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Airway epithelium forms a physical barrier that protects the lung from the entrance of
inhaled allergens, irritants, or microorganisms. This epithelial structure is maintained by
tight junctions, adherens junctions and desmosomes that prevent the diffusion of soluble
mediators or proteins between apical and basolateral cell surfaces. This apical junctional
complex also participates in several signaling pathways involved in gene expression,
cell proliferation and cell differentiation. In addition, the airway epithelium can produce
chemokines and cytokines that trigger the activation of the immune response. Disruption
of this complex by some inflammatory, profibrotic, and carcinogens agents can provoke
epithelial barrier dysfunction that not only contributes to an increase of viral and bacterial
infection, but also alters the normal function of epithelial cells provoking several lung
diseases such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis
(CF) or lung cancer, among others. While nitric oxide (NO) molecular pathway has been
linked with endothelial function, less is known about the role of the NO system on the
bronchial epithelium and airway epithelial cells function in physiological and different
pathologic scenarios. Several data indicate that the fraction of exhaled nitric oxide
(FENO) is altered in lung diseases such as asthma, COPD, lung fibrosis, and cancer
among others, and that reactive oxygen species mediate uncoupling NO to promote
the increase of peroxynitrite levels, thus inducing bronchial epithelial barrier dysfunction.
Furthermore, iNOS and the intracellular pathway sGC-cGMP-PKG are dysregulated in
bronchial epithelial cells from patients with lung inflammation, fibrosis, and malignancies
which represents an attractive drug molecular target. In this review we describe in detail
current knowledge of the effect of NOS-NO-GC-cGMP-PKG pathway activation and
disruption in bronchial epithelial cells barrier integrity and its contribution in different lung
diseases, focusing on bronchial epithelial cell permeability, inflammation, transformation,
migration, apoptosis/necrosis, and proliferation, as well as the specific NO molecular
pathways involved.

Keywords: bronchial epithelium, nitric oxide, nitric oxide synthase, soluble guanylyl cyclase, cyclic guanosine-
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INTRODUCTION

Bronchial epithelium is directly in contact with the environment
and thus, its barrier function is essential to protect the lung from
the entrance of pathogens, allergens, or irritant particulates and to
maintain homeostasis (Bals and Hiemstra, 2004; Whitsett, 2015).
The principal components that maintain the barrier function
of airway epithelium are the tight and adherens junctions, the
mucociliary clearance, and the antimicrobial products secretion
(Ganesan et al., 2013).

On the apico-lateral border of epithelial cells are present
tight junctions, adherens junctions, and desmosomes forming the
apical junctional complex (AJC). These proteins are connected to
the cytoskeleton and fundamental to maintain the structure of
the airway epithelium (Whitsett, 2015). The proteins that form
the tight junctions such as occludin, claudin family, junctional
adhesion molecule (JAM), and zonula occludens (ZO) are linked
to the actin cytoskeleton and regulate paracellular transport of
ions and some molecules. Meanwhile, the proteins involved
in the formation of adherens junctions, such as E-cadherin,
are also linked to the actin cytoskeleton and are essential
for cell-cell adhesion and intracellular signaling (Rezaee and
Georas, 2014; Rusu and Georgiou, 2020). E-cadherin regulates
several cellular processes mainly through the binding and
sequestration of β-catenin. The formation of this complex
avoids the translocation of β-catenin into the nucleus regulating
pathways involved in proliferation, cell recognition, polarization,
and cell migration, among others (Wong et al., 2018; Rusu and
Georgiou, 2020). On the other hand, desmosomes are linked to
the intermediate filament cytoskeleton and are also important
in intercellular junctions giving mechanical strength to tissues
(Garrod and Chidgey, 2008). Thereby, the AJC complex regulates
the epithelium permeability by avoiding the entrance of inhaled
pathogens and environment particulates and preventing the
diffusion of soluble mediators or proteins between apical and
basolateral cell surfaces. Furthermore, the AJC participates in
several signaling processes of genic expression, differentiation,

Abbreviations: 3-NT, 3-nitrotyrosine; ADMA, asymmetric dimethylarginine;
AJC, apical junctional complex; ASL, airway surface liquid; CCL2, chemokine
(C-C motif) ligand 2; CF, cystic fibrosis; CFTR, CF Transmembrane conductance
regulator; cGMP, cyclic guanosine-3′,5′-monophosphate; COPD, chronic
obstructive pulmonary disease; COX-2, cyclooxygenase-2; DAMPs, danger-
associated molecular patterns; EMT, epithelial to mesenchymal transition; ENaC,
epithelial sodium channel; eNOS or NOS3, endothelial nitric oxide synthase; EPO,
eosinophil peroxidase; FENO, fraction of exhaled nitric oxide; FGF, fibroblast
growth factor; GSNO, S-nitrosoglutathione; GSNOR, GSNO reductase; GTP,
guanosine 5′-triphosphate; IFN-γ, interferon γ; IL, interleukin; iNOS or NOS2,
inducible nitric oxide synthase; IκB, inhibitor of nuclear factor κB; JAM, junctional
adhesion molecule; LPS, lipopolysaccharides; MAPK, mitogen activated protein
kinase; MBP, major basic protein; MMPs, metalloproteinases; NF-κB, nuclear
transcription factor κB; nNOS or NOS1, neuronal nitric oxide synthase; NO,
nitric oxide; NOS, nitric oxide synthase; NSCLC, non-small cell lung cancer;
PAMPs, pathogen-associated molecular patterns; PARs, protease-activated
receptors; PDEs, phosphodiesterases; pGC, particulate guanylyl cyclase; PGE2,
prostaglandin E2; PKGs, cGMP-dependent protein kinases; PRRs, pattern-
recognition receptors; ROS, reactive oxygen species; SCLC, small cell lung cancer;
sGC, soluble guanylyl cyclase; SNO, S-nytrosylation; T2 asthma, Type 2 asthma;
Tc cell, cytotoxic T cell; TGF-β, transforming growth factor β; Th cell, T-helper
cell; TLRs, toll-like receptors; TNF-α, tumor necrosis factor α; TSLP, thymic
stromal lymphopoietin; VEGF, vascular endothelial growth factor; WHO, World
Health Organization; ZO, zonula occludens; α-SMA, alpha-smooth muscle actin.

apoptosis, cellular proliferation, and immunological responses
(Balda and Matter, 2009; Inoue et al., 2020).

The mucociliary clearance also prevents the entry of
pathogens or particles into the lung. The mucus traps these
microbes or particles, and the beating of ciliated epithelial cells
carries them forward to the pharynx (Ganesan et al., 2013).

Airway epithelial cells also secrete several molecules, proteins,
and peptides such as enzymes, protease inhibitors or oxidants
that accumulate in the airways surface liquid and regulate
inflammation, chemotaxis, antimicrobial defense, antioxidant
levels, repair, and remodeling (Gohy et al., 2020). These functions
are key important to avoiding the entry of pathogens and harmful
particles without inducing inflammation.

Apart from the barrier function, the bronchial epithelium
also can modulate the immune response and integrate all
the pulmonary defenses. Allergens may contain proteases that
directly damage the airway epithelium and the AJC complex.
These proteases are recognized by epithelial protease-activated
receptors (PARs) and trigger the activation of the immune
response (Ramu et al., 2018). Additionally, epithelial cells widely
express pattern-recognition receptors (PRRs), such as NOD-
like receptors and Toll-like receptors (TLRs), which recognize
and respond to pathogen-associated molecular patterns (PAMPs)
and danger-associated molecular patterns (DAMPs). Thus, in
response to these stimuli, epithelial cells produce cytokines,
chemokines, growth factors, lipid mediators, and DAMPs to
interact with themselves and to recruit and activate effector cells
and antigen-presenting cells (Davies, 2014; Whitsett, 2015).

Therefore, bronchial epithelium plays a key role in
maintaining pulmonary homeostasis. Disruption of one or
more of the epithelium functions by harmful particles or
pathogens causes epithelial barrier dysfunction, which entails
an increase of epithelial permeability and susceptibility to
infection, and often an exaggerated long-term inflammation that
contributes to various chronic lung diseases such as chronic
obstructive pulmonary disease (COPD), asthma (Xiao et al.,
2011; Ganesan et al., 2013) or cystic fibrosis (CF) (Cabrini et al.,
2020) between others. Dysregulation of intercellular adhesions
and cell polarity with a loss of epithelial integrity have been
observed also in patients with lung cancer (Bonastre et al., 2016).

