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The Barker hypothesis strongly supported the influence of fetal environment on the 
development of chronic diseases in later life. Multiple experimental and human studies 
have identified that the deleterious effect of fetal programming commonly leads to 
alterations in renal development. The interplay between environmental insults and fetal 
genome can induce epigenetic changes and lead to alterations in the expression of renal 
phenotype. In this review, we have explored the renal development and its functions, while 
focusing on the epigenetic findings and functional aspects of the renin-angiotensin system 
and its components.
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INTRODUCTION

The number of nephrons in humans is highly variable, ranging from 250,000 to 2 million per 
kidney (Bertram et  al., 2011). There is an inverse correlation between the total number of 
nephrons and the risk of developing kidney disease and hypertension (Brenner et  al., 1988; Keller 
et  al., 2003). Nephrons are composed of specialized cells, such as epithelial, endothelial, and 
stromal cells. The epithelial cells originated from the intermediate mesoderm, which also originates 
two different progenitor cell populations: the ureteric bud (UB) and the metanephric mesenchyme 
(Little et  al., 2007). Clusters of metanephric mesenchymal cells condense around each ureteric 
bud to form cap mesenchyme (CM). Then, follows a complex and highly coordinated process 
that depends on interactions between the UB (which will form the collecting duct system) and 
surrounding CM (which originates the intermediate progenitor cells that ultimately generate all 
cell types of the nephron; Costantini and Kopan, 2010; Little and McMahon, 2012; Nicolaou 
et  al., 2015; Hurtado Del Pozo et  al., 2018). Grobstein’s study was a pioneer in renal development. 
It showed that kidney development is a multi-stage process, which starts with a primary induction 
event from the UB, followed by mesenchymal-to-epithelial transition within the CM. The process 
ends with the completion of nephron patterning and elongation (Grobstein, 1956).

KIDNEY DISEASE AND BARKER HYPOTHESIS: IMPORTANCE 
OF FETAL ENVIRONMENT

Renal disease is one of the common causes of mortality and morbidity worldwide 
(Luyckx et  al., 2018). Interestingly, this disease can originate in early life (Hoy et  al., 1999; 
Lackland et  al., 2000; Eriksson et  al., 2018). Barker proposed that insults during critical periods 
of fetal development can result in a growth deficit, characterized by low birth weight (LBW) 
and silent morpho-functional changes, that translate into kidney disease in the long term 
(Hales and Barker, 2001; Langley-Evans et  al., 2003).

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.586290&domain=pdf&date_stamp=2020-09-25
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.586290
https://creativecommons.org/licenses/by/4.0/
mailto:guiomar.gomes@unifesp.br
https://doi.org/10.3389/fphys.2020.586290
https://www.frontiersin.org/articles/10.3389/fphys.2020.586290/full
https://www.frontiersin.org/articles/10.3389/fphys.2020.586290/full


Argeri et al. Programmed Adult Kidney Disease

Frontiers in Physiology | www.frontiersin.org 2 September 2020 | Volume 11 | Article 586290

The human nephrogenesis requires an optimum balance and 
is completed by around 32–34  weeks of gestation. During this 
period, the kidneys can be  influenced by insults in fetal 
environment. Evidence suggests that people with LBW have 
congenital deficit in the number of nephrons and are more 
susceptible to subsequent renal injury and functional decline in 
later life (Brenner et  al., 1988; Schreuder et  al., 2006; Eriksson 
et  al., 2018). Reports that evaluated fetal kidney by ultrasound 
have supported these findings (Konje et  al., 1996; Spencer et  al., 
2001). Interestingly, other studies have described a positive 
correlation between birth weight and number of nephrons (Feig 
et  al., 2004; Hoy et  al., 2005). Besides, an inverse correlation 
between the birth weight and glomerular size in the kidney, 
isolated from neonates, was observed (Mañalich et  al., 2000). 
According to Brenner’s theory (Brenner et al., 1988), the reduced 
number of nephrons limits excretion of fluids and electrolytes, 
leading to volume expansion and development of hypertension; 
this alteration, in turn, damages the glomeruli, causing 
glomerulosclerosis and accelerating the loss of nephrons (Brenner 
et  al., 1988; Hinchliffe et  al., 1991; Schreuder et  al., 2006). 
Conversely, the reduction in nephron number, by the reduction 
in renal mass or of congenital origin, is followed by compensatory 
renal growth that leads to hypertrophy of both glomeruli and 
tubules. This structural change, in addition to increasing glomerular 
filtration, results in the proximal and distal tubules growth favoring 
the reabsorption of the filtered volume. Thus, renal function is 
preserved; however, in long term may result in hypertension 
and kidney damage (Fong et  al., 2014; McArdle et  al., 2020).

