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Abstract

P values represent a widely used, but pervasively misunderstood and fiercely contested

method of scientific inference. Display items, such as figures and tables, often containing

the main results, are an important source of P values. We conducted a survey comparing

the overall use of P values and the occurrence of significant P values in display items of a

sample of articles in the three top multidisciplinary journals (Nature, Science, PNAS) in 2017

and, respectively, in 1997. We also examined the reporting of multiplicity corrections and its

potential influence on the proportion of statistically significant P values. Our findings demon-

strated substantial and growing reliance on P values in display items, with increases of 2.5

to 14.5 times in 2017 compared to 1997. The overwhelming majority of P values (94%, 95%

confidence interval [CI] 92% to 96%) were statistically significant. Methods to adjust for mul-

tiplicity were almost non-existent in 1997, but reported in many articles relying on P values

in 2017 (Nature 68%, Science 48%, PNAS 38%). In their absence, almost all reported P val-

ues were statistically significant (98%, 95% CI 96% to 99%). Conversely, when any multi-

plicity corrections were described, 88% (95% CI 82% to 93%) of reported P values were

statistically significant. Use of Bayesian methods was scant (2.5%) and rarely (0.7%) arti-

cles relied exclusively on Bayesian statistics. Overall, wider appreciation of the need for mul-

tiplicity corrections is a welcome evolution, but the rapid growth of reliance on P values and

implausibly high rates of reported statistical significance are worrisome.

Introduction

The long-standing controversy over how best to make inferences from empirical data is intri-

cately related to the notion of “statistical significance”. The most widespread markers of statis-

tical significance are constituted by P values derived from null hypothesis significance testing.
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P values indicate “the probability that a chosen test statistic would have been at least as large as

its observed values if every model assumption were true, including the test hypothesis.” [1]

(p.339). In particular, using the P = .05 cut-off for separating statistically significant from non-

significant findings [2] has been widely adopted and embraced as a tool for deciding whether a

research finding is “true, valid and worth acting on” [3]. One of the most widespread misun-

derstandings of P values is the notion they “measure the probability that the studied hypothesis

is true” [4] (p.131).

Warnings of pervasive misunderstanding of what P values show and how they can be used

[1, 5–9] have given way to fierce debate over their having any usefulness at all [2, 10–12],

prompting some scientists to coin the term “P value wars” [13]. Nonetheless, P values remain

ubiquitous in biomedical and social science research. A recent large-scale evaluation [14]

showed that the proportion of articles in PubMed that use P values either in the abstract or in

the full-text is increasing over time. Moreover, among the papers that used P values, 96%

reported at least one such value of .05 or lower [14]. This was equally true for the abstracts of

papers and for the full texts [14]. There was a slight decrease in this proportion overtime

between 1990 and 2014 from 98% to 95%. In-depth full-text analysis showed over 55% of ran-

domly sampled articles reported at least one P value [14]. Another recent evaluation showed a

concomitant decrease in effect size (ES) values and increase in the proportion of statistically

significant ESs over time [15].

One plausible reason for the increase in reported P values and particularly statistically sig-

nificant ones might also be attributed to the unprecedented computational facility afforded by

widely used statistical software. Hence, researchers have the possibility of running a myriad of

tests and obtaining many low P values by chance alone. Certain fields, such as genetics, neuro-

imaging and omics are particularly exposed to this problem. There is no one size fits all recom-

mendation to tackle this problem and different fields and different types of research might

take up various approaches. One solution proposed was lowering the P value threshold, already

adopted by some fields [16, 17] and debated in others [18–20]. Another partial solution was

employing various methods to correct for multiple testing, a topic on which there is a vast and

nuanced scholarship related to the scope, benefits and caveats of these methods [21–28].

