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The current study investigated the extent and patterns of cognitive variability in younger
and older adults. An important novelty of this study is the use of graph-based community
structure detection analysis to map performance in a mixed population of 79 young and
76 older adults, without separating the age groups a-priori. We identified six subgroups,
with distinct patterns of neuropsychological performance. The stability of the identified
subgroups was confirmed by employing a cross-validation support vector machine
based analysis. The majority of these subgroups comprised either young or older adults,
confirming the expected role of aging in cognitive performance. In addition, we identified
a subgroup of young and older adults who performed at a similar cognitive level of
overall good cognitive performance with slightly decreased processing speed. This
result showed that older age is not necessarily associated with general lower cognitive
performance and that being young is not necessarily associated with superior cognitive
performance. Moreover, cognitively better performing elderly had a significantly higher
level of education attainment and higher crystallized intelligence than the other elderly,
which suggests that older adults with higher cognitive reserve may be able to cope better
with age-related neurobiological change.
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Introduction

Healthy aging has generally been associated with a decline in cognitive task performance
(Salthouse, 1996; Hedden and Gabrieli, 2004; Park and Reuter-Lorenz, 2009). However, the
trajectory and degree of age-related cognitive change vary considerably across individuals.
The interindividual variability in cognitive performance (on a single task and occasion,
referred to as ‘‘diversity’’ (Nelson and Dannefer, 1992)), but also intraindividual variability
in cognitive performance (on multiple tasks, referred to as ‘‘dispersion’’ or on a single task
on multiple occasions, referred to as ‘‘inconsistency’’) increase with age (Hultsch et al., 2002;
Wilson et al., 2002). Only few studies have investigated variability of cognitive performance
across tasks and across elderly, combining diversity and dispersion. In one of these studies,
Costa et al. (2013) divided older adults (50--89 years) into three groups of generally stronger,
average and weaker cognitive performers (Costa et al., 2013). The results showed that these
groups had stable performance across the cognitive dimensions that were taken into account.
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In contrast, Gunstad et al. (2006), found distinct performance
profiles across cognitive domains in the groups they
distinguished (Gunstad et al., 2006). In their subsample of
84 older adults (50--82 years), one group showed impaired
executive functioning, a second group performed poorly on
tasks measuring processing speed while a third group showed
a more general decrease in overall cognitive performance. A
similar distinction in performance profiles has been reported in
other studies (Ritchie et al., 1996; Maxson et al., 1997; Ylikoski
et al., 1999; Foss et al., 2009; Costa et al., 2013) that specifically
assessed cognitive typology in elderly.

Most previous studies examining variability in cognitive
aging, have focused on older adults only (Ritchie et al., 1996;
Maxson et al., 1997; Ylikoski et al., 1999; Foss et al., 2009; Costa
et al., 2013) or have used an a-priori division of their research
population in different age categories (Gunstad et al., 2006). It
is important to note that variability in cognitive performance
among the elderly might be explained by factors that are already
present at younger ages. For example, genetic modulation of
cognition (Lindenberger et al., 2008; Nagel et al., 2008) or of
dopamine receptors (Bäckman et al., 2011; MacDonald et al.,
2012) may explain cognitive performance variability, also in
younger adults. However, the influence of these factors might
change with age. Neurobiological differences (Myerson et al.,
1990) and decline in the efficiency of executive control (West
et al., 2002), for example, are thought to increase cognitive
performance variability with advancing age. In addition to these
internal factors, environmental factors such as socioeconomic
status, education level and intelligence quotient (IQ) might
influence variability in cognitive performance (Stern, 2002;
Foss et al., 2009; Tucker-Drob et al., 2009). These external
factors are thought to allow some to cope better with the
neural and cognitive decline in the aging brain, than others
(cognitive reserve theory (Stern, 2002, 2009; Steffener and Stern,
2012)).

The current study aimed at extending our knowledge on
the diversity and dispersion in cognitive performance. Profiles
of cognitive performance observed in the elderly may not be
just related to age. Therefore, we here derive a typology of
cognitive aging in a mixed group of young and older adults.
Thus, we do not assume a-priori that younger and older adults
have different cognitive profiles. In addition, in this study we
focus on compound neuropsychological test results, which are
frequently used in clinical settings, to evaluate functioning across
a variety of cognitive domains. Our results, therefore, might have
a direct clinical impact allowing a better dissociation of patterns
of cognitive decline resulting from either healthy aging or specific
disease, which is especially useful in clinical decision-making
(Geldmacher et al., 2012).