The assessment of renal function is important to detect the 
extent and progression of renal diseases. Increasing evidence is 
available about the impact of fetal environment on the decline 
in renal function (Hoy et  al., 1999; Giapros et  al., 2007). An 
inverse correlation has been observed between birth weight and 
albumin-to-creatinine ratio in individuals from an Australian 
aboriginal community (Hoy et  al., 1998). Other reports have 
observed a relationship between LBW with lower glomerular 
filtration rate (GFR) and albuminuria (Hoy et  al., 1999, 2005; 
Keijzer-Veen et  al., 2005). It has been described that LBW 
neonates, as a result of either prematurity or growth restriction, 
have increased levels of albuminuria (Aisa et al., 2016). Additionally, 
severe tubular injury, characterized by high levels of cathepsin 
B and N-acetyl-β-D-glucosaminidase (NAG) activity, was observed 
in these neonates (Aisa et  al., 2016). In a twin study, Gielen 
et  al. (2005) found that LBW population had lower creatinine 
clearance levels than the high birth weight population. Moderate 
renal disturbances were found in LBW children from 4 to 
12 years of age (Monge et al., 1998). Another study has reported 
high levels of cystatin C, a marker of renal function, in LBW 
children (Franco et al., 2008b). Additionally, Barbati et al. (2016) 
have shown high levels of cystatin C in urine of LBW neonates. 
These authors observed an inverse correlation between cystatin 
C levels and renal volume (Barbati et  al., 2016).

Several experimental studies were conducted to confirm the 
human data (Swanson and David, 2015). Studies demonstrated 
that restricted protein intake during pregnancy led to LBW, 
reduced nephron number, and glomerular enlargement in 
offspring (Merlet-Bénichou et al., 1994; Langley-Evans et al., 1999; 

Woods, 2000; Vehaskari et  al., 2004; Mesquita et  al., 2010). 
Additionally, protein restriction also increased: blood urea, 
urinary output, and urinary albumin excretion in resultant 
offspring (Nwagwu et  al., 2000). It is believed that the renal 
changes occur in response to inadequate nutrition as adaptations 
to ensure survival (Langley-Evans, 2015). These adaptations 
would be  adequate if in the postnatal period the nutritional 
conditions remained the same. However, if in the postnatal 
period the nutritional offer changes to a better nutritional 
standard, the occurred adaptations are no longer adequate and 
become harmful. This discrepancy between the phenotype 
developed and that suitable for a given environment is called 
“mismatch” (Gluckman et  al., 2019).

Another important prenatal factor contributing to programming 
of the renal diseases is maternal diabetes mellitus (e.g., pre-existing 
type 1 or 2 and gestational diabetes). Although it is correlated 
with high, instead of LBW, is also associated with impairment 
of both GFR and renal plasma flow (Abi Khalil et  al., 2010). 
The effect of maternal diabetes on fetal kidney volume is not 
well established (Hokke et  al., 2019). In a recent study, instead 
of nephron number, the total renal and cortical volumes were 
assessed in newborns. Neonates of diabetic mothers, with 
inadequate glycemic control, had lower cortical and total renal 
volume, suggesting a lower nephron number. However, newborns 
of diabetic mothers, with strict glycemic control, had similar 
values as control newborns (Aisa et al., 2019). Thus, it is evident 
that variations in the maternal glycemic status can lead to 
different outcomes in the offspring’s kidneys (Aisa et  al., 2019).

