
and code-to-phase IFBs was obtained on days 12–14 in 2018. Obviously, the results were still contaminated
by the measurement noise, so a moving average tool with a window covered 120 epochs was used to
implement the denoising. The results after noise reduction are shown in the black curve in Figure 1.
From Figure 1, it can be seen that the intra-day change of the between-receiver IFBs was continuous
and slow. Among them, the change in the estimates of the between-receiver phase-to-phase IFB was
at the centimeter level, while that of the between-receiver code-to-phase IFB was at the decimeter level.
Therefore, it can be considered that, in a short period of time, the epoch variation of between-receiver IFBs
is almost unchanged. Thus, the state transition coefficients of the between-receiver IFBs are reasonably set
to 1. However, a reasonable state transition process noise variance still needs to be set. We addressed this
issue by performing the time difference on the time series of the denoising results. The time series after
noise reduction was carried out by epoch difference, to obtain the change amount of the between-receiver
IFB between two adjacent epochs, and the statistical analysis was then carried out.
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Figure 1. Time series of the biased estimates of between-receiver IFBs on days 12–14 in 2018 derived 
from (a) the zero baseline CUT0–CUT2 and (b) the short baseline YARR–YAR3. 

Figure 1. Time series of the biased estimates of between-receiver IFBs on days 12–14 in 2018 derived
from (a) the zero baseline CUT0–CUT2 and (b) the short baseline YARR–YAR3.

The probability distribution histograms of epoch variation of the between-receiver IFBs were
plotted in Figure 2. We can see that the epoch variation of the between-receiver IFBs approximately
obeys the normal distribution. Hence, the random walk process can be used to describe the state
change of the between-receiver IFBs. Table 3 shows the mathematical expectations (e) and standard
deviations (σ) of the epoch-difference between-receiver IFBs of the zero baseline CUT0–CUT2 and
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the short baseline YARR–YAR3, on days 12–14 in 2018. The three-fold sigma (3σ) was expressed as a
function of time, and the coefficient (w) of the process noise variances of the between-receiver IFBs
were then obtained. Based on Table 3, it can be concluded that the noise variance in the state transition
process of the between-receiver phase-to-phase IFB is about 1 × 10−10–5 × 10−10 m2/s, and that of the
between-receiver code-to-phase IFB is approximately 1 × 10−6–5 × 10−6 m2/s. These statistical results
will be treated as empirical reference values for the following data processing.Sensors 2020, 20, x FOR PEER REVIEW 10 of 19 
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Figure 2. Probability distribution histogram of the epoch variation of between-receiver IFBs on days 
12–14 in 2018 for (a) the zero baseline CUT0–CUT2 and (b) the short baseline YARR–YAR3. 

Figure 2. Probability distribution histogram of the epoch variation of between-receiver IFBs on days
12–14 in 2018 for (a) the zero baseline CUT0–CUT2 and (b) the short baseline YARR–YAR3.
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Table 3. State process noise variance of the between-receiver IFBs.

Baseline
DOY
(2018)

∆IFBL7I-L2 ∆IFBC2I-L2I ∆IFBC7I-L2I

e σ w e σ w e σ w

CUT0–CUT2
12 0.00 0.02 1.21 × 10−10 0.00 1.80 9.73 × 10−7 0.01 1.85 1.02 × 10−6

13 0.00 0.02 1.27 × 10−10 0.00 1.78 9.56 × 10−7 0.02 1.93 1.12 × 10−6

14 0.00 0.02 1.20 × 10−10 0.02 1.81 9.87 × 10−7 −0.01 1.89 1.07 × 10−6

YARR–YAR3
12 0.00 0.04 3.77 × 10−10 0.09 2.55 1.95 × 10−6 −0.01 2.91 2.53 × 10−6

13 0.00 0.04 4.37 × 10−10 0.14 2.54 1.94 × 10−6 −0.13 2.81 2.36 × 10−6

14 0.00 0.04 5.14 × 10−10 0.07 2.65 2.11 × 10−6 −0.27 2.87 2.46 × 10−6

4.2. Time Synchronization Precision and Frequency Stability Analysis

According to the above data processing strategies summarized in Table 2, the BDS code and
phase observations collected from the zero and short baselines were processed to achieve the
ambiguity fixed solution of the between-receiver clock difference and other parameters. As mentioned
before, to suppress the influence of measurement noise, we simply picked the observations of the
highest-elevation satellite, to establish the equation in each epoch, and the Kalman filter was employed
to estimate the unknown parameters. When the picked satellite changed, the Kalman filter was
initialized in order to check the consistency of different satellite solutions and to ensure the reliability
of the estimation results. As is known, by using the Kalman filter for parameter estimation, the initial
status of the estimated parameters shall be configured. Therefore, the initial value, initial variance,
and noise variance of the state transition process of the estimated parameters were given, as shown in
Table 4. It should be noted that the between-receiver IFB was constrained at the initial epoch, and its
state change process was described by the random walk model. After the floating-point solution of the
phase ambiguity was obtained, the LAMBDA method was used to search for the integer options of
the phase ambiguity. Then, the optimal and suboptimal integer solutions were tested using the ratio
testing function. If the ratio value was greater than the threshold value (set as 2 in this research), it was
considered that the phase ambiguity was fixed correctly. Once the integer ambiguity was determined,
it was submitted into the observation equations to recalculate the parameters.