Various clustering techniques can be applied to identify
cognitive typologies based on neuropsychological test results.
In general, these techniques can be divided in three well-
known classes: (1) hierarchical methods, that cluster data points
on the basis of distance connectivity (e.g., Ward’s method or
linkage hierarchical methods (Maxson et al., 1997; Passarino
et al., 2007)); (2) centroid methods that represent clusters by
a central data point, that may not be part of the dataset

(e.g., K-means clustering (Maxson et al., 1997; Ylikoski et al.,
1999; Newman, 2004)); and (3) distribution-based methods that
define clusters as data points most likely belonging to the same
distribution (e.g., Bayesian latent class analysis (Costa et al.,
2013)). Although all clustering methods have their advantages
and disadvantages, we have favored the application of the
first mentioned hierarchical method in our analyses since
it dovetails nicely with basic concepts in graph theory (i.e.,
distance connectivity has a natural counterpart in graphs) and
can therefore profit from recent advances in graph theoretical
clustering approaches.

Graphs, as used in graph theory, are sets of nodes or
vertices connected by lines or edges. Data points, making up
the nodes in a graph, can have high similarity (i.e., resulting in
connected nodes) or low similarity (i.e., resulting in unconnected
nodes). Based on the connectivity pattern between data points,
a graph can be constructed for any data set. To cluster the data
points (i.e., nodes in the graph), community detection can be
applied to the graph. Community detection identifies groups
of nodes (i.e., clusters) that are more densely interconnected
than they are connected with the rest of the nodes. One
of the most widely used methods for community detection
is modularity maximization (Newman, 2004). Modularity is
a graph-theoretic measure that quantifies the quality of a
particular division of a network into communities. However,
modularity maximization is a very computationally intensive
process when an exhaustive search is used. One of the most
efficient alternative methods today is the method proposed by
Newman (2006), which reformulates modularity in terms of the
spectral properties of a network and can be seen as a hierarchical
clustering method. Since its inception, this method has been
amply used, for example, to identify cognitive typologies in
typically developing youth and in children with ADHD (Fair
et al., 2012). In the current study, we applied this method to
identify cognitive typologies in a mixed group of young and
older adults.

In our application, the graph consists of nodes reflecting
participants and connections between them index the similarity
of cognitive test performance between the participants. Because
we know that cognitive aging is a highly variable process and
that cognitive performance of some elderly is on the same
level as that of their younger counterparts, we hypothesize
that the chosen method applied to a group consisting of both
young and older adults will identify at least one subgroup of
cognitively similarly performing younger and older participants.
In addition, we also expect that several older adults will
be separated from the young adults, in line with theories
of generally lower cognitive performance in older age. In
line with the predictions of the cognitive reserve theory
(Stern, 2002, 2009; Steffener and Stern, 2012), we expect that
elderly with a higher level of education attainment and IQ
will show an overall higher level of cognitive performance.
Hence, we additionally investigated whether broad measures of
functioning (education attainment and estimates of intelligence)
that were not included in the determination of cognitive
typologies, were related to group membership of individual
participants.
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Materials and Methods

Participants
Neuropsychological data from 158 healthy adults were evaluated
for this study. Eighty participants were younger adults (mean
age 20.2 years; range 18--26 years; 41 males) and 78 participants
were older adults (mean age 65.3 years; range 59--74 years;
38 males). Participants were recruited through advertisements
in local newspapers. All participants were right handed and had
normal or corrected to normal visual acuity. Exclusion criteria
were a history of neurological, psychiatric or vascular disease and
use of any psychotropic medication. To verify normal overall
cognitive functioning, the MMSE (Folstein et al., 1975) and the
HADS (Zigmond and Snaith, 1983) were used. Only participants
who scored above 26 on the MMSE and below 16 on each of
the subscales of the HADS were included. One younger and one
older participant did not complete all neuropsychological tests
and were excluded from further analysis. In addition, one older
participant was excluded due to brain abnormalities discovered
in the anatomical scan collected for other purposes. The local
ethics committee approved the current study. All participants
gave written informed consent.