One prominent alternative paradigm to the use P values involves Bayesian methods. Calls

for including Bayesian inference methods in addition or in lieu of traditional significance test-

ing have become more frequent [3, 6, 29, 30], and potential benefits for their application to

various strains of basic [31–33] and applied [34–36] research have been demonstrated. For the

implementation of Bayesian analyses, researchers can also count on a growing number of

methodological resources [37] and software packages, both dedicated (e.g., JASP, Stan, Win-

BUGS), as well as modules integrated in general purpose statistical software (SAS, STATA).

Most research [38–42] on P values has focused on their distribution across subsets of the lit-

erature, as a potential indicator of publication bias either by suppressing non-significant

results completely (“the file drawer”) or by selectively reporting only the best looking signifi-

cant ones, usually after having tried various types of analysis and model specifications (e.g., “P
hacking” [43]). A related, under-studied aspect refers to their proportion over time, both as

the total collection of P values of different magnitudes, as well as those formally defined as sta-

tistically significant, most often through the P< .05 decision rule. Though estimates of this

have been obtained from abstracts [14, 15, 44] and random samples of full-text [14, 15], display

item such as figures and tables have been scarcely studied. Text mining approaches used in

previous studies typically are unable to scan P values that are embedded in tables or figures

[14, 15, 41, 42]. Nevertheless, these display items often contain the main results of the paper,

particularly in highly influential journals looking to chiefly publish cutting-edge articles. In

these top journals, strict word count limitations imply that most articles are published in brief
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formats (e.g., letter for Nature) and most results are compressed in the figures. These are gen-

erally complex and composed by an array of different graphical elements, with only a small

fraction of the results displayed being highlighted in the text. Like abstracts, figures are often

used to synthesize the key findings of the paper in the public reception of the paper in the

media or the community. They are also likely to contain more complete results than those that

are selectively highlighted in the text and those that are even more heavily selected for presen-

tation in the abstract [45].

Here, we conducted a survey comparing the overall use of P values and the occurrence of

statistically significant P values in display items of a sample of articles in the three top multidis-

ciplinary journals (Nature, Science, PNAS) and compared the current situation (for articles

published in 2017) with that of 20 years ago. We explored whether the use of P values in dis-

play items was also accompanied by an augmented use of methods to correct for multiple test-

ing. We also examined whether alternative approaches to data analyses, such as Bayesian

methods, were used and were becoming more frequent in these top journals.

Method

Selection of journals and issues for inclusion

Nature, Science and PNAS were chosen as the top multi-disciplinary journals, covering all

fields of science. These are generally acknowledged as extremely prestigious outlets for

research, as publishing in any of them weighs greatly for a researcher’s career (e.g., grant appli-

cations, promotion, tenure).

We randomly chose January as our month of interest and selected issues published in the

months of January 2017, and respectively in January 1997. Four published issues were consid-

ered for Nature and Science. Given that regular issues of PNAS contain a considerably larger

number of articles, only one issue per year was included for PNAS, so as to enhance compara-

bility. The order in which journals were screened was Nature, Science, PNAS and for each we

first screened 2017, starting from the 1st published issue of the year.

Selection of papers and display items

For each issue, all published research articles were considered for inclusion. These usually

included full length articles and briefer reports, communications and research letters. Policy

articles, news, editorials, reader correspondence and other items outside of regular peer-review

were excluded, as were reviews, opinion and other type of data-free pieces. Research articles

without any display items were also excluded.

Data extraction

One researcher (IC) manually screened each research article to establish if it contained any

display items. For each display item (table or figure), P value information was extracted

both from the main corpus, as well as from the legend. The researcher manually counted

the number of total P values and the number of significant P values. P values had to specifi-

cally labelled as such with the letter “P” or “p” and described, either by giving exact values,

or by marking (e.g., with a symbol), or by indicating they represented values smaller or

larger than a specified threshold. Figures reporting inferential parameters of another nature

(e.g. False Discovery Rate corrected q values or E-values) labelled as such were not counted.

General phrases in the legend such as “no changes” or “no significant changes” were not

counted since it was unclear whether they were referring to non-significant P values and, if

P values in display items
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so, to how many of these. Similarly, phrases like “significant changes” in figure legends, not

accompanied by specific P values, were also not counted.