Between molecules secreted by the epithelial cells, the
nitric oxide (NO) is a lipophilic gaseous transmitter involved
in a wide number of signaling and regulation physiological
processes in which is included vasodilation, smooth muscle
relaxation, neurotransmission regulation, and different
inflammatory processes like platelet aggregation inhibition
(Moncada et al., 1997; Szabo, 2010; Zou et al., 2020). In
the respiratory epithelium, NO is also a key regulator of
several airway epithelial physiological functions. Among them
would be remarkable his role in the mucociliary function
and ciliary frequency (Li et al., 2000), in the epithelial ion
transport (Hardiman et al., 2004), in barrier dysfunction
restoration after injury by wound repair processes (Olson
et al., 2009), and in the modulation of inflammation by
regulation of epithelial production of inflammatory mediators,
contributing to innate host defense (Bogdan, 2001). In the
present review, the role of NO on the bronchial epithelial
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barrier integrity and its relationship with lung diseases
will be discussed.

NITRIC OXIDE (NO) GENERATION AND
NO SYNTHASES
From the amino acid L-arginine, in a reaction oxygen- and
NADPH dependent, the NO synthases family (NOS) produces
NO and L-citrulline (van den Berg et al., 2018). It is possible
to differentiate three NO synthase isoforms, the neuronal NOS
(nNOS or NOS1), the inducible NOS (iNOS or NOS2) and
the endothelial NOS (eNOS or NOS3). nNOS and eNOS are
considered constitutive NO synthases and their activation are
dependent on intracellular calcium concentration. Conversely,
iNOS is particularly expressed in epithelial cells and macrophages
in response to cytokines and/or proinflammatory stimuli, and it
produces NO independently of calcium concentration (Moncada
et al., 1997; van den Berg et al., 2018). However, in some
circumstances, nNOS and eNOS expression may be inducible,
and iNOS expression constitutive. Specifically, in the lung
epithelium, there is a constitutive iNOS expression. This might
be because NO is essential to maintain barrier integrity, avoid
the entrance of pathogens, and regulate ciliary beating, among
other functions, processes that will be more detailed below
(Mattila and Thomas, 2014).

iNOS expression is mostly regulated at the transcriptional
level although there are also translational, and posttranslational
mechanisms involved in iNOS expression and function. The
iNOS gene promoter is very complex and is activated by an
additive effect of various transcription factors such as AP-
1, C/EBP, CREB, GATA, HIF, IRF-1, NF-AT, NF-κB, NF-IL6,
Oct-1, PARP1, PEA3, p53, Sp1, SRF, STAT-1α, TBE, TCF,
and YY1 (Pautz et al., 2010; Guo et al., 2016). In epithelial
cells, the combined action of some cytokines, being the most
important interleukin 1β (IL-1β), interferon γ (IFN-γ), and
tumor necrosis factor α (TNF-α), and/or some proinflammatory
stimuli such as lipopolysaccharides (LPS) triggers the activation
of the transcription factors involved in the induction of iNOS
gene expression (Donnelly and Barnes, 2002; Roy et al., 2004;
Guo et al., 2016; Lee et al., 2017). On the other hand, guanidino-
substituted analogs of L-arginine or methylarginines, such as
asymmetric dimethylarginine (ADMA), inhibit the synthesis of
NO by competing with L-arginine at the active site of NO
synthases. Moreover, the arginase pathway can limit the arginine
availability for NO synthesis by NO synthases (Rochette et al.,
2013; Rath et al., 2014).

The iNOS induction generates large amounts of NO that is
necessary to attack virus, bacteria, and tumoral cells between
other functions. This is because, among other reactions, NO
react with superoxide (O2

−) and thus generate peroxynitrite
(ONOO−) that, with other reactive oxygen species (ROS),
damage several intracellular organelles and modify proteins and
nucleic acids involved in the replication of tumoral cells, virus,
and bacteria, supporting a key innate first defense of the organism
(Mustafa et al., 2009).

In addition, NO is involved in many physiological processes
mainly through cGMP-independent and cGMP-dependent

pathways. The cGMP-independent actions of NO are frequently
mediated by a post-translational modification of proteins
by S-nitrosylation, which consists of the addition of a NO
group to a cysteine thiol of a protein. This modification is
involved in the regulation of protein conformation, interactions
between proteins, and other post-translational modifications
that activate or inhibit their function (Furuta, 2017). On the
other hand, NO acts through the generation of cyclic guanosine-
3′,5′-monophosphate (cGMP) after binding with soluble
guanylate cyclase enzyme (Montfort et al., 2017) (Figure 1).
The synthesized NO diffuses to target cells where it binds with
picomolar affinity to the heme group of the active site of soluble
guanylate cyclase increasing 100–200 times the catalytic activity
of the enzyme and thus, the cGMP formation (Derbyshire and
Marletta, 2012; Childers and Garcin, 2018), that can activate
several kinases to implement cellular responses.

SOLUBLE GUANYLATE CYCLASE–cGMP

The guanylate cyclases are enzymes that catalyze the guanosine
5′-triphosphate (GTP) conversion to cGMP, a second messenger
that participates in several signaling processes (Dupont et al.,
2014). There are two different types of guanylate cyclase enzymes.
On the one hand, the particulate guanylate cyclase enzymes
(pGC) are associated with plasmatic membrane and recognize
different natriuretic peptides. On the other, the soluble guanylate
cyclases (sGC) are localized in the cytoplasmatic region and
are receptors of gaseous ligands, mainly nitric oxide (F. Rivero-
Vilches et al., 2001).

The sGC enzymes are dimeric proteins formed by an α subunit
(82 kDa) and a β subunit (70 kDa) (Rivero-Vilches et al., 2001). In
human cells, there are two forms of the α subunit (α1, α2) and two
forms of the β subunit (β1, β2). The active and best characterized
forms are the α1/β1 and α2/β1 heterodimers (Haskó et al., 2006).
Both heterodimers are present in the brain in similar proportions,
however, the α1/β1 heterodimer is predominant in the rest of the
tissues and is the most abundant in the lungs (Mergia et al., 2003).
The group of Glynos et al. (2013) showed in lung sections that the
α1 and β1 subunits are mainly present in bronchial and alveolar
epithelial cells and in airway smooth muscle cells.

Both the α and β subunits polypeptides have four domains:
a NO sensor N-terminal domain (H-NOX), a Per/Arnt/Sim
domain (PAS domain), a coiled-coil domain, and a catalytic
C-terminal domain (Derbyshire and Marletta, 2012). The
catalytic domains at the C-terminus of both subunits are
necessary for the binding and conversion of GTP to cGMP
(Dupont et al., 2014).

In the N-terminal domain of the β subunit, is the heme
group attached to histidine 105. The heme group is formed
by a protoporphyrin IX to which a ferrous ion is attached in
its reduced redox form (Fe+2) (Figure 2A) (Iyer et al., 2003;
Childers and Garcin, 2018). The NO binding to the reduced heme
group (Fe+2) triggers a conformational change in the subunits
structure, thus the enzyme catalytic effect is activated.

If the heme group is oxidized (Fe+3), the sGC enzyme
is insensitive to NO (Figure 2B). Under these conditions,
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FIGURE 1 | Proinflammatory stimuli and cytokines induce epithelial iNOS expression producing an increase of NO. (1) NO reacts with superoxide (O2
−) and

generates peroxynitrite (ONOO−) that, with other ROS damage tumoral cells and several intracellular organelles of pathogens. (2) NO is involved in several cell
signaling pathways by protein S-nitrosylation. (3) NO binds to sGC of epithelial cells or other target cells such as muscle cells and produces cGMP. PDE5 degrades
cGMP into GMP. The image has been created with Biorender.

FIGURE 2 | (A) Schematic representation of the α and β subunits of sGC. (B) Structure of the native state of sGC in its inactive form (without NO binding) and its
oxidized form after oxidative stress. The α1 subunit is represented in green, the β1 subunit that contains the heme group is represented in brown. The image of the
sGC has been created with Mol*, RCSB PDB: 6JT0 (Kang et al., 2019).
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the heme group loses affinity for the enzyme and is released
causing ubiquitination and proteolytic degradation of the protein
(Dupont et al., 2014). In some lung diseases such as asthma and
COPD in which oxidative stress is frequent, there is a loss of the
heme group after its oxidation (Stasch et al., 2006) that causes a
reduction of cGMP with consequences in the epithelial barrier
that will be discussed in more detail below.