Neuropsychological Testing
Participants were tested on a clinical neuropsychological test
battery that encompassed tests for different aspects of cognitive
functioning, such as processing speed, executive functioning,
verbal fluency, working memory span, recall and recognition,
and response speed.

To assess cognitive processing speed, the trail making tests
A and B were used. The trail making B test has also been
associated with executive functioning (Lezak et al., 2004).
Participants were instructed to execute the tasks as quickly
as possible. Both tests were practiced prior to the assessment.
These tests were scored by the time taken to complete the
test, including the time it took to correct the (possible) errors
made. Verbal fluency was assessed by four subtests. For two of
these subtests (phonemic fluency), participants had to generate
as many meaningful words as possible beginning with (1) the
letter ‘‘S’’ and (2) the letter ‘‘F’’ in 60 s. For the remaining
subtests (semantic fluency), they were instructed to generate
as many (1) professions and (2) animals as possible within
60 s. The order of the phonemic and semantic subtests was
semi-randomized between participants. The score on each of
the fluency tests was the number of correct words. The digit-
span tests forward and backward were used to assess working
memory span. The score on each of the tests was the maximum
number of correctly recited digits. The 15 words test was used
to assess immediate and delayed recall as well as recognition.
The immediate recall consisted of five blocks of trials: in each
block the participants were required to recall as many words as
possible, immediately after they were presented to them. The
delayed recall and the recognition subtests consisted of one
block each. For each of the three subtests, the score was the
number of correctly remembered words. Finally, response speed
was assessed by means of a simple reaction time test, in which
participants were required to press a response button as quickly

as possible whenever a red dot appeared on the screen. The red
dot remained on screen for 300 ms and intertrial intervals (ITI)
varied randomly between 2000 and 6000 ms. Response speed
was scored as the median response time (RT) for correct button
presses.

In addition to the above-mentioned tests that measure
specific cognitive functions, tests assessing broader measures
of cognitive functioning were implemented. The digit symbol
coding test employs nine pairs of numbers and abstract symbols.
First, participants memorized the number-symbol pairing and
practiced briefly. Subsequently, participants were asked to write
down the corresponding symbols under a sequence of numbers,
as quickly as possible within 120 s. An estimation of crystallized
intelligence was obtained through the Dutch Adult Reading
test, which is the Dutch version of the National Adult Reading
Test (NART; Schmand et al., 1992) and requires participants
to read aloud a list of words, with irregular pronunciation.
An estimate of fluid intelligence was obtained from the WAIS-
matrix reasoning test in which participants are presented with
26 incomplete patterns (or matrices) and are required to select
the response that completes each pattern (Uterwijk, 2001). To
estimate education attainment four levels were distinguished: (1)
lower education; (2) lower-technical and vocational training and
lower general secondary education or preparatory middle-level
applied education; (3) vocational training and higher general
continued education or preparatory scholarly education; and (4)
higher professional education or university level.

To investigate whether the level of education attainment,
estimates of fluid and crystallized intelligence, as well as scores on
the digit-symbol coding test were related to groupmembership of
individual participants we tested subgroup differences on these
variables using univariate ANOVA (significance level α = 0.05).
To investigate subgroup differences in education level, chi square
(X2) testing was performed.

Variable Selection
To identify diversity and dispersion in performance on the
neuropsychological tests the following 8 compound scores were
taken into account for further analysis: (1) phonemic fluency
(mean score on the subtests ‘‘S’’ and ‘‘F’’); (2) semantic fluency
(mean score on the subtests ‘‘professions’’ and ‘‘animals’’);
(3) working memory span (mean score of the digit-span forward
and backward tests); (4) trail making A score (time to complete
the trail making A test); (5) trail making B/A score (time to
complete the trail making B divided by the time to complete trail
making A test); (6) immediate recall (sum of recalled items in
the 5 sessions of the immediate recall subtest); (7) delayed recall
score; and (8) response speed score. The recognition score for
the 15 words test was excluded for further analysis; due to the
lack of variability among participants inclusion of this test would
not add relevant information to the identification of cognitive
profiles.