For each article, we extracted the total number of display items, the total number of display

items containing P values, the total number of countable P values, and the total numbers of sta-

tistically significant ones, following the authors’ own definition of statistical significance. We

also noted whether any type of correction for multiplicity was mentioned in the display item.

However, sometimes authors might have performed these corrections but only mentioned

them in the Methods section. Therefore, for the articles in which at least one display item con-

tained P values, we perused the Methods section, both in the main text and supplementary

material and extracted information about the use of any statistical method to correct for multi-

ple tests or comparisons. In case nothing was found, we also perused the supplementary figures

for any similar hints on multiplicity correction.

We expected the articles to cover a wide range of scientific fields and consequently

deemed it impossible to be able to fully and accurately understand the full complexity of the

analyses presented. Consequently, we opted for an approach of tallying P values by taking

everything presented in the display item at face value and staying clear from recording what

exactly was being compared. Any graphic element such as a bar plot that was not marked

with a P value or symbol representing a P value was not counted. We first counted P values

from the body of the display item and then checked the legend to whether there were any

additional P values, except those mentioned in the body. In this way, we assured that, while

taking the figure legends into account, we would not inadvertently count any P values twice.

In the cases of papers using more complex notations, like different letters to indicate statisti-

cally significant differences, we opted for the simplest, most direct method of tallying and

avoided having to infer how many comparisons had been or could have been performed.

More specifically, in bar graphs marked with letters whereby the figure legend specified dif-

ferent combinations of letters indicated various types of statistical significance we used the

following sequence of rules: (a) if there were one or more panels where pairs of bars were

marked with a line on top or an underscore, alongside with letters, we counted these pairs

as P value units; if the letters on 2 such combined bars were different, this was considered as

one significant P value; (b) if there were more panels containing bars not marked otherwise

except for a letter on each bar, we considered each panel as a P value unit; if any panel con-

tained at least 2 bars with different letters, that was counted as one significant P value; and

finally (c) in the presence of just one panel, we considered all possible permutations

between 2 bars as P values; any permutation where the letters of 2 bars were different was

considered as a significant P value. In deciding between rules a, b or c, we were also mindful

of what the authors specified in the figure legend (i.e., if they gave a clear indication of how

comparisons between bars were considered). In some types of graphic elements, such as

scatter plots, Manhattan plots, volcano plots, brain activation maps, heat maps and others,

the number of P values was impossible to count manually. In those cases, we recorded how

many such graphic elements were in the paper; moreover, if the display item contained

other countable P values in other panels, those were counted. If there were no such sections,

the display item was marked as having P values, but entirely impossible to count. Bar graphs

of log-transformed P values for a set of variables or similar were only counted if we could

unequivocally place the statistical significance line (either it was marked by the authors or

we used a ruler) so as to determine for which variables it was located under the .05 thresh-

old. Papers mentioning Bayesian methods in the display items were counted separately,

regardless of whether or not they also presented any P values; if they did contain P values as

well, these were tabulated as above.

P values in display items

PLOS ONE | https://doi.org/10.1371/journal.pone.0197440 May 15, 2018 4 / 15

https://doi.org/10.1371/journal.pone.0197440


In the case of uncertainty about extracting P value counts or about whether a method

described was a multiplicity adjustment, the other researcher (JPAI) was consulted, and inde-

pendently extracted the information. Disagreements were resolved by discussion.

Data synthesis

Each journal accompanied by the year was considered a unit (e.g., Nature 2017). Our main

outcomes of interest were the total number of P values as well as the ratio of significant to total

P values, per Journal-Year unit.

For each unit, we computed the total number of research articles screened, the total number

of articles with display items, the total number of display items, the total number of number of

display items with completely uncountable and, respectively, countable P values, the total

number of P values and, out of these, the total number of significant P values. For each unit,

we also noted the total number of articles presenting results with Bayesian methods. In a sec-

ond step, for all articles containing at least one display item with countable P values, we

extracted and tabulated the information about any multiplicity corrections performed.