The increase of intracellular cGMP regulates several
physiological processes, mainly by activating cGMP-dependent
protein kinases (PKGs), phosphodiesterases (PDEs), and cGMP-
dependent ion channels. The pathways involved in muscle
relaxation, bronchi and blood vessels dilation, and inhibition of
platelet aggregation are broadly described (Francis et al., 2010;
Dupont et al., 2014). Furthermore, on the epithelial cells, cGMP
is involved in signaling pathways of regulation of epithelial
sodium channels related to airway and alveolar fluid clearance
and differentiation, wound healing, migration, and ciliary
beating, among others (Stout et al., 2007; Nie et al., 2009; Spitler
et al., 2013; Liu et al., 2016).

PHOSPHODIESTERASE 5 (PDE5)

The cGMP intracellular levels are regulated by the action
of phosphodiesterases (PDEs) which rapidly degrade it to
GMP. There are eleven characterized phosphodiesterases families
(PDE1–PDE11) that specifically degrade cGMP, cyclic adenosine
monophosphate (cAMP), or both (Francis et al., 2001).
Furthermore, PDEs differ in their kinetic properties, their
location at different tissues, and inside the cells and their
sensitivity to certain drugs (Abusnina and Lugnier, 2017). The
phosphodiesterases families PDE4, PDE7, and PDE8 are highly
selective for cAMP, whereas the phosphodiesterases families
PDE5, PDE6, and PDE9 are very selective for cGMP. The rest
of them (PDE1, PDE2, PDE3, PDE10, and PDE11) degrade both
(Francis et al., 2001).

Among PDEs families that catalyze cGMP, PDE5 regulates the
cGMP balance in multiple tissues and is abundantly expressed
in the lungs (Corbin et al., 2005; Shafiee-Nick et al., 2017) in
which it plays an important role in the cGMP metabolism of
epithelial cells (Fuhrmann et al., 1999). PDE5 inhibitors have
been used to treat several diseases, for instance, the drug called
sildenafil is approved for the treatment of erectile dysfunction
or pulmonary arterial hypertension because it induces smooth
muscle relaxation. Additionally, the use of PDE5 inhibitors is
being investigated to treat other pathologies (Dupont et al.,
2014) such as in CF, in which PDE5 inhibitors might correct
abnormalities on transepithelial ion transport (Noel et al., 2012).

ROLE OF NITRIC OXIDE ON THE
REGULATION OF IMMUNE RESPONSES

Such as mentioned above, the iNOS gene promoter is very
complex and differs between different species and cell types.
iNOS expression is activated by several cytokines or stimuli after
recognition by epithelial receptors, such as Toll-like Receptor 4

(TLR4) in the case of LPS (Jia et al., 2016), INFγ receptor, TNF
receptor or IL-1 receptor. In epithelial cells, IL-1β and TNF-
α stimulation induce the activation and translocation into the
nucleus of nuclear transcription factor κB (NF-κB). However,
INF-γ stimulation activates STAT-1 and IRF-1 (Lee et al., 2017).
The synergic effect between IL-1β, TNF-α, and INF-γ is due in
part to different mechanisms. Apart from the NF-κB activation,
IL-1β and TNF-α are involved in the BH4 synthesis, an essential
cofactor for iNOS activity. On the other hand, INF-γ interacts
with IL-1β to enhance the degradation of the inhibitor of
nuclear factor κB (IκB). Finally, they activate different iNOS
promoters enhancing iNOS expression (Kwon et al., 2001). AP-
1 is another important transcription factor for iNOS expression
in airway epithelial cells. Stimulation with LPS and INF-γ
activates mitogen-activated protein kinase (MAPK) pathways
enhancing the binding of AP-1 protein to specific promoter
sequences. However, LPS alone cannot activate iNOS expression,
and although INF-γ alone can activate its transcription, the
addition of other cytokines and coactivators can potentiate iNOS
expression and activation (Guo and Erzurum, 1998; Kristof et al.,
2001). The coactivator p300 might be essential to the iNOS
activation since, after stimulation with TNF-α, IL-1β, and IFN-
γ cytokines, allows the formation of a long-range DNA looping
between AP-1 and TATA box of iNOS promoter stabilizing the
transcription complex and activating gene transcription (Guo
et al., 2016). Finally, the INF-JAK-STAT pathway plays also
an important role in the induction of iNOS expression since
inhibition of JAK signaling inhibits iNOS cytokine-induced
expression in airway epithelial cells after TNF-α, IL-1β, and
IFN-γ stimulation (Ganster et al., 2001).

NO is a key molecule in the primary host defense. As
mentioned above, NO after reaction with other ROS, has
cytotoxic effects essential to attack virus and bacteria and to
prevent pathogen infection. Additionally, NO is involved in the
S-nitrosylation of cysteine residues of vital pathogen enzymes.
Among its antimicrobial effects, NO has shown antiviral effects
against DNA and RNA viruses, including SARS-CoV-2, by
partially inhibiting virus replication (Rolim et al., 2019; Akaberi
et al., 2020; Pieretti et al., 2021). However, it has been shown
that viral activity can also compromise host NO production (Ritz
et al., 2021). Finally, NO is an important modulator of epithelial
ciliary beating, important for the clearance of pathogens, through
the activation of the sGC-GMPc-PKG pathway (Li et al., 2000).

NO is also involved in the regulation of various signaling
pathways related to transcription factor activation and gene
expression and in posttranslational regulation of the activity
of various inflammatory mediators. Among the mediators
regulated by NO, NF-κB is a key mediator in the airway
epithelial inflammatory response. NF-κB is both increased or
decreased after NO exposure depending on the NO concentration
and the time of exposure. Elevated NO levels after iNOS
induction increase NF-κB activation through cGMP-dependent
and independent pathways. However, NO may inhibit NF-κB
activation through a feedback mechanism to avoid prolonged
NF-κB activation and inflammation. Furthermore, the effects
of its activation are complex (Bove and van der Vliet, 2006).
In airway epithelial cells, NO increases IL-8 expression via
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cGMP independent pathways but ERK and protein kinase C
dependent pathways involving AP-1 and NF-κB transcription
factor activation. These results highlight the importance of
NO activation of IL-8 in the initiation of an inflammatory
response in the airway epithelium since IL-8 is up-regulated
in several chronic pulmonary inflammatory diseases (Sparkman
and Boggaram, 2004). After IL-1β stimulation of airway
epithelial cells, NF-κB, AP-1, and MAPK activation leads
to increased metalloproteinase 9 (MMP-9) expression (Lin
et al., 2009). Additionally, in epithelial cells, NF-κB is also
involved in the activation of cyclooxygenase-2 (COX-2) and
consequently prostaglandin E2 (PGE2), two significant factors
in the development of inflammatory diseases such as asthma. In
this work, inhibition of NF-κB also downregulated the expression
of several cytokines such as IL-4, IL-6, and eotaxin involved in
asthmatic pathology (Lee et al., 2018).

In addition, NO is also involved in leukocyte chemotaxis and
infiltration. High NO concentrations after iNOS stimulation
inhibit protein adhesion expression on endothelial cells due to
S-nitrosylation of p50 and p65 in NF-κB and IKKβ (Aguilar et al.,
2020). Furthermore, NO also acts via cGMP dependent pathway.
Activation of sGC plays an important anti-inflammatory
role by inhibiting leukocyte recruitment after inhibition
of P-selectin expression on endothelial cells and platelets
preventing leukocyte rolling and adhesion (Ahluwalia et al., 2004;
Thomazzi et al., 2005).

NO also regulates the adaptive immune response and links the
innate and the adaptive immunity (Bingisser and Holt, 2001). The
results obtained about the role of NO in T cell differentiation
are controversial. The most important cytokines that induce
T-helper 1 (Th1) or T-helper 2 (Th2) differentiation are IL-12
for Th1 and IL-4 for Th2. Low concentrations of NO induce
the production of IL-12Rβ2 in human T cells favoring Th1
differentiation and proliferation via cGMP-dependent pathways.
However, high concentrations of NO inhibit Th1 responses by
decreasing the IL-12 production of macrophages. Therefore, NO
might regulate the balance between Th1 and Th2 depending
on its concentration by increasing Th1 apoptosis at high
concentrations and inhibiting it at low concentrations (Ibiza
and Serrador, 2008; Lee et al., 2017). In contrast to this data,
the addition of NO to bronchial epithelial cells showed a
reduction in both Th1 and Th2 proliferation. NO induced
cGMP mediated STAT5 dephosphorylation that interferes with
the IL-2R signaling cascade involved in T cell proliferation
(Eriksson et al., 2005). However, NO is also involved in T
cell differentiation at the transcriptional level and high levels
of NO might activate Th2 transcription factor STAT-6 and
GATA-3 upregulating IL-4 mediated Th2 cell differentiation
(Ibiza and Serrador, 2008). Although the play of NO in T
cell differentiation is not fully elucidated, NO participates in
Th1/Th2 balance playing an important role in several diseases
such as asthma in which there is a Th2 chronic inflammation.
In asthma, Th2 cells produce several cytokines such as IL-
5 involved in the recruitment of eosinophils which in turn
produce chronically inflammatory mediators leading to the loss
of epithelial integrity (Barnes, 2008), a process that will be
described in more detail below.