Subgroup Identification: Community Structure
Detection
All compound scores were transformed to z-scores.
Subsequently, some scores were multiplied by −1 to ensure that
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a higher score was equivalent to better performance. To be
able to apply community detection, we first determined the
graph describing the relation between participants (i.e., nodes)
based on their cognitive test performance. Connectivity between
nodes (i.e., similarity in cognitive test performance between
participants), was based on the intraclass correlation coefficient
ICC (A,1) (McGraw and Wong, 1996) calculated between all
pairs of participants across test scores. Subsequently, a square
symmetric ICC matrix (155 × 155) was constructed, containing
the ICC values for each pair of participants. The ICC matrix
was thresholded such that every participant was connected to at
least one other participant (the graph was ‘‘strongly connected’’
that is ‘‘reachability’’ was 1; see Fair et al., 2012), resulting in
a threshold of 0.3870. Because the threshold could have an
impact on the detected communities (Palla et al., 2005), the
robustness of the detected communities was further investigated
for different (lower) thresholds (ICC = 0.3, ICC = 0.2, ICC = 0.1).
For higher thresholds, the reachability of the resulting graph
is expected to be lower. We found that the number and size
of identified communities was independent of the chosen
threshold.

To identify the communities (i.e., clusters or subgroups)
in our graph, the modularity (Q) maximization approach
of Newman (2006) was used. Newman’s algorithm aims at
identifying communities in a network, which share fewer edges
between each other than would be expected in a network
with an equivalent degree of distribution, in which edges are
placed at random. Q quantifies the difference between the actual
connections in the network and the expected connections in the
equivalent random network; a positive Q thus indicates that the
number of edges within communities is higher than expected in
the equivalent random graph.

Cluster Stability and Validation
Participants were assigned to separate clusters using community
detection analysis. This method does not provide information
on how stable the identified clusters are and how well an
individual can be captured within one of the existing clusters
or classified as member of an existing cluster. To determine
cluster stability, and to indicate how well new individuals can be
classified as member of the existing clusters, we used a support
vector machine (SVM) with a radial basis function (RBF) kernel,
provided in the package LIBSVM (Chih-Chung and Chih-Jen,
2011).1 Typically, an SVM is trained on a number of entities
(in this case participants) described by a set of defining variables
(in this case compound neuropsychological test scores) and their
associated class label of each entity (in this case the label of the
cluster the participant was assigned to by community detection
analysis). Within the training part, the SVM associates patterns
among the variables with the class labels. The result is captured
in a model, which is able to classify new entities to the existing
class labels (see Burges, 1998 for an extensive overview of SVM).
The performance of the SVM prediction is often expressed in
terms of sensitivity and specificity. Sensitivity refers to how well
a class can be predicted and is calculated by the number of true

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

positives in the prediction divided by the total number of true
class members. The specificity refers to how specific a group was
in the prediction results and is calculated by the number of true
negatives in the prediction divided by the total number of other
class members.

To assess the SVM prediction performance resulting in
clusters that were produced using community detection analysis,
we performed two cross-validation procedures; leave one out
cross validation (LOOCV) and dataset partitioning (Arlot and
Celisse, 2010). In LOOCV, data from one participant is used as
testing dataset, while data from the remaining participants forms
the training data. This procedure is repeated until data from
each participant has been used once for testing purposes. Because
LOOCV can give an optimistic result, we also determined the
cross-validation results of dataset partitioning. In this procedure,
every subgroup identified through community detection analysis
was divided in two parts of (almost) equal size. One of these
parts was used for training while the other part was used for
testing purposes. Cross-validation is a nearly unbiased method
to assess how results will generalize to independent data sets.
This technique is especially useful when data is scarce and further
samples are costly to collect.

Results

Community Detection
Community detection analysis resulted in six separate
communities (Figure 1A), at a modularity maximization
index (Q) of 0.49. Two of these subgroups consisted mainly
of younger adults (Subgroups (S)1 and S2; Figure 1B). One
‘‘mixed’’ subgroup contained comparable numbers of younger
and older adults (S3). The remaining three subgroups were
dominated by older adults (S4, S5 and S6).

The SVM results, indexing how well participants were
assigned to the subgroups identified by community detection
analysis, showed that there was a strong distinction between
these subgroups (overall classifier accuracy: LOOCV: 83.9% and
data partitioning: 74.7%). The sensitivity and specificity of both
analyses for each of the subgroups are presented in Table 1.