Results were synthesized descriptively, by reporting total counts, medians, IQRs, percent-

ages and 95% confidence intervals, as well as by use of meta-analysis of proportions. In this

meta-analysis, we aggregated the proportion of significant to total P values for each display

item. We expected that some articles and particularly some display items would include a large

number of P values and so in an overall estimate, they would necessarily have to be weighted

more. For the individual display items, the Clopper-Pearson exact method [46], which inverts

the equal-tailed test based on the binomial distribution, was used to determine confidence lim-

its for the proportions of significant to total P values. As we expected many ratios of significant

to total P values to be close to 1, we employed the Freeman-Tukey double arcsine transforma-

tion to stabilize the variance [47] of the individual ratios. The pooled estimate for the overall

proportion of significant to total P values was then computed using the transformed values

and their variances with the inverse-variance DerSimonian and Laird method [48]. The confi-

dence intervals for the pooled estimate are computed using the Wald method. All analyses

were implemented in STATA [49], using the package Metaprop_one for meta-analysis [50].

We expected a major methodological shift from 1997 to 2017, in particular with regards to

the use of multiplicity corrections, which have become more standard over time, as the prob-

lem of multiple testing became widely recognized and various methods were proposed and

more widely adopted. Corrections for violations of normality or homogeneity of variance, and

the standard post-hoc corrected tests used as part of an ANOVA were not considered as ade-

quate multiplicity adjustments, as these either address other aspects in the data, or are an inte-

gral part of the statistical procedure for a testing a single hypothesis, which could nonetheless

be repeated multiple times.

We conducted subgroup analysis comparing the proportion of statistically significant P val-

ues (1) across all Journal-Year units; (2) comparing the three journals stratified by year, in

2017, and respectively 1997; (3) between articles employing versus non-employing adequate

multiplicity corrections, across all units; (4) comparing the three journals across articles

employing and respectively not-employing proper multiplicity corrections in 2017 (we

expected to have a reduced number of articles using such corrections in 1997). We used Bon-

ferroni multiplicity correction to consider subgroup differences to be statistically significant at

p<0.008 (0.05/6). We also conducted robustness analyses excluding the display items in which

we were unsure about counting the total or statistically significant P values and therefore our

calculations could have been inaccurate.

P values in display items
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Results

Total articles and display items with P values (Table 1)

Four published issues, covering the whole month of January were considered for Nature and

Science in 2017. Since January 1997 had 5 weeks, four out of the five published issues were

considered. The excluded issues were the last monthly issue of Nature (issue 6616) and a spe-

cial issue (issue 5298 Bioinformatics) for Science. We screened a total of 409 articles and 390

were eligible. The total eligible articles for Nature, Science and PNAS were 65, 62 and 51 in

2017 and 78, 61 and 54 in 1997, respectively. Overall, the articles contained a total of 1504 dis-

play items, distributed fairly symmetrically across journals and years, ranging from 204

(Nature 2017) to 284 (PNAS 2017). 110 articles (27% of all articles) included 287 display items

containing P values (19% of all displays). In 2017, a similar number of such articles (around

20) was present in each journal and 39% of all articles contained displays with P values. For

1997, the estimation was similar for Nature, but approximately 3 times smaller for Science and

PNAS (9 and respectively 8 articles) and overall only 21% of all articles contained displays with

P values. For 8 out of the 287 display items (7 of them published in 2017), no P values were

manually countable due to the type of graph (e.g., volcano plot). The total number of display

items with some countable P values increased two-fold from 1997 to 2017 for Nature (36 ver-

sus 74), three-fold for Science (18 versus 60) and seven-fold for PNAS (12 versus 87).

Total and statistically significant P values (Table 1, Fig 1, S1 and S2 Tables

and S1 Fig)

Overall, the display items included 2542 countable P values, out of which 2141 were statistically

significant. The use of P values escalated between 1997 and 2017, with 2.5 times more reported

for Nature (224 versus 564), 5 times more for Science (151 versus 751) and 14.5 times more for

PNAS (55 versus 797). A similar increase was mirrored by number of statistically significant P
values: 2.3, 3.8 and respectively 16 times more for Nature (203 versus 471), Science (146 versus

562) and PNAS (44 versus 715). Additional descriptives are presented in S1 and S2 Tables.

