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ABSTRACT
High-risk endometrial cancer (EC) is an aggressive disease for which new therapeutic options are needed.
Aims of this study were to validate the enhanced immune response in highly mutated ECs and to explore
immune profiles in other EC subgroups. We evaluated immune infiltration in 116 high-risk ECs from the
TransPORTEC consortium, previously classified into four molecular subtypes: (i) ultramutated POLE
exonuclease domain-mutant ECs (POLE-mutant); (ii) hypermutated microsatellite unstable (MSI); (iii) p53-
mutant; and (iv) no specific molecular profile (NSMP). Within The Cancer Genome Atlas (TCGA) EC cohort,
significantly higher numbers of predicted neoantigens were demonstrated in POLE-mutant and MSI tumors
compared with NSMP and p53-mutants. This was reflected by enhanced immune expression and infiltration
in POLE-mutant and MSI tumors in both the TCGA cohort (mRNA expression) and the TransPORTEC cohort
(immunohistochemistry) with high infiltration of CD8C (90% and 69%), PD-1C (73% and 69%) and PD-L1C

immune cells (100% and 71%). Notably, a subset of p53-mutant and NSMP cancers was characterized by signs
of an antitumor immune response (43% and 31% of tumors with high infiltration of CD8C cells, respectively),
despite a low number of predicted neoantigens. In conclusion, the presence of enhanced immune infiltration,
particularly high numbers of PD-1 and PD-L1 positive cells, in highly mutated, neoantigen-rich POLE-mutant
andMSI endometrial tumors suggests sensitivity to immune checkpoint inhibitors.
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Introduction

The development of novel immunotherapeutic strategies such
as checkpoint inhibitors has the potential to transform the field
of oncology. So far, durable responses have been established in
subsets of patients, for example with metastatic melanoma,
non-small cell lung cancer, and mismatch repair-deficient can-
cers including two patients with endometrial cancer (EC).1-7

Although the clinical efficacy of immune checkpoint inhibitors
is evident in a subset of patients, selecting the patients who
may benefit from this therapy remains challenging. A key
mechanism for the benefit of immune checkpoint inhibition in
these cancers is the induction of a strong neoantigen-driven
T-cell response against the tumor. Indeed, comprehensive anal-
ysis of large genomic datasets such as The Cancer Genome
Atlas (TCGA) have provided a clear link between mutational
load and activation of the immune system, implicating the
involvement of neoantigens in driving cytotoxic T-cell

responses in cancer.8-10 Furthermore, several clinical trials have
shown a strong association between the presence of high num-
bers of predicted neoantigens, immune infiltration and
response to cancer immunotherapy.11-15 In particular, the pres-
ence of CD8C cytotoxic T cells and expression of the immune
checkpoints PD-1 and PD-L1 have been proposed as important
predictors of objective tumor regression.3,16

Characterization of the immune contexture of individual
tumors may provide guidance in selecting appropriate immu-
notherapy for each individual patient, especially when inte-
grated with an analysis of genomic alterations.10,17,18

A molecular classification has recently been proposed by The
Cancer Genome Atlas (TCGA), which identified four genomi-
cally distinct EC subgroups: an ultramutated group character-
ized by somatic mutations in the exonuclease domain of POLE
(encoding the catalytic subunit of DNA polymerase epsilon), a
microsatellite unstable (MSI) hypermutated group with many
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substitutions as well as insertions and deletions due to mis-
match repair deficiency, a copy-number high (serous-like)
group with frequent TP53 mutation and a copy-number low
(microsatellite stable (MSS)) group with no specific molecular
profile (NSMP).19

In line with this, we, and others, have recently demonstrated
high numbers of predicted immunogenic mutations and
enhanced antitumor immune infiltration in ultramutated
POLE-mutant and, to a lesser extent, in hypermutated micro-
satellite unstable EC.20-23 These studies combined with the
emerging data linking mutational load, immune activation and
response to cancer immunotherapy render POLE-mutated and
MSI cancers plausible candidates for immune checkpoint inhi-
bition.3,10-13,24 This is further underlined by recent case reports
demonstrating the efficacy of anti-PD-1 inhibitors in advanced
POLE-mutant or mismatch repair deficient cancers, including
those of endometrial origin.7,25,26