ROLE OF NITRIC OXIDE SYSTEM IN
BRONCHIAL EPITHELIUM AND
RELATED DISEASES

Although in healthy conditions NO has beneficial effects by
regulating various biological processes related to airway function
and maintains lung homeostasis, dysregulation of the NO
concentration has pathologic effects and contributes to various
pulmonary diseases (Barnes et al., 2010; Garren et al., 2021).

NO participates in several signaling pathways and suboptimal
levels of NO in the lungs are pathological because these
pathways become altered. However, an excess of NO and
the consequences of its combination with ROS, such as the
formation of peroxynitrite, have also a pathological impact. The
most specific reaction of peroxynitrite is a post-translational
modification of tyrosine residues of proteins, generating 3-
nitrotyrosine (3-NT) or tyrosine nitrated proteins. Although
protein tyrosine nitration occurs in physiological conditions,
dysregulation of this process due to inflammatory responses
and oxidative stress is related to several diseases, including
lung diseases (Yeo et al., 2008; Ahsan, 2013). Protein tyrosine
nitration causes changes in the protein structures, altering their
conformation and function. For example, after tyrosine nitration
of PKG, its enzymatic activity is decreased and the binding to
cGMP is changed. In addition, protein nitration can interfere
in tyrosine phosphorylation and dephosphorylation, regulating
cellular signal transduction processes mediated through kinases
and phosphatases. Finally, this post-translational modification
may generate unmasking of epitopes triggering an immune
response. Consequently, the accumulation of nitrated proteins in
apoptotic and inflamed tissues due to oxidative stress may induce
an autoimmune response aggravating the chronic inflammatory
response (Thomson et al., 2007; Abello et al., 2009; Sabadashka
et al., 2021).

Role of Nitric Oxide System in Bronchial
Epithelium of Asthma and COPD Patients
Asthma and COPD are chronic respiratory diseases characterized
by chronic inflammation in the lungs and airway obstruction,
which is generally reversible in asthma but irreversible and
progressive in COPD. Although the nature of the inflammation
is not the same between both diseases, they share characteristics,
since many of the cytokines and chemokines that are secreted
in COPD and asthma are regulated by NF-κB, which is found
activated in airway epithelial cells and macrophages in both
diseases. Moreover, chronic activation of these mediators also
contributes to structural changes named airway remodeling that
is characteristic of these pathologies (Barnes, 2008; Gao et al.,
2015). This airway remodeling is responsible for irreversible
airway narrowing and airflow limitation and is caused by
repeated cycles of injury and repair. In asthmatic patients, this
airway remodeling is mainly caused by an increase of airway
smooth muscle mass, but also is characterized by epithelial cell
hyperplasia, goblet cell metaplasia, angiogenesis, and basement
membrane thickening caused by deposition of extracellular
matrix proteins (Grigoraş et al., 2016). Airway inflammation
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also contributes to airway obstruction by promoting mucus
overproduction. In asthma, the expression of MUC5AC is
upregulated together with stimulated mucin secretion (Evans
et al., 2009). Finally, inflammation is also related to bronchial
hyperresponsiveness, an exaggerated reduction in airway caliber
after stimuli such as allergens or pollutants, among others
(McCracken et al., 2017). In COPD patients, emphysema,
destruction and loss of the alveoli, is related to small-airway
obstruction and is one of the principal characteristics of the
disease (McDonough et al., 2011). The small airway narrowing
is caused by peribronchial fibrosis, thickening of the basement
membrane, collagen deposition, epithelial cell hyperplasia,
squamous and goblet cell metaplasia, and angiogenesis (Hirota
and Martin, 2013). Finally, it is observed ciliary dysfunction and
mucus hypersecretion that also contributes to airway obstruction
(Barnes, 2017).

Asthma has a very heterogeneous clinical spectrum, but it is
characterized as a chronic inflammatory disease of the airways
in which various cells and inflammation mediators participate.
Generally, asthma is considered allergic, but this endotype is
only prevalent in 40–60% of adult patients (Pakkasela et al.,
2020). Patients with allergic asthma are atopic and have an
allergic inflammation pattern. This type of asthma is called Type
2 (T2) asthma because it is orchestrated by Th2 lymphocytes
that secrete a series of interleukins such as IL-4, −5, −9, and
−13, which cause activation and recruitment of eosinophils,
as well as the generation of IgE by B lymphocytes (Figure 3)
(Barnes, 2017). In asthma patients, especially T2 asthma
patients with eosinophilic airway inflammation, NO levels in
exhaled air are higher compared to levels in healthy patients.
Furthermore, higher production of NO is correlated with higher
airway obstruction (Comhair et al., 2015; Xu et al., 2017;
Asosingh et al., 2020).

This increase in the fraction of exhaled NO (FENO) in patients
with asthma is mainly caused by an increase in the expression and
activity of the iNOS enzyme due to pro-inflammatory stimuli:
cytokines, oxidants, and other inflammatory mediators. In the
activation of iNOS expression, eosinophils are essential since
they secrete IL-13. This cytokine increases iNOS expression
in epithelial cells and consequently, NO levels and FENO.
However, in FENO measurements is difficult to differentiate
between constitutive NO and the NO produced after an allergic
inflammation. In asthmatic patients not treated with steroids,
this increased expression has been observed mainly in bronchial
epithelial cells and in macrophages of the alveolar region (Roos
et al., 2014; Sato et al., 2019). Furthermore, a correlation between
FENO and bronchial wall thickening has been observed in asthma
patients (Nishimoto et al., 2017).

On the other hand, COPD is a disease caused mainly by
tobacco consumption, a source of exogenous NO. Tobacco smoke
contains many harmful substances that cause an inflammatory
response and excessive oxidative stress in the lungs (Milara
and Cortijo, 2012; Miravitlles et al., 2017). This large amount
of ROS in the lungs of COPD patients not only amplifies the
inflammatory response, but also induces the remodeling of the
airways and cell death of structural cells in the lung that causes
emphysema (Brusselle et al., 2011).

COPD patients have exaggerated chronic inflammation with
increased numbers of neutrophils and macrophages in the
lumen of the airways. In addition, there is also an increase
in macrophages and T and B lymphocytes in the wall of the
airways and in the parenchyma (Figure 4) (Brusselle et al.,
2011; Barnes, 2017). In COPD, epithelial cells are an important
source of inflammatory mediators and proteases and are an
important source of transforming growth factor β (TGF-β), a
growth factor linked to airflow limitation in small conducting
airways and in fibrosis, initiating a perpetuating peribronchial
fibrosis remodeling that contributes to small airway obstruction
(Milara et al., 2013). In vitro stimulation of human bronchial
epithelial cells with cigarette smoke extract showed an increase
in activation of ROS, a major release of TGF-β1, and increased
phosphorylation of ERK1/2 and Smad3. All of them are related to
epithelial to mesenchymal transition (EMT) and contribute to the
thickening of the wall of the small airways (Milara et al., 2013).

In addition, it has been observed that FENO levels in
COPD patients are higher than the levels of healthy non-
smokers, however, these levels are not as high as those observed
in asthmatic patients before their treatment (Ansarin et al.,
2001). The expression of the iNOS enzyme is increased in the
peripheral lung tissues of COPD patients and is associated with
epithelial-cell-derived nitrosative stress, which causes oxidation
and tyrosine nitration of several lung proteins generating an
amplification of the inflammatory response. In addition, iNOS
expression is related to the degree of airflow limitation in the
airways (Ghosh et al., 2006; Jiang et al., 2015; Ricciardolo et al.,
2015; Bartesaghi and Radi, 2018). The group of Fysikopoulos
et al. (2020) established a mouse model of emphysema by
treatment with elastase, and after pharmacological inhibition of
iNOS, it demonstrated a partial regeneration of the parenchyma,
so there is a relationship between increased expression of the
enzyme and the appearance of emphysema, although it would not
be the only cause.