Proportion of statistically significant over total P values (Figs 2 and S2, S3,

S4, S5, S6 and S7)

The pooled proportion of statistically significant P values across all Journal-Year units was

94.2 (95% CI 91.7% to 96.4%). Proportions for 2017 for Nature, Science and respectively

Table 1. Characteristics of articles, display items and P values by Journal-Year.

Nature 2017 Nature 1997 Science 2017 Science 1997 PNAS 2017 PNAS 1997

Articles 65 84 63 66 54 58

Included articles� 65 78 62 61 51 54

Articles with P values in display items (% of included) 25 (38%) 23 (29%) 21 (34%) 9 (15%) 24 (47%) 8 (15%)

Articles describing multiplicity corrections (% of those with P values) 17 (68%) 1 (4%) 10 (48%) 0 (0%) 9 (38%) 1 (12%)

Display items in included articles 204 268 240 233 284 275

Display items with some (countable) P values 77 (74) 36 (36) 61 (60) 18 (18) 90 (87) 13 (12)

Total P values (median per display item) 564 (5.5) 224 (4) 751 (9) 151 (5) 797 (7) 55 (4)

Total significant P values (median per display item) 471 (5) 203 (4) 562 (6.5) 146 (5) 715 (6) 44 (3.5)

�excluding those with no display items, no data and reviews

https://doi.org/10.1371/journal.pone.0197440.t001
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PNAS were 92.5% (95% CI 86.4% to 95.6%), 87.5% (95% CI 79.8% to 93.9%) and 96.7% (95%

CI 93.4% to 99.1%). Proportions for 1997 had smaller weights in the meta-analysis and were

98.5% (95% CI 93.7% to 100%), 100 (95% CI 99.9% to 100%), 90.1% (95% CI 75.1% to 99.4%)

for Nature, Science and PNAS respectively. Differences among Journal-Year units were statis-

tically significant (test of heterogeneity between subgroups: z = 25.99, p<.001).

Fig 1. Box plots with standard errors for the total P values by Journal-Year cohorts. Eight outliers (> 30 P values),

all from 2017, are not displayed. Median represented by a line on each bar.

https://doi.org/10.1371/journal.pone.0197440.g001

Fig 2. Proportion of significant P values and 95% confidence intervals all display items with countable P values by

Journal-Year cohorts.

https://doi.org/10.1371/journal.pone.0197440.g002

P values in display items
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Use of multiplicity corrections

Multiplicity corrections were described in 38 articles out of the 110 including display items

with P values (34%, 95% CI 26% to 44%). In 2017, 36 out of 70 such articles (51%, 95% CI 39%

to 63%) listed multiplicity adjustments: 17/25 (68%, 95% CI 46% to 85%), 10/21 (48%, 95% CI

26% to 70%) and 9/24 (38%, 95% CI 19% to 59%) for Nature, Science and, respectively, PNAS.

Conversely, in 1997, only 2 articles (1 in Nature, 1 in PNAS) had described methods to correct

for multiplicity.

Bayesian methods

Ten articles out of the 390 that were eligible (2.5%, 95% CI 1% to 4.6%) used Bayesian statisti-

cal methods, and out of them, three (.7%, 95% CI .1% to 2%) did not include any P values. All

of these articles were published in 2017 (4 in Nature, 3 in Science, and 3 in PNAS).