The profiles of compound neuropsychological test scores
are presented in Figure 2, separately, for each of the six
subgroups. The cognitive profile of S1 (young, 14.8% of the
total group of participants) was characterized by a below
average performance on verbal fluency tests and above average
compound scores on the remaining neuropsychological tests.
Participants in S2 (mostly young, 25.2% of the participants)
performed above average on tests related to executive functioning
(trail making A and B/A) and memory (immediate and delayed
recall), but average or below average on tests related to
verbal fluency, working memory span and RT. Participants
in S3 (mixed age, 20% of the participants) were generally
slower than average (RT), but scored above average on the
remaining neuropsychological tests. In contrast, participants in
S4 (mostly old, 16.8% of the participants) were faster than
average (RT), but had below average compound scores on all
remaining tests. The cognitive profile of participants in S5
(mostly old, 7.1% of the participants) was characterized by
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FIGURE 1 | (A) Graph representation of the subgroups resulting from
community structure identification, using the build-in layout
Force-Atlas method in Gephi, version 17 (Bastian et al., 2009). This
method employs a spring-directed algorithm that assumes two
competing forces, a repulsive force driving all nodes apart and an
attractive force (“spring force”) keeping the nodes linked by edges

together. The stronger the connection (similarity), the stronger the
attractive force and the closer the edges will be in the visualization.
(B) The number of younger and older adults in each subgroup.
(C) Boxplots of the scores (median, 1st quartile, 3rd quartile, min and
max) for each subgroup for each of the neuropsychological tests,
using the same color coding as in panel (A).
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TABLE 1 | Sensitivity and specificity of the SVM algorithm for each
subgroup, for the LOOCV method and the data partitioning method,
separately.

Subgroup LOOCV Data partitioning1

Size Sensitivity Specificity Sensitivity Specificity
S1 23 82.6 99.2 83.3 100
S2 39 89.7 94.1 65 98.1
S3 31 87.1 92.3 93.3 84
S4 26 84.6 96.9 84.6 92.8
S5 11 81.8 99.3 83.3 100
S6 25 72.0 98.4 46.2 96.7

1For the data partitioning procedure, the training dataset consisted of 76

participants: S1(11), S2(19), S3(16), S4(13), S5(5) and S6(12). The testing dataset

consisted of 79 participants: S1(12), S2(20), S3(15), S4(13), S5(6) and S6(13).

overall decreased compound scores, particularly on the trail
making B/A test that is thought to provide a measure of
executive functioning. Participants in S6 (mostly old, 16.1% of
the participants) had lower compound scores on tests measuring
aspects of memory (delayed and immediate recall) and RT, but
average or above average compound scores on the remaining
cognitive tests.

Differences in Demographics and Broad
Measures of Cognitive Functioning Between
Identified Subgroups
Demographics and broad measures of cognitive functioning
(level of education attainment, estimates of fluid and crystallized
intelligence, scores on the digit symbol coding test) are presented
in Table 2, separately for each subgroup.We analyzed differences
in age distribution between subgroups, separately for younger
and older adults within the groups. Only two subgroups differed
with respect to the age of the older participants within the
subgroup; older participants in S5 were on average older
than older participants in S3 (F(4,71) = 3.2; p = 0.019). The
young adults in each subgroup had comparable age. There
were no differences in MMSE scores between the subgroups
dominated by younger adults or between those dominated by
older adults. However, participants in the younger (S1 and
S2) and mixed subgroup (S3) had higher MMSE scores than
participants in the older subgroups (S4--S6, F(5,149) = 13.8;
p < 0.005; illustrated in Figure 3A). The six subgroups
had similar scores on both the anxiety (F(5,149) = 0.84; n.s.)
and the depression (F(5,149) = 1.7; n.s.) subscales of the
HADS test. Participants in mixed subgroup S3 and in the
‘‘predominantly’’ older S6 group, had higher crystallized IQ
scores than participants in the two younger subgroups (S1 and
S2) and in one older subgroup (S5) (F(5,149) = 12.6; p < 0.0005;
Figure 3B). In general, participants in S5 had lower fluid IQ
scores than participants in the other subgroups (F(5,149) = 5.1;
p < 0.0005). Performance on the digit symbol coding test
differed between subgroups (F(5,149) = 17.7, p < 0.0005;
Figure 3C). Participants in S1 and S2 had higher scores
than all three older groups (S4, S5 and S6). Among these
older groups, participants in S6 performed best at the digit
symbol coding test. Finally, participants in S6 also attained
a higher education level than participants in the other older

subgroups S4 (X2
(51) = 8.1, p = 0.017) and S5 (X2

(36) = 11.7,
p = 0.007; see Figure 3D). There were no differences in
education level between the two subgroups dominated by
younger adults.