Moreover, although there is an increased NO production by
the epithelial cells, an increase in the activation of the lung sGC
is not observed in COPD and asthma, and therefore there is not
an increase in cGMP (Dupont et al., 2014). The NO-sGC-cGMP
signaling pathway can be affected for various reasons. Firstly,
there is a reduction in the amount of intracellular availability
of NO due to its reaction with O2

− for the generation of
peroxynitrite. Secondly, due to oxidative stress in the lung, the
redox state of sGC is altered (Fe+2

→ Fe+3), which makes it
inactive to the binding of NO (Haskó et al., 2006). In addition,
decreased expression of the sGC enzyme has been observed
in alveolar and bronchial epithelial cells and in airway smooth
muscle cells in COPD patients and smokers (Glynos et al., 2013;
Weissmann et al., 2014), as well as in asthmatic patients and
animal models of asthma (Papapetropoulos et al., 2006; London
et al., 2018). The underlying mechanism is not well understood
but recently, it has been shown that the expression of the α1
subunit of sGC is downregulated by TGF-β in pulmonary artery
smooth muscle cells via MEK and ERK signaling (Du and
Roberts, 2019) and IL-1β in perinatal lung fibroblasts via TAK1
and NF-κB signaling (Zhong et al., 2020) and both inflammatory
mediators are increased in COPD and asthma disease so they
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FIGURE 3 | Schematic view of T2 eosinophilic airway inflammation in the pathophysiology of asthma. Allergens or epithelial damage activates dendritic cells that
secrete cytokines, such as IL-4, leading to Th2 differentiation. Th2 lymphocytes secrete IL-4 and IL-13 amplifying Th2 proliferation and promoting the generation of
IgE by B lymphocytes. Th2 cells also secrete IL-5, the most important cytokine for eosinophil recruitment. IL-13 secreted mainly by eosinophils activates iNOS
expression increasing NO levels in the airways and consequently FENO. NO, in turn, is also involved in Th2 differentiation. Moreover, iNOS expression on epithelial
cells could be also enhanced by oxidants, pollutants, or proinflammatory stimuli such as TNF-α or INF-γ. Chronic eosinophil inflammation is involved in tissue airway
remodeling and bronchial obstruction caused by an increase of airway smooth muscle mass, epithelial cell hyperplasia, goblet cell metaplasia, mucus
overproduction, and basement membrane thickening caused by deposition of extracellular matrix proteins. The image has been created with Biorender.

might be also involved on the reduction of α1 subunit of sGC
in the epithelial cells of these patients.

A lower expression of sGC as well as a lower activity due
to their oxidation, generate less cGMP. This fact causes less
activation of PKG and consequently an increase in TGF-β
signaling related to an increase in the tone of the airways and
fibrosis (Verrecchia and Mauviel, 2007). This is because TGF-
β acts through two signaling pathways: the classical pathway,
also called canonical, dependent on SMAD, and the non-
canonical pathway independent from SMAD (Hu et al., 2017).
The production of cGMP interferes with TGF-β signaling mainly
through the activation of PKG, which inhibits the independent
SMAD pathway. This inhibition of the non-canonical pathway
is critical in COPD and asthma in which TGF-β activates
epithelial cells that change their phenotype to mesenchymal
cells (Willis and Borok, 2007; Hackett et al., 2009; Sohal
et al., 2014). As previously mentioned, this process called
EMT contributes to airway remodeling since epithelial cells
lose cell-cell adhesion and cell polarity. Epithelial cells show
decreased epithelial markers, such as E-cadherin and occludin,
in the EMT process. Meanwhile, they show an increased
expression of mesenchymal proteins, such as vimentin and
alpha-smooth muscle actin (α-SMA), and increased synthesis

and secretion of proteins of the extracellular matrix such
as collagen I (Hackett et al., 2009; Johnson et al., 2011;
Milara et al., 2013).

Role of Nitric Oxide System in Bronchial
Epithelium of CF Patients
CF is a chronic inflammatory disease caused by a genetic
defect of the CF transmembrane conductance regulator (CFTR)
gene that results in abnormal chloride-ion transport by
epithelial cells (Rout-Pitt et al., 2018). There are more than
1,400 mutations that can produce CF but the absence of a
phenylalanine at position 508 of the CFTR polypeptide is
the most frequent (Boucher, 2007). Mutations on the CFTR
gene have also negative effects on other ion transporters.
One of the most remarkable is the loss of inhibition of
the amiloride-sensitive epithelial sodium channel (ENaC) in
lung epithelial cells of CF patients and in consequence an
organellar hyper-acidification in these cells responsible for
protein glycosylation among other functions (Poschet et al.,
2002). In addition, this failure on the inhibition of the ENaC
causes dehydration and reduction of the airway surface liquid
(ASL) affecting the mucociliary clearance function of the
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FIGURE 4 | Schematic representation of lung neutrophilic inflammation characteristic of COPD. Cigarette smoke is a source of exogenous NO, irritants, and ROS
that activates macrophages and epithelial cells of the airways to release cytokines that attract inflammatory cells to the lungs. Macrophages secrete CCL2 to attract
monocytes which differentiate into macrophages in the lungs. Epithelial cells secrete IL-1 and IL-8 to attract neutrophils, and both macrophages and epithelial cells
secrete IL-9, IL-10, and IL-11 to attract Th1 cells and Tc1 cells. In addition, macrophages also release IL-23 triggering Th17 cell activation which in turn promotes
neutrophilic inflammation by producing IL-17. Neutrophils, macrophages, and epithelial cells release proteases, such as MMP-9, which cause alveolar destruction,
emphysema, mucus overproduction, and goblet cell metaplasia. Cigarette smoke causes epithelial damage that triggers the epithelial cell secretion of TGF-β, among
other growth factors, which stimulates fibroblast proliferation and EMT, resulting in airway remodeling and fibrosis around the small airways. The expression of the
iNOS enzyme is increased in epithelial cells by TNF-α and IL-1β produced by epithelial cells and macrophages, respectively. Increased NO levels are associated with
epithelial-cell-derived nitrosative stress, which causes oxidation and tyrosine nitration of several lung proteins generating an amplification of the inflammatory
response. The image has been created with Biorender.

epithelial cells (Mroz and Harvey, 2019) and thus, producing
mucus accumulation that causes airway obstruction.

Disability of the mucociliary clearance is related to continual
bacterial infection (especially P. aeruginosa) and neutrophilic
inflammation (De Rose et al., 2018; Cabrini et al., 2020).
In this neutrophilic inflammation, bronchial epithelial cells
are crucial due to their secretion of cytokines, being IL-
8 the most important, that recruit neutrophils to bronchi
and bronchioles. However, neutrophils have also mutated the
CFTR gene and are defective. Consequently, neutrophils cannot
eliminate the bacterial infection, worsening the disability of the
mucociliary clearance and chronically releasing proteases and
ROS that contributes to airway tissue damage and remodeling
(Cabrini et al., 2020).

Young infants with CF show a reduced FENO, and
this reduction is higher in infants without CFTR function
(Korten et al., 2018). This is related to dysfunction in the
bronchial epithelium of CF patients that express lower levels
of iNOS compared with healthy patients (Meng et al., 1998).
This lack of NO in CF patients has several consequences
in the patients.

Firstly, NO has antimicrobial properties and reduces the
sequestration of polymorphonuclear leukocytes (Sato et al.,
1999), so these low levels of NO could be related to the major
neutrophil infiltration of the disease. CF bronchial epithelial cells
co-cultured with neutrophils (Meng et al., 2000) or stimulated
with cytokines (Meng et al., 1998) showed no increase in iNOS
expression in contrast with normal bronchial epithelial cells,
suggesting that this lack of NO plays an important role in
bacterial colonization and neutrophil infiltration.

On the other hand, this reduction of the NO levels involves a
reduction of sGC activity and in consequence a decrease of cGMP
levels. In healthy conditions, cGMP participates in the inhibition
of the ENaC. However, in CF patients, this suboptimal cGMP
formation contributes to maintaining the chronic activation of
ENaC characteristic of the disease (Figure 5). As previously
mentioned, this sustained ENaC activation is related to hyper-
acidification in CF cells, defective protein glycosylation, bacterial
adherence, proinflammatory responses, and ASL dehydration
related to an impairment of mucus secretion and mucociliary
clearance (Poschet et al., 2007; Reihill et al., 2016). In addition,
lower cGMP also aggravates the disability of mucociliary
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FIGURE 5 | Schematic view of CF bronchial epithelial cells and neutrophilic inflammation. CFTR defective protein results in mucus overproduction, a decrease of
chloride-ion transport, and an increase of sodium transport through the no inhibition of ENaC. Therefore, there is dehydration and reduction of ASL that affects
mucociliary clearance. CF epithelial cells express lower levels of iNOS in comparison with healthy epithelial cells and consequently suboptimal cGMP levels that
contribute with the no inhibition of ENaC. On the other hand, the disability of the mucociliary clearance is related to continual bacterial infection. Bronchial epithelial
cells secrete cytokines, such as IL-8, that recruit neutrophils to bronchi and bronchioles. Neutrophils are CFTR defective with reduced bacterial killing, worsening the
disability of the mucociliary clearance, and chronically releasing proteases and ROS that contributes to airway tissue damage and remodeling. NO reduces the
sequestration of polymorphonuclear leukocytes so that lower levels of NO contribute to the major neutrophil infiltration. The image has been created with Biorender.

clearance by disruption of the NO-sGC-cGMP-PKG pathway
(Jiao et al., 2011).