Subgroup analyses

We first compared subgroups collapsing display items across journals. Pooled proportions

were 92.6% (95% CI 89.6% to 95.3%) for 2017 and respectively 99.3% (95% CI 96.4% to 100%)

for 1997. The difference between the two years did not survive Bonferroni multiplicity correc-

tion (test of heterogeneity between subgroups: z= 4.71, p= .03). The presence of multiplicity

corrections was associated with clearly smaller proportion of statistically significant P values

(z= 16.18, p<.001): proportions were 87.7%, 95% CI 82% to 92.6%, for articles mentioning

corrections, and respectively 97.8%, 95% CI 96% to 99.2%, for articles not mentioning correc-

tions. Sensitivity analyses restricted to articles published in 2017 indicated similar results: pro-

portions 88.3, 95% CI 82.6% to 93.2%, for articles mentioning versus 96.1%, 95% CI 93.4% to

98.2%, for articles not mentioning corrections (z=10.27, p=0.001). Analysis by journal indi-

cated no significant differences (z= 3.04, p=0.22).

In analysis stratified by year, the proportion of statistically significant to total P values in

display items was not substantially different among the 3 journals in 2017 (z= 7.69, p= .021)

and respectively 1997 (z= 11.90, p= .003), with the observed differences surviving the Bonfer-

roni correction only for 1997.

Differences among the three journals were not substantial within the articles describing

proper multiplicity corrections (z= 1.92, p= .38), and separately within the articles not describ-

ing these (z= 6.02, p=0.049).

Robustness analysis (S1 Text, S8 Fig)

Some display items used atypical notations for statistical significance (e.g., bars with letter

combinations), rendering them difficult to count and leaving some ambiguity. Fifteen display

items, stemming from 5 articles, all in 2017, were in this situation (12 items from 4 articles in

for Science and 3 items for 1 article for PNAS). For these 15 display items we applied rule (a)

in 6 cases, rule (b) in 5 cases, and rule (c) in 5 cases. For 2 display items that were composed of

various different panels with different indications, we used rule (a) for some panels and rule

(c) for others. The available data in S1 Data indicate the exact articles and display items where

each rule was applied. After excluding display items with atypical notations, results remained

the same, with the exception of a slightly higher proportion of statistically significant P values

for Science 2017 (90.8%, 95% CI 83.1% to 96.8%).

P values in display items
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Discussion

Our cross-sectional evaluation of P values reported in display items of three top science jour-

nals revealed a surge in their use over the last 20 years. Between 1997 and 2017, the number of

display items containing P values increased between 2 and 7 times. It is unlikely the expansion

was due to articles including more display items in general, as this figure remained largely

unchanged. The use of P values across figures and tables proliferated even more prominently,

with relative increases ranging from 2.5 to 14.5 times in the 3 assessed journals. The over-

whelming majority of reported P values (94%) were statistically significant, in both years con-

sidered. Our findings dovetail with previous reports showing an increase in the reporting of P
values over time and an almost ubiquitous occurrence of statistically significant results with

very slow decrease over time [14]. Interestingly, this trend seems to be reversed in abstracts in

epidemiology journals [44], where null hypothesis significance testing is becoming less popu-

lar. However, it is very probable that epidemiology (or some subdisciplines thereof) is a partic-

ular case, where some specific journals were ahead of the curve, maybe owing to the influence

of methodologists who endorsed a more nuanced discussion of methods for statistical

inference.

Reasons for the increase in total P values could be manifold, such as the proliferation of sta-

tistical analyses across papers, with P values being held as the norm for reporting these analyses

[14], more powerful statistical software allowing for a myriad of analyses to be conducted and

customization of figures so that more results can be displayed per figure. Reasons for the

increase in statistically significant P values might reflect a genuine increment due to more vari-

ables being measured and more analyses being performed (hence augmenting the chance of

obtaining lower P values) [14]. Non-null associations are likely to be abundant and more pow-

erful methods or larger sample sizes might spuriously detect many of them as significant.

However, it is likely that high prevalence of reported significant P values is a by-product of the

highly competitive, “publish or perish”, academic culture, heavily incentivizing the delivery of

“positive” (statistically significant) results, combined with suppression of “negative” (non-sta-

tistically significant) ones [51], through selective reporting [38, 52].