Discussion

In the current study, we investigated variability of cognitive
performance across tasks (dispersion) and across individuals
(diversity), with the aim to derive cognitive profiles in a
population of both young and older adults. Cognitive profiles
were identified by community detection analysis (Newman,
2006) on compound scores obtained from a clinically employed
neuropsychological test battery. The robustness of the resulting
subgroup partition, that is the degree to which new individuals
will appropriately be classified as member of an existing
subgroup, was confirmed by two SVM-based approaches,
LOOCV and cross-validation. A particular strength of the
current study is the implementation of the cross-validation
SVM approach, which is a nearly unbiased method to assess
how results will generalize to independent data sets. This
technique was especially useful in the current study in which
we investigated cognitive patterns in a relatively small group
of participants. We hypothesized that our approach would
identify at least one age-mixed subgroup of cognitively similarly
performing participants and, in line with theories of general
cognitive decline with age, we also expected additional subgroups
in which older adults would be separated from the young
adults.

Indeed, we identified a mixed subgroup of older and young
participants who performed at a similar cognitive level, showing
overall good cognitive performance with slightly decreased
processing speed. We also found subgroups mainly consisting
of younger or older adults. The two ‘‘younger’’ profiles
showed overall good cognitive performance, although they both
showed relative underperformance in phonemic fluency. The
presence of three older subgroups, compared to only two
younger subgroups, seems to confirm increased performance
variability in the elderly (Hultsch et al., 2002; West et al.,
2002). While one of the ‘‘older’’ profiles was characterized by
general lower cognitive performance; the other two ‘‘older’’
profiles only showed lower performance in specific cognitive
domains in combination with cognitive performance in the
range of younger adults on the remaining cognitive tests. All
three ‘‘older’’ profiles were characterized by lower cognitive
performance on immediate and delayed recall tests, reflecting
impaired recollection in the elderly possibly due to age-
related frontal lobe dysfunctions (see Yonelinas, 2002 for a
review).

Our approach of clustering in a mixed group containing
both young and older adults shows that aging is not necessarily
associated with poor cognitive performance and simultaneously,
that being young is not necessarily associated with superior
cognitive performance. Moreover, the results show that the
degree of age-related lower cognitive performance seems to vary
significantly between individuals. We also found that cognitively
better performing participants (older subgroup 6 (S6)) had a
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FIGURE 2 | Boxplots representing compound neuropsychological
test scores (median, 1st quartile, 3rd quartile, min and max),
separately, for each of the six subgroups. Note that the order of

the tests on the x-axis differs between subgroups, because it is ordered
by increasing z-score. The same color coding is used as in
Figures 1A,C.

significantly higher level of education attainment and higher
crystallized intelligence than the participants in the other older
subgroups (S4 and S5). Cognitively better performing individuals

also showed higher general cognitive competence, reflected
in the higher scores on the digit symbol coding test, which
draws among others on visuomotor coordination, sustained
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TABLE 2 | Demographics and broad measures of functioning for each subgroup.