Role of Nitric Oxide in Bronchial
Epithelium of Cancer Patients
According to the World Health Organization (WHO) lung
cancer is the first cause of cancer death worldwide and, such
as in COPD, tobacco smoking (source of NO and ROS) is
the main risk factor for lung cancer development (Bade and
Dela Cruz, 2020). In patients with lung cancer, a loss of
epithelial integrity due to changes in intercellular adhesions
and cell polarity have been observed, which leads to changes
in expression of genes related to differentiation, proliferation,
and apoptosis and in consequence development of dysplasia and
malignant transformation (Bonastre et al., 2016; Zhou et al.,
2018). In addition, cell adhesions play an important role in cancer
metastasis, a process in which epithelial cells lose their cell-cell
contacts and their morphology and migrate to a distant site
forming a new tumor (Yilmaz and Christofori, 2010; Rusu and
Georgiou, 2020).

NO has shown cancerogenic or anti-cancerogenic effects
depending on the concentration and duration of its presence,
the microenvironment, the localization, and the cellular targets
(Korde Choudhari et al., 2013; Alimoradi et al., 2019). Patients
with lung cancer show higher levels of FENO than healthy
controls (Liu et al., 2018), and in line with this, Masri et al.
(2005) observed an elevated NO, nitrite, and nitrotyrosine in
cancer patients. The nitration occurs mainly in proteins related
to oxidant defense, energy production, structure, and apoptosis

and may contribute to several cancer-related pathways (Masri
et al., 2005). Furthermore, it has been demonstrated that high
levels of serum nitrite/nitrate are associated with advanced-
stage lung cancer and a lower survival rate of patients and this
suggests that NO microenvironment and signaling is implicated
in the pathophysiology of cancer, particularly in aggressive tumor
phenotypes and metastasis (Colakogullari et al., 2006).

In physiological conditions, after DNA damage, NO activates
p53 inducing apoptosis of cells (Meßmer et al., 1994). However,
an excess of NO inactivates p53 function in several types of
cancer. Firstly, an excess of NO is related to GC to AT mutations
in the p53 gene in non-small cell lung cancer (NSCLC) that
leads to p53 loss of function (Fujimoto et al., 1998; Marrogi
et al., 2000). In addition, after exposing malignant glioma
cells to peroxynitrite and breast cancer cells to NO donors, a
posttranslational modification by tyrosine nitration of p53 has
been demonstrated (Chazotte-Aubert et al., 2000; Cobbs et al.,
2003). Moreover, NO production in tumors by iNOS could
promote cancer progression by providing a selective growth
advantage to tumor cells with loss of p53 repressor function
(Ambs et al., 1998). All these observations may be transferable to
lung cancer since more than 90% of lung tumors are p53 defective
(Masri et al., 2005). Higher concentrations of NO in the lung are
also associated with a downregulation of caspase-3 activity (Chen
et al., 2008) and S-nitrosylation and stabilization of BCl-2 protein
(Azad et al., 2006), both of them contributing to the suppression
of apoptosis pathways.

Furthermore, NO is also involved in the loss of epithelial
cell adhesions and EMT that has been mentioned above, a key
process related to cancer cell migration, invasion, and metastasis.
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Lung cancer cells increase EMT and thus cell migration after
NO prolonged stimulation, by increasing vimentin and snail
expression and decreasing E-cadherin levels (Chanvorachote
et al., 2014; Yongsanguanchai et al., 2015). In addition, NO
also enhances epithelial cell migration by caveolin-1 upregulation
(Sanuphan et al., 2013; Chanvorachote et al., 2014).

Finally, in NSCLC, it has been shown a correlation between
iNOS levels and activation of COX-2, PGE2, and vascular
endothelial growth factor (VEGF), all of them related to
induction of angiogenesis and thus with tumor progression
(Marrogi et al., 2000; Korde Choudhari et al., 2013) (Figure 6).

PHARMACOLOGICAL MODULATION OF
iNOS-NO-sGC- cGMP AXIS

Modulation of the NO-sGC-cGMP axis offers a therapeutic
arsenal for the treatment of the mentioned diseases (Figure 7).
Among the modulating drugs of this pathway, there are NO
donors, iNOS inhibitors, PDE5 inhibitors, and sGC stimulators
and activators (Dupont et al., 2014).

NO Donors
NO donor drugs, such as organic nitrates, are limited as a
treatment for COPD and asthma. As previously explained,
NO reacts also with other biological molecules, for example
generating peroxynitrite. Indeed, NO levels are already elevated
in these pathologies, but the activity of the sGC enzyme is not
increased (Haskó et al., 2006).

However, NO donors may be a potential treatment for CF
patients since they increase the chloride-ion efflux and decrease
the expression of ENaC subunits from bronchial CFTR defective
epithelial cells. Both actions may lead to the restoration of
hydration of the airways of these patients (Oliynyk et al.,
2013). In addition, NO donors may also improve ciliary beating
function so, together with the enhanced airways hydration, may
benefit the mucociliary clearance (Li et al., 2000; Oliynyk et al.,
2013). Among NO donors, S-nitrosoglutathione (GSNO) is an
endogenous S-nitrosothiol, source of bioavailable NO. GSNO
apart from increase chloride-ion efflux via cGMP-dependent and
independent pathways (Chen et al., 2006), also increases the
expression, maturation, and cell-surface expression stabilization
and function of CFTR in human bronchial airway epithelial cells
(Zaman et al., 2014). Nevertheless, it is an unstable compound
since the enzyme GSNO reductase (GSNOR) reduces it to an
unstable intermediate, regulating the concentration of GSNO and
thus the bioavailability of NO. For that reason, other compounds,
that inhibit the activity of GSNOR and thus increases levels
of GSNO have being investigated for CF treatment (Quon and
Rowe, 2016). In fact, inside this group, cavosonstat (N91115) is
in phase II study (NCT02724527).

Due to the dichotomous role of NO in cancer, NO donors
could give pharmaceutical options for cancer therapy as
chemoadjuvants if the appropriate concentration reaches the
tumor (Alimoradi et al., 2019). In A549 epithelial cells, NO
donors enhanced the cytotoxicity of pemetrexed via cGMP-
dependent pathways (Nagai et al., 2012). Nitroglycerin is in two

phase II studies for the treatment of NSCLC in combination
with radiotherapy and/or chemotherapy (NCT01210378,
NCT00886405). In addition, due to the necessity to control NO
delivery, NO-releasing vehicles are being investigated (Alimoradi
et al., 2019). Nanoparticles loaded with nitric oxide and cisplatin
have been developed for the treatment of NSCLC and shows
higher cytotoxic effect in cancer cells than nanoparticles only
loaded with cisplatin (Munaweera et al., 2015).

iNOS Inhibitors
iNOS inhibitor drugs are able to reduce the NO excessively
produced by iNOS, which reacts quickly to produce peroxynitrite,
but would also reduce the beneficial effect of the activation
of sGC. There are disparate results seen for the treatment of
emphysema and asthma patients with iNOS inhibitors. In a
mouse model with emphysema, after the inhibition of iNOS was
observed a significant regeneration of the lung (Fysikopoulos
et al., 2020), but these results contrast with those obtained by the
group of Boyer et al. (2011) in which inhibition of iNOS activity
reduced protein nitration and protein oxidation without effect
on inflammation, proliferation, and development of emphysema.
These discrepant results are probably due to the degree of damage
provoked by the elastase treatment applied to induce emphysema
and the time of treatment with the iNOS inhibitor. Boyer et al.
(2011) used a more aggressive dose of elastase that generated
more alveoli destruction, and they also applied the iNOS inhibitor
for a shorter duration than the group of Fysikopoulos et al.
(2020). These results suggest that the iNOS inhibitors could be a
therapeutical option for early lung emphysema but not for more
severe emphysema.

iNOS inhibitors reduce FENO in patients with asthma,
but that fact did not improve hyper-reactivity or the number
of inflammatory cells (Singh et al., 2007). However, in
animal models of asthma with acute but not chronic allergen
exposure iNOS inhibition was related to a reduction in
hyperresponsiveness (Ibba et al., 2016).