Corrections for multiplicity in articles containing display items with P values were almost

non-existent in 1997, with only two articles that reported them. Methods to adjust for multi-

plicity were used far more in 2017, described in 37% to 68% of articles relying on P values in

their display items. Undeniably, researchers can now count on unparalleled computational

power, which also exposes them to the possibility to running a myriad of tests, making multi-

plicity corrections more important, particularly in fields such as genetics, neuroimaging and

omics that are frequently published in the journals that we screened. Nonetheless, about half

of the papers we surveyed and that reported any P values in display items did not describe any

multiplicity corrections beyond those that are an intrinsic part of a classic statistical procedure,

i.e. post-hoc tests for ANOVA, which we did not mark as necessarily satisfying adjustments

since it is still possible to run myriads of ANOVAs in the same analysis.

Though there is vast scholarship on the scope, benefits and caveats of various methods to

correct for multiple testing [21–28], the interrelated literature on the degree to which these

methods are employed is more restricted. One survey [53] of conference abstracts in vision

and ophthalmology found that out of the abstracts presenting P values, only 1.2% used some

form of multiplicity correction. Moreover, a simulation study on the abstracts with no correc-

tion pointed to a false positive outcome in 30% of cases with more than 5 P values and almost

50% in the abstracts with more than 10 P values. The results of another meta-epidemiological

assessment [54] showed that over 50% of multi-arm trials do not report using a correction for

multiple testing. Finally, in an evaluation of two major orthopedic journals [55], authors found
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that corrections for multiple comparisons were present in 15% and respectively 6% of the arti-

cles that reported more than 5 P values from comparing two or more groups on a set of vari-

ables. The authors also calculated the Family Wise Error Rate (assuming independence

between associations) and found it to be at 54% instead of the traditionally assumed 5%.

Though our findings seem to provide a somewhat more optimistic assessment for papers pub-

lished in 2017 in three top journals, we might have overestimated the adequacy of the multi-

plicity corrections used in relation to the study design and data. As we did not have the

expertise and tools for an in-depth examination of all these extremely heterogeneous papers

that cover the whole breadth of science, we coded for their presence as favorably as possible

and considered any mention in the methods or display items (including supplementary) to be

sufficient. Our experience in perusing these publications convinced us that it is indispensable

for these papers to be peer-reviewed not only by field experts, but also by statistical experts

who work specifically in the same field, before their publication in these extremely prestigious

venues.

In the absence of multiplicity corrections, almost all reported P values were statistically sig-

nificant (98%). Conversely, if multiplicity corrections were described, 88% of reported P values

were statistically significant. This is still a very high proportion, but it is at least less suggestive

of reported results being almost universally statistically significant. Differences in the propor-

tions of statistically significant P values between corrected and uncorrected articles were statis-

tically significant in both the main analysis and sensitivity analysis. Moreover, differences

among journals within the corrected and respectively uncorrected strata were small and gener-

ally not beyond chance.

Use of Bayesian methods was scant and for the most part they were used in articles that also

included P values. Under 1% of the articles screened relied exclusively on Bayesian statistics.

However, as all these articles were published in 2017, this finding might reflect a genuine (even

if small in absolute magnitude) increment in the uptake of these methods. A case for the use of

Bayesian methods has been frequently made in the methodological literature [6, 29], potential

benefits for their application to various strains of basic [31–33] and applied [34–36] research

have been demonstrated, and a growing number of methodological resources [37] and soft-

ware packages (e.g., JASP, Stan, WinBUGS) for their implementation exist. Yet the uptake of

these methods in research published in top journals remains extremely low.

There are several limitations to our study. As a cross-sectional design, differences between

1997 and 2017 are purely observational, subject to many potential confounding variables.