Table 4. Parameter status setting.

Parameter Initial Value Initial Variance Process Noise
Variance

Between-receiver clock difference Pseudorange estimation 360,000 m2 0.5 m2/s
Velocity of clock difference Pseudorange estimation 360,000 m2/s2 0.03 m2/s2

Between-receiver phase-to-phase IFB 0 m 0.16 m2 1 × 10−9 m2/s
Between-receiver code-to-phase IFB 0 m 36 m2 1 × 10−5 m2/s

Single-difference ambiguity Pseudorange estimation 1.0 × 1012 cycle2 0 cycle2/s

Three-day time series of the fixed solutions of the between-receiver clock difference and the
between-receiver IFBs, that were derived from the BDS phase and code observations of the zero
baseline CUT0–CUT2 and the short baseline YARR–YAR3, are shown in Figures 3 and 4, respectively.
Corresponding to Figures 3 and 4, Figure 5 shows the ratio test value for the ambiguity fixation in
each epoch. It can be seen that, when the threshold value of the ratio test was set to 2, in most cases,
the single-difference ambiguity could be fixed successfully in a single epoch, and in a few cases,
several epochs were needed. Table 5 presents the statistical results of the time-to-first-fix (TTFF) of
the single-difference ambiguity determination for all satellites. From the table, we can conclude that
the averaged epoch number needed for single-difference ambiguity fixation was fewer than 2 epochs,
so this method can quickly achieve the fixation of the single-difference ambiguity. From Figure 4, it can
also be seen that the fixed solution of the between-receiver IFBs obtained from different satellites was
consistent, which further proved the reliability of the ambiguity fixed solution. At the same time,
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the fluctuation in the between-receiver phase-to-phase IFB estimation of the short baseline was greater
than that of the zero baseline. We think that this was mainly caused by multipath effects. Once the
single-difference ambiguity was fixed correctly, the carrier phase turned to be the unambiguous
pseudorange with high precision. Since the measurement noise of the carrier phase observation is on
the millimeter order, the precision of the fixed solution of the between-receiver clock difference was at
the level of several millimeters. Considering that when the satellite elevation is high, the error residual
such as the phase multipath effect is about a few millimeters, the precision of the obtained clock
difference is expected to be millimeter-level. The root mean square (RMS) values of the fixed solution
of the between-receiver clock difference were calculated as an indicator to evaluate the precision of the
estimated parameter. The results are shown in Figure 6. The figure reveals that the RMS of the relative
clock offset estimation with the single-difference ambiguity solved was about 3 mm, so its equivalent
time synchronization precision can reach about ten picoseconds. According to the formal errors,
and taking into account the influence of the error residuals, we can conclude that time synchronization
on tens of picoseconds level can be achieved using the uncombined carrier phases of the zero and
short baselines. In addition, due to the ambiguity of each satellite being solely fixed and only the
carrier phase observation being used to calculate the between-receiver clock difference, the two epoch
solutions that connected with the day were continuous without jumping, eliminating the problem of
“day boundary discontinuity” in the time transfer.
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Table 5. Time-to-first-fix (TTFF) of the between-receiver single-difference ambiguity.

Baseline DOY (2018) Arc Count Total TTFF (30 s) Average TTFF (30 s)

CUT0–CUT2 12 9 9 1.0
13 11 13 1.2
14 11 12 1.1

YARR–YAR3 12 15 16 1.1
13 13 15 1.2
14 15 16 1.1

Furthermore, the frequency stability of the time link is a crucial indicator of the time and frequency
transfer. In order to further analyze the stability of the receiver clock offset from the perspective of
frequency stability, the Allan variance of the fixed solution of the relative clock offset at different
time scales was statistically analyzed [32]. Since there was a significant drift in the clock difference
estimation of the zero baseline CUT0–CUT2, a linear model was used to remove the drift on arc-by-arc
basis. After that, the Allan deviations were calculated. As shown in Figure 7, the average frequency
stability at 30,000 s is better than 5 × 10−14 of the short baseline YARR–YAR3, and that of the zero
baseline CUT0–CUT2 is also around 5 × 10−14. The stability between days is basically the same, which
demonstrates the stability and repeatability of this method for time-frequency synchronization.
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Figure 7. Allan deviation for the fixed solution of the clock difference on days 12–14 in 2018 at time
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4.3. Comparison with PPP Solution