S1 S2 S3 S4 S5 S6

N 23 39 31 26 11 25
Young/Old 23/- 35/4 16/15 2/24 1/10 2/23
Male/Female 13/10 17/22 12/19 15/11 5/6 16/9
Age (years): young (median(range)) 19(18--23) 20(18--24) 20.5(18--26) 19.5(18--21) 19(19) 21(20-22)
Age (years): old (median(range)) - 62.5(59--69) 63(60--70) 65.5(60--74) 68(62--74) 64(60-72)
MMSE (mean(SD)) 29.4 (0.7) 29.5 (0.6) 29.6 (0.6) 28.4 (1.1) 28.1 (1.2) 28.5 (1.1)
HADS anxiety (mean(SD)) 3.8 (1.7) 3.2 (2.2) 3.9 (2.8) 3.7 (2.2) 4.6 (2.7) 3.2 (2.9)
HADS depression (mean(SD)) 1.4 (1.6) 1.8 (1.9) 1.5 (1.6) 2.3 (2.6) 3 (2.9) 1.6 (1.2)
Crystallized IQ (mean(SD)) 103.7 (5.6) 102.3 (4.9) 111 (8.7) 105.2 (10.4) 96.5 (7.8) 114 (9.3)
Fluid IQ (mean(SD)) 113 (12.6) 111.2 (10) 111.6 (9.1) 106.5 (8.6) 97.3 (9.3) 111 (9.2)
Digit symbol coding (mean(SD)) 86 (12.7) 83 (15.1) 79.5 (14) 60.5 (8.3) 56.2 (13.5) 72.6 (13.3)
Education attainment level (1/2/3/4) -/-/18/5 -/-/24/15 -/-/11/20 -/7/6/13 1/3/5/2 -/-/10/15

S = Subgroup; Education level: 1 = lower education; 2 = lower-technical and vocational training, lower general secondary education or preparatory middle-level applied

education; 3 = vocational training, higher general continued education or preparatory scholarly education, 4 = higher professional education or university level.

FIGURE 3 | Illustration of the differences between subgroups, for (A) the
MMSE test results, (B) crystallized IQ scores, (C) Symbol coding test
scores and (D) education level. Groups represented in each row were
compared with the subgroups represented in each column (e.g., S6 (row) vs.

S1 (column), S6 vs. S2 (column); see example given); + reflects a positive mean
difference (“row” group larger than “column” group) between the subgroups,
-- reflects a negative mean difference (“row” group smaller than “column” group)
between the subgroups; *p < 0.05; **p < 0.01; ***p < 0.001.

and selective attention and associative learning (Lezak et al.,
2004). Chronological age cannot explain the differences between
the older subgroups on these broad measures of cognitive
functioning, as the age distribution of the elderly in subgroups 4,
5 and 6 was comparable. Therefore our results seem to suggest
that older adults with a higher so-called ‘‘cognitive reserve’’,
as reflected in higher educational attainment and crystallized
intelligence level, show a more favorable pattern of cognitive
performance. This is in line with previous studies (Ylikoski et al.,
1999; Foss et al., 2009) which have suggested that considering the
environmental context (e.g., social-economic status, education
level) is important in understanding the cognitive trajectory
over the adult lifespan (Gribbin et al., 1980; Manton et al.,
1986).

The cognitive reserve theory (Stern, 2002, 2009) proposes that
higher education level and IQ scores are protective factors that

allow certain individuals to compensate for neural decline in the
aging brain. More specific, the cognitive reserve theory postulates
that the differential recruitment of typical brain networks or the
additional recruitment of other, compensatory, networks gives
rise to the variability in task performance in the elderly (Stern,
2009; Steffener and Stern, 2012). Park and Reuter-Lorenz (2009)
also elaborate on the efficient recruitment of additional neural
networks, which they call scaffolding networks or scaffolds
(Park and Reuter-Lorenz, 2009). In their scaffolding theory
of aging and cognition (STAC), they argue that older adults
showing high levels of cognitive functioning make effective use
of scaffolding networks to maintain task performance. However,
the link between life factors such as education and IQ on
one hand and cognitive performance on the other should be
interpreted with caution: some longitudinal studies have failed to
find a reliable association between higher education and stability
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of cognitive performance with increasing age (Christensen
et al., 2001; Ritchie et al., 2013). Furthermore, lower levels
of education attainment and crystallized intelligence (or lower
cognitive reserve) are not necessarily associated with general
lower cognitive performance in the elderly; our results show that
older age seems to be related to selective changes in particular
cognitive domains.Which specific cognitive domains are affected
seems to vary across individuals. While our results are in
line with previous studies, it must be noted that the majority
of our older participants had higher educational attainment
(category 3 and 4; see Table 2). This skewed distribution in
terms of education attainment may be considered a limitation
of the current study. This limitation is unfortunately inevitable
due to the voluntary nature of participation in this kind of
studies.