Research published 20 years apart may be very different, including in its genuine needs to cor-

rect for multiplicity. However, our goal was not to look at causes or predictors in the evolution

of P values. Rather, we were interested in two descriptive snapshots over a 20-year period, as

potential indication of whether scientists and top journals have undergone a paradigm shift in

relation to statistical testing. Another possible limitation of our analysis is that we have used

two time points only (1997 and 2017) and thus we cannot identify the exact temporal trends

for the changes that happened over these twenty years in the use of P-values. Our assessment

required very intensive manual extraction of data, as opposed to previous assessments of P val-

ues in the text that capitalized on automated text mining and could thus examine continuous

time trends. However, it is likely that the observed changes in patterns, e.g. use of multiplicity

adjustments, are likely to have happened in a continuous fashion throughout the 20-year

period rather than reflect a sudden, acute change in use of statistical inference tools and

methods.

Journal-Year units were searched in a sequential way that was pre-specified by us rather

than chosen at random. It was also not feasible to blind the journal and year during assess-

ment. While this may create risk of bias, the outcome was highly objective (based on count of
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P values) and data extraction is unlikely to be influenced by knowledge of journal and year and

by knowledge of the data in previously assessed Journal-Year units. A minority of ambivalent,

complex cases where counting was unsure were discussed between the two authors and sub-

jected to robustness analyses. In some types of graphic elements, such as scatter plots, Manhat-

tan plots, volcano plots, brain activation maps, heat maps and others, the number of P values

was impossible to count manually. In these cases, we used estimations of total P values based

on other panels of the figure or, if nothing was countable, excluded it completely. This

undoubtedly underestimated the number of P values in 2017, which is probably considerably

larger. The proportions of statistically significant P values are clearly much lower when all the

data are presented in such a figure. Nevertheless, these comprehensive full-data figures repre-

sented a very small minority even in 2017.

We extracted information about the use of corrections from the Methods section, both in

the main paper and supplementary material, as well as from the display items screened or

those present in the supplementary material. However, unless the authors specifically men-

tioned correction methods and identified them as such at least by naming the procedure, we

could not ascertain whether such a method was used. Hence, it is possible that we wrongly

coded as uncorrected some articles that had in fact performed corrections and only specified

the name of the programs used to analyze data, or used vague, all-purpose statements like

“analyses were performed as previously described” or “according to standard protocols”. This

confusion would have been fully dissipated in the presence of complete and accurate reporting

of statistical tests performed, as recommended by several reporting guidelines (e.g., ARRIVE

for animal studies [56]). Moreover, statistical reporting seemed particularly elliptic in the type

of basic [57], frontier research that journals like Nature, Science and PNAS predominantly

publish. Conversely, we focused only on capturing whether any effort was made for multiplic-

ity correction, without judging whether this method was appropriate and properly applied on

the data. Such a decision would have required in-depth expertise in all the multifarious fields

covered by the assessed papers and full access to the protocols and data. Therefore, the propor-

tion of papers that not only use multiplicity corrections, but use them fully appropriately, is

likely to be smaller than what we recorded. Moreover, since the multiplicity correction method

was seldom described in the display item, we could not match it to each of the P values

extracted. For example, the method of correction might have been used for one section of the

analyses, which might not have been germane to all the display items with P values in the arti-

cle. Consequently, not all P values stemming from what we labelled as corrected figures are

necessarily corrected, and thus we probably underestimated the number of uncorrected P val-

ues. In all, multiplicity corrections seem to continue to be under-utilized even in 2017.

Display items in the three top multi-disciplinary science journals rely heavily on P values,

the use of which has grown fast over the last 20 years. Overwhelmingly and almost universally,

P values in display items point to statistically significant results. Importantly, significance test-

ing and P values could only inform the existence of associations, but as spurious associations

are almost ubiquitous, the real scientific challenge is to distinguish those that are most relevant

for causal inference. The use of multiplicity corrections is one factor that makes a small dent

by attenuating the ubiquitous prevalence of statistically significant P values. Though a pro-

found paradigm shift in relation to statistical testing is often forecast and advocated, such a

shift does not seem to have hitherto permeated publications in top science journals. More

widespread use of multiplicity corrections, particularly in fields where a myriad of tests is cus-

tomarily run, and use of different inferential methods besides significance testing still need to

be promoted.
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