The studies about the impact of maternal diabetes on fetal 
development are of great importance since this metabolic 
disorder can promote several congenital anomalies (Steel et al., 
1990). Some studies have demonstrated a high risk of congenital 
anomalies of the kidney and urinary tract (CAKUT) in children 
exposed to maternal diabetes (Shnorhavorian et  al., 2011; Hsu 
et  al., 2014). Dart et  al. (2015) reported that pre-gestational 
diabetes increased the risk of CAKUT in infants by 67%. 
Maternal hyperglycemia is an important threat, as glucose 
crosses the placenta leading to fetal hyperinsulinemia (Higgins 
and Mc Auliffe, 2010). In turn, hyperinsulinemia stimulates 
leptin secretion, resulting in hyperleptinemia (Lepercq et  al., 
1998). Fetal exposure to non-physiological concentrations of 
these hormones is associated with hypothalamic dysfunction 
(Plagemann, 2004). Additionally, generation of reactive oxygen 
species can occur in response to increased glucose/insulin 
metabolism (Tozour et  al., 2018). Therefore, maternal 
hyperglycemia can be  threatening to the developing fetus by 
different mechanisms. Hence, it is crucial to maintain optimum 
blood glucose levels during pregnancy.

Experimental studies in female rats, in which diabetes mellitus 
was induced before the onset of pregnancy using streptozotocin 
(STZ), demonstrated that offspring developed glomerular 
hypertrophy and reduction of both GFR and urinary output 
(Rocha et  al., 2005; Magaton et  al., 2007). Additionally, renal 
vascular resistance and the thickness of interlobular arteries 
were increased in the offspring of diabetic mothers, suggesting 
vascular remodeling (Rocco et  al., 2008); results recently 
confirmed by Dib et al. (2018). However, there are controversies 
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regarding the nephron number in offspring of diabetic mothers 
(Rocha et  al., 2005; Magaton et  al., 2007; Rocco et  al., 2008). 
Reduction in nephron number was observed in studies in 
which diabetes was induced by different protocols after 
confirmation of pregnancy (Amri et al., 1999; Tran et al., 2008; 
Hokke et  al., 2013). However, in these studies, the fetus was 
exposed to the direct effects of STZ, in addition to hyperglycemia.

MECHANISMS INVOLVED IN 
PROGRAMMED KIDNEY DISEASES

Many are the possible mechanisms involved in fetal programming, 
in Figure  1 are represented the most studied ones.

Epigenetic Events
The fetal environment can alter the epigenetic landscape, strongly 
impacting the reprogramming of gene expression (Dressler and 
Patel, 2015). Epigenetic modification refers to dynamic changes 
in chromatin that mediates interactions between environmental 
factors and the genome. These modifications alter chromatin 
structure, thereby modulating the accessibility of transcription 
factors and consequently determining the expression or repression 
of genes (Hurtado Del Pozo et  al., 2018; Wanner et  al., 2019). 
Some of the well-known epigenetic modifications are DNA 
methylation and post-translation modifications of histones 
(acetylation, methylation, phosphorylation, and ubiquitination; 
Hilliard and El-Dahr, 2016).

The role of DNA methylation in the nephron development 
and its function is not yet well defined. Recently, Wanner 
et  al. (2019) reported that DNA methyltransferase 1 (Dnmt1), 
and not Dnmt3a/b, is the key regulator of prenatal renal 
programming, representing a fundamental link between nephron 
number and intrauterine environment. On the other hand, 
histone marks distinctively dictate nephrogenesis and affect 
the expression of several developmental genes, some of them 
involved in renal disease development (Harikumar and Meshorer, 
2015). Studies have provided important information about 
spatiotemporal changes and dynamic functional states of the 
epigenome during nephrogenesis. These studies have 
demonstrated that promoter regions of specific genes in nephron 
progenitor cells are bivalent and carry both “active” (H3K4me3) 

and “repressive” (H3K9me3 and H3K27me3) histone marks, 
along with expression of their corresponding methyltransferases 
(Ash2l, G9a, Ezh2/Suz12, respectively; McLaughlin et al., 2013, 
2014). This suggests that differentiation programs are silenced 
in these cells, however, can be activated in response to external 
factors that can be determined by maternal nutritional features 
during fetal life. Dnmt1 and H3K27me3 are critical in nephron 
progenitor cells (NPCs) self-renewal and differentiation (Huang 
et al., 2020). NPC express H3K4me3/K9me3/K27me3 but nascent 
nephrons retain H3K4me3 marks and downregulate H3K9me3/
K27me3 (Hilliard and El-Dahr, 2016). Remarkably, alterations 
in H3K27me3 levels in differentiated cells have been linked 
to renal diseases (Majumder et  al., 2018; Jia et  al., 2019).