In mouse lung tumors has been shown that epithelial cells at
the periphery of lung tumors had a significant expression of iNOS
suggesting an important role of NO in tumor growth. Moreover,
the genetic ablation of the iNOS gene decreases 80% the lung
tumor development in mice (Kisley et al., 2002). In line with
these results, in a mouse model of NSCLC with mutations on
the p53 and KRAS genes was shown that administration of the
NOS inhibitor L-NAME inhibited lung tumor growth, reduced
tumor burden, and improved survival (Pershing et al., 2016). The
iNOS inhibitor ASP9853 in combination with docetaxel showed
a major growth inhibition than docetaxel alone against NSCLC.
However, due to toxicity and lack of significant efficacy, the
study of the combined drug effect was stopped in clinical phase
I (Luke et al., 2016). Currently, the iNOS inhibitor L-NMMA
in combination with pembrolizumab, is in clinical phase I study
for the treatment of NSCLC and small cell lung cancer (SCLC),
among other cancer types (NCT03236935).

PDE5 Inhibitors
PDE5 inhibitors such as sildenafil, vardenafil, or tadalafil are used
in diseases such as erectile dysfunction, pulmonary hypertension,
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FIGURE 6 | Schematic representation of the role of NO in lung cancer. Cigarette smoke is a source of exogenous NO, irritants, and ROS that activates macrophages
and epithelial cells of the airways to release cytokines that attract inflammatory cells to the lungs. In epithelial cells, the expression of the iNOS increases by
proinflammatory stimuli such as IL-1β produced by macrophages. Patients with lung cancer show higher levels of FENO than healthy controls. An elevated NO
generates nitrosative stress and amplification of inflammation. Although in physiological conditions, after DNA damage, NO activates p53 inducing apoptosis of cells,
an excess of NO inactivates p53 function. In addition, higher concentrations of NO in the lung also downregulates caspase–3 activity and S-nitrosylation and
stabilization of BCl-2 protein, all of them contributing to inhibition of apoptosis. Prolonged NO stimulation is additionally related to EMT by increasing vimentin and
snail expression and decreasing E-cadherin levels. NO also enhances epithelial cell migration by caveolin-1 upregulation and angiogenesis by COX-2, PGE2, and
VEGF upregulation. The image has been created with Biorender.

and cardiovascular diseases for their smooth muscle relaxation
effect (Sandner, 2018). In COPD or asthma, these types of
drugs have shown an anti-inflammatory effect (Mokry, 2017; Ren
et al., 2020). Moreover, apart from reducing airway inflammation,
sildenafil attenuates the mucus overproduction characteristic of
both diseases through the restoration of cGMP levels (Wang
et al., 2009). In an animal model of COPD, sildenafil showed
a reduction in lung damage. After exposure to tobacco smoke
and bacterial inhalation, these animals showed an increase in
both proliferation and apoptosis pathways in epithelial cells of
bronchioles, suggesting that the pulmonary damage is related to
the abnormal repair of the airway epithelium. Treatment with
sildenafil significantly reduces the apoptosis in the bronchiolar
epithelium reducing the pulmonary damage (Ren et al., 2020).
These results are in line with others that suggest that inhibition of

PDE5 can alleviate lung dysfunction and tobacco smoke-induced
emphysema with the restoration of the NO-sGC-cGMP-PKG
pathway and reduction of ROS (Milara et al., 2010; Seimetz et al.,
2015). However, its efficacy is limited in COPD and asthma since
the sGC activation is decreased and, therefore, cGMP levels are
also decreased. In these cases, although the degradation of cGMP
is inhibited, sufficient levels are not reached for the treatment of
these pathologies (Evgenov et al., 2011; Sandner, 2018).

In mutated F508del CF mice, inhaled exposure of the PDE5
inhibitors sildenafil, vardenafil, and tadalafil, leads to restoration
of chloride transport across the respiratory epithelium (Lubamba
et al., 2011). Sildenafil acts in two ways in human bronchial
epithelial cells: via cGMP-dependent and cGMP-independent
pathways. Through the cGMP-dependent pathway, sildenafil
avoids cGMP degradation and therefore an increase of PKG
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FIGURE 7 | Scheme of the redox state of the sGC enzyme and the modulatory drugs that act on the NO- sGC-cGMP pathway. After oxidative stress, the heme
group is oxidized (Fe+3), and the sGC enzyme is insensitive to NO. In addition, the oxidized heme group loses affinity for the enzyme and is released. The drugs that
can modulate this axis are NO donors, iNOS inhibitors, PDE5 inhibitors, and sGC modulators. sGC modulators increase the activity of sGC and thus the formation of
cGMP independently of NO and are classified as stimulators or activators of sGC. Stimulators of sGC act when the heme group is reduced (Fe+2). Activators of sGC
can activate the enzyme even when the heme group is oxidized (Fe+3) or lost.

activation is observed. PKG phosphorylates defective CFTR
proteins and corrects their function. Moreover, via cGMP-
independent pathway sildenafil activates the exocytotic delivery
of CFTR molecules and their insertion into the plasma
membrane, increasing their number on it. However, it was
observed that is necessary a high concentration of this drug
to achieve its beneficial effects so it could provoke severe
adverse effects in patients (Leier et al., 2012). Treatment with
sildenafil was safe in patients with CF in which was observed a
decreased sputum elastase activity (Taylor-Cousar et al., 2015).
However, in children with CF, although sildenafil could have
anti-inflammatory and benefits in the quality of life and exercise
capacities, it decreases lung function. As respiratory failure
is one of the most frequent causes of death in CF disease,
the administration of sildenafil should be reconsidered (Reisi
et al., 2020). For all these observations, since sildenafil has
beneficial effects but is not enough safe for the administration,
PDE5 inhibitors more sensitive and specific could be a good
therapeutical option for the treatment of CF.

In several types of cancer, including lung cancer, the
activity of PDE5 is increased and several PDE5 inhibitors,
have shown apoptotic and anti-proliferative effects. They
potentiate the effect of other drugs and also have immunological
effects since they enhance the immune response (Pantziarka
et al., 2018; Theodore et al., 2018). In lung cancer cells,
PDE5 inhibitors modulate the endocytosis probably via the
increase in cGMP levels and consequently the PKG activity,
enhancing the cytotoxic activity of the anti-tumoral drugs
doxorubicin and cisplatin. Furthermore, vardenafil enhanced
the accumulation and anti-tumoral effect of trastuzumab
in vivo in a mouse model of lung cancer (Li and Shu,
2014). Sildenafil also increased the anti-proliferative effect of
carboplatin in H1048 SCLC cell line and A549 cell line
(Domvri et al., 2017) and enhanced de anti-tumor effects of
pemetrexed (Booth et al., 2016). According to the benefits
observed as potentiators of chemotherapy, PDE5 inhibitors
could be a good therapeutical option as chemoadjuvants on the
treatment of lung cancer.

Frontiers in Physiology | www.frontiersin.org 13 June 2021 | Volume 12 | Article 687381

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-687381 June 30, 2021 Time: 17:8 # 14

Bayarri et al. Nitric Oxide and Bronchial Epithelium

sGC Modulators: Stimulators and
Activators
Due to the drawbacks mentioned above, other types of drugs that
modulate the activity of sGC and increase cGMP, independently
of NO are a potential treatment: stimulators and activators
of sGC. Stimulators of the sGC enzyme bind to the enzyme
increasing the formation of cGMP. These compounds are
independent of NO but require the heme group of sGC to be in a
reduced state (Fe+2). Activators of sGC activate the enzyme and
the formation of cGMP independently of NO and even when the
heme group of sGC is in an oxidized state (Fe+3) or even when it
has been lost (Sandner et al., 2019). These sGC modulator drugs,
alone and in combination with PDE5 inhibitors, are promising
treatments for lung diseases.

sGC Stimulators
Stimulators of sGC have a dual action. On the one hand, they
stimulate the enzyme in its native form, independently of NO.
On the other hand, they stabilize the binding of NO to the
sGC, thereby sensitizing the enzyme to low concentrations of
NO (Sandner et al., 2018, 2019). This class of drugs binds to the
HNOX domain of the β subunit of the enzyme near the heme
group. In this way, they prevent NO from being released from
the binding site, by generating a conformational change and thus
increasing the catalytic activity of the enzyme (Montfort et al.,
2017; Wales et al., 2018).