The cognitive profile of two ‘‘older’’ subgroups may be of
interest to clinical-decision making. An intriguing question is
whether the cognitive profile observed in the poorest performing
older subgroup (S5) is just a facet of healthy aging. An alternative
explanation may be that decline in cognitive function exceeds
the respite offered by compensatory strategies in participants
in this group and that they are at a higher risk for developing
mild cognitive impairment (MCI) or dementia. It should be
noted however, that ours is not a longitudinal study so that
we have no information on prior cognitive performance in
any of our participants. One of the criteria for an MCI
diagnosis is objective memory impairment for age, which is often
conceptualized as performing 1.5 SD below the performance
of age-mates (Petersen, 2004). Although participants in our
subgroup 5 performed well below average on the included
neuropsychological tests, they did not perform particularly worse
at the included measures of memory for which their z-scores
(calculated with respect to the entire group of participants)
were above −1.5. Their MMSE scores did not differ from
those of the other older subgroups either. Another interesting
‘‘older’’ group is subgroup 6, the cognitive profile of which
was characterized by lower cognitive performance on tests
measuring delayed and immediate recall and above average
performance in the remaining cognitive tests. Performance
differences in memory functions have been considered a defining
feature that can distinguish participants diagnosed with MCI
and healthy control subjects. In a study by Petersen et al.
(1999), participants with MCI showed lower performance on
memory functions while retaining comparable performance in
other cognitive functions to the healthy control participants.
Participants classified in subgroup 6 thus seem to exhibit the
characteristics of MCI patients in the Petersen et al. (1999)
study, despite their optimal MMSE scores and performance
scores exceeding −1.5 SD below the average of all participants.
For participants classified in both these cognitive profiles
(S5 and S6), additional (longitudinal) information is needed
to examine transition stages from healthy aging to aging-
related neurodegenerative disorders. To this end, measures
of differences in underlying neural activity may help to
better understand performance variability among these ‘‘older’’
subgroups (Park and Reuter-Lorenz, 2009; Saliasi et al., 2013;
Geerligs et al., 2014).

Thus, the results of our community structure detection
analysis confirm the findings of several previous studies, which
all identified heterogeneous cognitive profiles in elderly. A
constant finding is the presence of a group of elderly with a
cognitive profile that is characterized by generally lower cognitive
performance (Ylikoski et al., 1999; Gunstad et al., 2006; Foss et al.,
2009; Costa et al., 2013). The pattern of cognitive performance
characterizing the other identified groups of elderly differed
between the studies. However, findings suggest that several
elderly show average and above average performance on several
cognitive tests (Ylikoski et al., 1999; Gunstad et al., 2006; Foss
et al., 2009; Costa et al., 2013). Adding to these results, our
findings clearly indicate that some elderly achieve cognitive
performance levels comparable to those found in certain younger
participants.

Variability in cognitive performance was also observed in
the young population. In particular, the younger subgroups
showed consistently high performance on all but the verbal
fluency tasks. One of these profiles was further characterized
by relative underperformance in semantic fluency while the
other showed an additional decrease in working memory
span. It is known that younger adults generally have lower
vocabulary knowledge than older adults (Kavé and Yafé, 2014),
which probably explains their reduced capacity to generate
words based on their semantic or phonetic properties. As
an interesting consequence of our approach to determine
cognitive profiles in a mixed population of young and
older adults, some younger participants were classified in
‘‘older’’ subgroups with poor cognitive performance (S4 and
S5), indicating that efficient cognitive performance does not
characterize all younger adults. Our results confirm the presence
of cognitive performance variability not only among older, but
also among younger adults. As such, conclusions based on
averaged performance levels in both young and old groups may
obscure existing variability in cognitive functioning in either
age group.

Conclusions

The results of this study confirm the prominent effects of aging
on cognitive performance, as the majority of younger and older
adults were classified in age-related subgroups. However, most
older persons only showed moderate decline in domain-specific
cognitive performance, while one group of older persons still
performed at a similar cognitive level as younger adults. This
finding provides more evidence that the notion of inevitable
cognitive performance decline at older age is too simple.
Aging is not a unitary process and age-related differences in
cognitive performance---as our study illustrates---can become
apparent in variable patterns across cognitive domains, possibly
because neuronal decline varies across brain areas for individuals.
Moreover, we found that high performance levels in older
persons are associated with higher education levels and higher
IQ scores. This ‘‘performance-cognitive reserve’’ association
suggests that high performing older individuals may be able to
adequately cope with age-related changes in the brain.
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