Gene-environment interactions during fetal development can 
persist in multiple generations. Some studies have reported 
that in utero exposure can affect fetal germ cells and F2 offspring, 
resulting in transgenerational programming. Epigenetic changes 
at birth can be  associated with maternal nutrition and in the 
case of female fetuses they can be  transmitted to the next 
generation, emphasizing that inheritance does not depend only 
on genetic factors but also involves epigenetic mechanisms 
(Gluckman et  al., 2019). However, still little is known about 
these effects on kidney disease (Briffa et  al., 2020).

Renin-Angiotensin System
It is well established that the renin-angiotensin system (RAS) 
plays an important role in normal morphological development 
of the kidney and renal function (Guron and Friberg, 2000). 
All the components of RAS are expressed in early gestation 
in both rats and human beings (McMillen and Robinson, 2005). 
In fact, the pharmacological blockade of RAS during renal 
development leads to altered renal structures (Machado et  al., 
2008; Madsen et  al., 2010; Kett and Denton, 2011; de Almeida 
et al., 2017). Mutations and altered expressions in genes coding 
for RAS components are linked to congenital abnormalities 
of the kidney, confirming the importance of RAS in renal 
morphogenesis and metanephric organogenesis (Song et  al., 
2011). It was demonstrated that angiotensin II stimulates the 
growth and branching of the UB through its receptors (Yosypiv 
et  al., 2008; Song et  al., 2011). Also, angiotensin II stimulates 
the expression of Pax-2 (homeobox 2 gene), an anti-apoptotic 
factor, which is essential for renal development and repair 

FIGURE 1 | Mechanisms involved in the development of renal changes caused by experimental intrauterine growth restriction (IUGR).
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(Hershkovitz et  al., 2007). This process occurs through AT2 
receptors (AT2r) and modulates nephrogenesis and renal 
development (Zandi-Nejad et  al., 2006).

The expression of some RAS components could be  sensitive 
to insult during fetal development contributing to later 
development of renal diseases. Evidence in the literature has 
demonstrated that fetal programming by several insults promote 
suppression of the fetal RAS, resulting in altered nephrogenesis 
(Woods et  al., 2001; Dötsch et  al., 2009; Mesquita et  al., 2010; 
Moritz et  al., 2010). Woods et  al. (2001) showed reduction in 
messenger RNA (mRNA) expression and renin levels in newborns 
exposed to low protein diet in prenatal life. These authors 
suggest that such early alteration may be  caused by lower 
intrarenal angiotensin II concentration during nephrogenesis 
and consequently impair the renal development.

It was observed that fewer ureteral branches sprouted out 
from the metanephros in the fetus exposed to low protein 
diet in utero (Mesquita et  al., 2010). These changes occurred 
simultaneously with decreased expression of AT1 receptors 
(AT1r; on the 17th embryonic day), confirming maladjustment 
of RAS in the kidneys of these animals (Mesquita et al., 2010).

On the other hand, after the end of nephrogenesis, 
hyperactivity of RAS was observed in response to fetal 
programming. There is evidence that exposure to low protein 
diet, throughout gestation or during specific periods, results 
in an imbalance in the expression of AT1r and AT2r (Moritz 
et  al., 2010). An increase in AT1r mRNA and protein and a 
decrease in AT2r gene expression were observed (McMullen 
et  al., 2004; Vehaskari et  al., 2004; McMullen and Langley-
Evans, 2005). Moreover, it was reported high expression of 
both mRNA and proteins coding for Angiotensin II 1b receptor 
(AT1b-R) in adrenal glands isolated from adult offspring exposed 
to protein restriction during fetal life; and also, hypo-methylation 
in the promoter regions ofAT1b-R gene (Bogdarina et al., 2007). 
This epigenetic alteration could lead to higher transcriptional 
activity, thereby promoting higher expression of this receptor.