In animal models of COPD in mice and guinea pigs exposed to
tobacco smoke, BAY 41-2272 and riociguat prevented pulmonary
emphysema and remodeling. Stimulation of sGC was able
to revert the apoptosis induced in endothelial and alveolar
epithelial cells after peroxynitrite exposure. Furthermore, sGC
stimulators reversed the peroxynitrite-induced down-regulation
of the antioxidant enzyme Sod1 and the Fgf10 lung maintenance
mediator in airway epithelial cells (Weissmann et al., 2014).
These data are in line with other obtained in guinea pigs
exposed to tobacco smoke, in which treatment with BAY 41-
2272 partially reversed emphysema. Furthermore, a decrease
in lung inflammation and ROS after sGC stimulation was
observed (Paul et al., 2019). Similar results were obtained in
mice models of hypertension and emphysema after treatment
with riociguat. Riociguat not only reversed hypertension but
also partially reversed emphysema by acting in different
pathways. On the one hand, riociguat reverted the increased
expression of lung iNOS after tobacco exposure. On the
other hand, it was observed in airway epithelial cells that
riociguat may contribute to lung regeneration by attenuating
the upregulation of the activity of MMPs and by reverting
the reduction of proliferation induced by cigarette smoke
(Pichl et al., 2019).

In rats, it was observed that the BAY 41-2272 stimulator in
synergy with NO relaxes the tracheal muscle, an important
effect for the regulation of hyperresponsiveness of the
airways that occurs in diseases such as asthma (Toque
et al., 2010). A bronchodilator effect was also observed in
human lung sections (Koziol-White et al., 2020) and in mouse
asthma models, in which the BAY 41-2272 stimulator was

able to reverse the hyperresponsiveness of the airways of
mice with allergic asthma and restore their lung function
(Ghosh et al., 2016).

The BAY 41-2272 stimulator shows an antifibrotic effect
in human fibroblasts treated with TGF-β (Beyer et al., 2015;
Lambers et al., 2019). However, further investigation is required
about the role of stimulators of sGC on the EMT observed in
asthma and COPD patients. Riociguat and other stimulators
are able to reduce EMT and show antifibrotic effects in several
fibrotic diseases in which TGF-β is an important mediator
(Hu et al., 2017; Sravani et al., 2020). If similar findings could
be demonstrated in lung epithelium, sGC stimulators could
be a promising therapeutical option since they might have
several effects: reducing fibrosis and lung damage and promoting
airway relaxation.

In CF patients, sGC stimulators have a correct action
of CFTR function and expression since they increase cGMP
levels (Quon and Rowe, 2016). Indeed, riociguat was tested in
F508del-homozygous patients in a phase II trial (NCT02170025)
that was terminated in 2018. However, although no safety
concerns were identified, the clinical development of this drug
has not continued.

The stimulator YC-1 has shown inhibition of pathways
essential for cancer viability in several types of cancer and
it might be used as an anti-tumoral drug since it facilitates
apoptosis (Wu et al., 2019). In NSCLC, YC-1 had not significant
effect on growth inhibition. However, it had the ability to
sensitize cancer cells with primary or acquired resistance to
gefitinib treatment. Further investigation is necessary but the
combination of gefitinib in patients with sGC stimulators might
be a good strategy to overcome the drug resistance in NSCLC
(Hu et al., 2020).

sGC Activators
Due to the need to search for compounds that activate the sGC
enzyme in its oxidized form or without the heme group, the
compound BAY 58-2667 (Cinaciguat) was identified. It was the
first activator of sGC that in addition to being NO independent,
was also heme independent (Stasch et al., 2002). Moreover, there
are other activators such as BAY 60-2770, HMR 1766 (Ataciguat),
or S-2448, but so far there is not any activator approved for use
(Sandner et al., 2019).

After oxidation and inhibition of the sGC enzyme with
the ODQ compound, Cinaciguat is capable of activating the
sGC enzyme, an effect that is not observed with stimulatory
drugs (Stasch et al., 2002). Therefore, these drugs have better
pharmacological activity under conditions of oxidative stress
where there is an alteration of the redox state of the heme
group (Fe+2

→ Fe+3) or even a loss of it, which generates
the ubiquitination of sGC (Thoonen et al., 2015). Cinaciguat
binds to the cavity of the heme group of sGC, activating the
enzyme, stabilizing it, and preventing its degradation (Hoffmann
et al., 2009; Meurer et al., 2009; Martin et al., 2010). There is a
competition between the heme group and Cinaciguat, so in the
presence of ODQ that oxidizes the heme group and makes its
binding more unstable, there is a greater effect of the activator
(Schmidt et al., 2004).
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In a murine model of COPD was observed that cigarette
smoke decreased sGC and cGMP levels in the airway epithelium.
Administration of Cinaciguat to these cigarette-exposed mice
not only restored the epithelial cGMP levels but also, the
sGC protein expression and therefore the NO-sGC-cGMP-PKG
pathway attenuating airway hyperresponsiveness (Glynos et al.,
2013). Similar findings were obtained with the activator BAY
60-2777 in a murine model of asthma, in which treatment with
this drug normalized the expression levels of iNOS and sGC
in the lungs triggering an anti-inflammatory effect (Baldissera
et al., 2016). Moreover, it has been shown that the activator BAY
60-2770, in the same way as the stimulator BAY 41-2272, has
a bronchodilator effect in human lung sections (Koziol-White
et al., 2020), an effect that has also been observed in animal
models of asthma in mice (Ghosh et al., 2016).

The combination of sildenafil with the activator BAY 58-
2667, in the presence of ODQ, suppressed the differentiation
of pulmonary fibroblasts to myofibroblasts induced by TGF-β
(Dunkern et al., 2007). Such as in the case of sGC stimulators,
further investigation is necessary about the role of sGC activators
on the EMT also observed in the airway epithelium of
chronic lung diseases.

Currently, in CF and lung cancer, results with sGC activators
have not been published yet. In both diseases, there is an
increase in oxidative stress in the lungs. For that reason, due
to the mentioned beneficial effects of cGMP levels increase in
the airway epithelium of these patients and the ability of these
types of compounds to activate the sGC enzyme in its oxidized
form, these drugs might be a promising therapeutical option for
both pathologies.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Dysregulation of NO concentration and disruption of NO-
sGC-GMPc-PKG pathway have several consequences to the
integrity of airway epithelium. Increased NO concentration by
dysregulation of iNOS activity induce chronic inflammatory
responses and nitration of proteins involved in proliferation,
apoptosis, or migration among others, triggering bronchial
epithelial tissue injury that leads to various pulmonary diseases
such as asthma, COPD, or cancer. Moreover, a lack of NO is
also detrimental since it has antimicrobial properties and plays an
important role in the immune response. Indeed, in CF patients
altered iNOS function contributes to the severity of the disease.
For that reason, modulation of the iNOS-NO-sGC-GMPc-PKG
pathway might be a good strategy for the treatment of the

mentioned pathologies. In fact, several drugs that participate in
this pathway are currently being studied in different phases of
clinical trials.

In asthma, COPD and CF, NO donors are limited due to the
instability of NO and its reaction with other ROS, decreasing
the activation of sGC. However, in the treatment of cancer, the
use of NO donors as chemoadjuvants or in combination with
radiotherapy is in phase II clinical studies. iNOS inhibitors have
controversial results in COPD and asthma since they reduce
NO concentration but also the activity of sGC. Nevertheless, the
iNOS inhibitor L-NMMA in combination with pembrolizumab
is in clinical phase I study for the treatment of several cancers,
including lung cancer. In asthma and COPD, PDE5 inhibitors
increase cGMP levels, but the activity of sGC is impaired so
there is not enough increase of cGMP levels. In CF patients,
PDE5 inhibitors have shown beneficial results but are not enough
safe for their administration. For the treatment of cancer, PDE5
inhibitors have shown good results as chemoadjuvants in vitro
and in animal models.

Due to some disadvantages of the mentioned drugs and
the benefits in the epithelial integrity after increase cGMP
levels described in this review, stimulators, and activators of
sGC activity might be potential therapeutical options for lung
diseases since they increase cGMP levels independently of NO
concentration. Especially, due to the oxidative stress present in
the lungs of cancer, COPD, asthma, and CF patients, it might be
promising the use of sGC activators that can activate the sGC in
its oxidized form and stabilize it preventing its ubiquitination.
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