In order to confirm the validity of the proposed method, the results derived from our proposed
method were compared with the PPP solution. The online PPP tool of Canadian Spatial Reference
System (CSRS-PPP) was employed to estimate the receiver clock offset, using the ionosphere-free
code and phase combinations in a station-by-station manner. Then, the clock difference between two
receivers were formed. The clock differences derived from three solutions, i.e., our method using GPS
observations (solution A), our method using BDS observations (solution B), and PPP method using
GPS ionosphere-free combinations (solution C), were shown in Figure 8.
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CUT0–CUT2 and (b) YARR–YAR3.

It can be seen that solution A and solution B have a good agreement. However, a systematic bias
was observed. This bias is the inter-system frequency bias between GPS L1C carrier phase and BDS
L2I carrier phase. From Table 6, we can see that the bias is about −2.47 ns for the baseline CUT0–CUT2,
and it is about 1.94 ns for the baseline YARR–YAR3. The standard deviations of the biases are about
0.006 ns and 0.03 ns, respectively, indicating that the proposed method has good stability. In the
meantime, a systematic deviation between solution A and solution C was also observed. Since the PPP
method has a convergence period, the first hour data in the result of PPP solution were eliminated.
Then, the differences between solution A and solution C on days 12–14 in 2018 were statistically
summarized in Table 6. The daily average deviation of the baseline CUT0–CUT2 varies from 0.2 ns
to 0.7 ns for three consecutive days. Whereas, for the baseline YARR–YAR3, the mean value of the
deviations between solution A and solution C is stable at around −6.7 ns. We think that this deviation
is mainly caused by the receiver hardware delay on GPS L1C carrier phase and the receiver hardware
delay on GPS ionosphere-free code combination formed by GPS C1C and C2W. Hence, a systematic
bias ranging from sub-nanosecond to several nanoseconds was found between our method and PPP
method. This kind bias is mainly induced by the receiver hardware delay of carrier phase and receiver
hardware delay of ionosphere-free code combination, and it depends on the type of receiver.
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Table 6. Statistics of differences between different solutions.

Time link DOY (2018)

Difference between
Solutions A and B

Difference between
Solutions A and C

Mean (ns) STD (ns) Mean (ns) STD (ns)

CUT0–CUT2
12 −2.475 0.006 0.700 0.160
13 −2.473 0.006 0.228 0.272
14 −2.474 0.006 0.415 0.116

YARR–YAR3
12 1.937 0.028 −6.787 0.041
13 1.938 0.026 −6.732 0.052
14 1.935 0.028 −6.732 0.057

5. Summary and Conclusions

In this contribution, we investigated the mathematical principle of time and frequency
synchronization, based on the uncombined GNSS carrier phase observations. In view of the issue
that the precision and efficiency of time and frequency transfer being easily affected by the receiver
hardware inter-frequency bias (IFB), a method that took the priori constraints of the between-receiver
IFB and its random variation characteristics into account, was proposed, to determine the relative clock
offset between two receivers with the single-difference ambiguity resolution. First, we analyzed and
modeled the temporal variation characteristics of between-receiver IFBs. Then, considering the priori
constraints and the state change model of the between-receiver IFBs, the ambiguity fixed solution of
the between-receiver clock difference was achieved, and the between-receiver IFBs were calibrated
based on the zero/short baseline mode.

The validity and reliability of the proposed method were analyzed by using the BDS/GPS
dual-frequency carrier phase and pseudorange observations, that were dedicatedly collected from
the zero and short baselines on several consecutive days. The experimental results show that the
between-receiver single-difference ambiguity can be fixed successfully within an average of fewer than
2 epochs (interval 30 s). After the integer solution of the single-difference ambiguity was determined
correctly, the between-receiver clock difference with a millimeter precision was obtained by using only
the uncombined carrier phase observations. Additionally, the fixed solution of the between-receiver
IFBs was obtained. Three-day time series of the fixed solution of between-receiver clock difference
indicates that this method can achieve the time synchronization on tens of picoseconds level precision,
and it has good stability. Since the single-difference ambiguity is resolved successfully, the daily
boundary of time transfer is also continuous. Besides, for the tested short baseline, the average stability
of 30,000 s for the proposed CP time and frequency method is better than 5 × 10−14. Furthermore,
comparative experiments show that, for the type of receiver tested, the agreement between our approach
and the PPP method is between −6.7 ns and 0.2 ns, and this deviation is mainly caused by the receiver
hardware bias of carrier phase and receiver hardware bias of ionosphere-free code combination.
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