Considering maternal diabetes models, it has also been 
described that the expression of the mRNA coding for angiotensin 
1–7 was significantly lower in the offspring of diabetic mothers 
(Magaton et  al., 2007). Besides, increased expression of AT1r 
was observed in the kidneys of offspring from diabetic mothers, 
suggesting that changes in RAS might have contributed to the 
renal changes in this model (Yan et  al., 2014).

Interestingly, the RAS blockade in early post-natal life seems 
to offset the negative effects of fetal programming on the 
kidneys (Manning and Vehaskari, 2005; Hsu et  al., 2015; 
Watanabe et  al., 2018). Early administration of aliskiren, a 
renin inhibitor, reduced angiotensinogen expression associated 
with increased renal AT2r and Mas protein in offspring exposed 
to nutrient restriction during gestation (Hsu et al., 2015). Also, 
post-weaning losartan (AT1r blocker) therapy completely stopped 
immune cell infiltration and intrarenal RAS activation in the 
kidneys isolated from adult offspring exposed to protein 
restriction during fetal life (Watanabe et  al., 2018).

Additionally, altered expression of AT1r in areas of the 
brain involved in the regulation of blood pressure has been 
found in protein-restricted offspring (Pladys et  al., 2004;  

de Lima et  al., 2013). This change is probably associated with 
the autonomic changes found in these animals. Increased 
sympathetic tone seems to have an important role in the genesis 
of arterial hypertension in this experimental model, supporting 
this hypothesis are the high plasma concentration of 
catecholamines observed in protein-restricted offspring (Petry 
et  al., 2000); and the fact that renal denervation prevented 
hypertension confirming the role of renal nerves activation in 
the offspring with restricted growth (Alexander et  al., 2005; 
Custódio et  al., 2017).

Regarding the changes in RAS in humans, Simonetti et  al. 
(2008) observed higher salt sensitivity in LBW children, possibly 
as a result of increased aldosterone activity or alterations in 
AT1r expression or affinity. It has also been reported that 
circulating levels of angiotensin II and angiotensin-converting 
enzyme (ACE) activity were higher in healthy males with LBW 
(Franco et al., 2008a). Ajala et al. (2012) found that the presence 
of DD genotype in the ACE gene is associated with higher 
ACE activity in children with a history of LBW. Moreover, one 
study in LBW children has reported hypo-methylation in the 
promoter region of the ACE gene (Rangel et  al., 2014). These 
authors also observed that LBW children have lower methylation 
levels along with higher ACE activity (Rangel et  al., 2014).

Placental Alterations
The placenta, which forms the functional interface between 
the maternal and fetal circulations, is important for the normal 
development of the fetus. Usually, the placenta expresses the 
enzyme 11 beta-hydroxysteroid dehydrogenase type 2 (11β-
HSD2) that inactivates maternal glucocorticoids, protecting the 
fetus from premature exposure to this hormone. Studies have 
shown that maternal nutritional restriction significantly reduces 
placental development and also the expression of 11β-HSD2, 
thus the fetus may be  exposed to these hormones prematurely 
(Börzsönyi et  al., 2012; Chapman et  al., 2013).

In rats, premature exposure to corticosterone impacted kidney 
formation resulting in reduction of the nephron number, 
confirming the negative effects of early exposure to this hormone 
(Woods and Weeks, 2005; Singh et  al., 2007).

CONCLUSION

Kidney disease is a concerning health problem in the modern 
world and can be  considered as one of the common causes 
of morbidity and mortality. The fetal environment is an important 
period for the development of several adaptive mechanisms in 
various organ systems, leading to an increased risk of development 
of renal diseases in later life. Several reports from human and 
animal models suggest that the kidneys can be  influenced by 
insults during fetal development in utero. The impairment in 
nephrogenesis leads to the process of glomerulosclerosis and 
loss of renal function in later life. Modifications in the epigenetic 
characteristics and RAS components are likely involved. Further 
studies are required to determine relationships between epigenetic 
alterations and RAS pathway abnormalities, and their ability 
to influence fetal programming of the kidney diseases.
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