In this study, we aimed to validate our previous findings of
an enhanced immune response in POLE-mutant and MSI
endometrial cancers in a cohort of high-risk patients. High-
risk EC patients are a particularly relevant subgroup, as most

have no or only very modest gain from standard local or sys-
temic treatment after surgery. Novel treatment options are
therefore urgently needed. The use of a molecularly defined
cohort of high-risk endometrial cancer also enabled us to
explore the immune profiles of the poorly characterized
NMSP and p53-mutant subgroups. With this approach we
provide a rationale for the administration of checkpoint inhi-
bition strategies in subsets of POLE-mutant and MSI endome-
trial cancer patients.

Results

Enhanced infiltration of intratumoral CD3C, CD8C and
CD103C lymphocytes in POLE-mutant and MSI tumors

We first sought to characterize the lymphocytic infiltrate in
the four EC molecular subtypes by immunohistochemical
analysis of CD3C, CD8C, CD103C and CD20C (Fig. 1A and
B). Compared to NSMP and p53-mutant tumors, both POLE-
mutant and MSI tumors demonstrated increased density of
CD3C T-lymphocytes within the tumor center (POLE vs

Figure 1. Infiltration of CD3C, CD8C, CD103C and CD27C cells in POLE-mutant, MSI, NSMP and p53-mutant endometrial cancers. (A) Representative immunohistochemical
stainings of CD3C, CD8C, CD103C and CD20C cells. (B) Average number of positively stained intratumoral cells for each of the markers in the above panel, counted per
core, corrected for the number of cells present. (C) Average number of positively stained cells for each of the markers in the above panel, counted per core within the infil-
trative margin, corrected for the number of cells present. The numbers of cases analyzed for each molecular subgroup are listed below the x-axis. Boxes represent the
interquartile range (IQR), with the upper whisker indicating the 75th percentile and the lower whisker the 25th percentile. The median and mean values are indicated by
a horizontal line and cross, respectively. Abbreviations: POLE, POLE-mutant; MSI, microsatellite unstable; NSMP, no specific molecular profile; p53, p53-mutant. �p < 0.05,
��p < 0.01, ���p < 0.001.

e1264565-2 F. A. EGGINK ET AL.



NSMP p D 0.002, MSI vs NSMP p D 0.001, MSI vs p53 p D
0.018). Staining for cytotoxic T-lymphocyte marker CD8C

and the intraepithelial T-lymphocyte marker CD103C

revealed similarly increased infiltrate in the tumor center
(comparison of CD8C cells: POLE vs NSMP p < 0.001; POLE
vs p53 p D 0.021; MSI vs NSMP p D 0.016, comparison of
CD103C cells: POLE vs MSI p D 0.023; MSI vs NSMP p D
0.035; MSI vs p53 p D 0.030). Based on a median of 80.5
CD8C cells/core in the whole cohort, 90% of POLE-mutant,
69% of MSI, 31% of NSMP and 43% of p53-mutant tumors
were categorized as highly infiltrated with CD8C cells. There
was no difference in numbers of CD20C B-lymphocytes
within the tumor center. A combined analysis in which the
two molecular subgroups with a high expected neoantigen
load (POLE-mutant and MSI) were compared with the two
molecular subgroups with lower expected neoantigen load
(NSMP and p53-mutant), supported the apparent differences
in immune infiltrate between EC subtypes (Fig. S1A).

Within the infiltrative margin, CD3C, CD8C, CD103C or
CD20C infiltration did not significantly differ between the four

molecular subgroups (Fig. 1C). Combined analysis showed a
higher infiltration of CD8C and CD103C in POLE-mutant and
MSI (CD8C p D 0.010, CD103 p D 0.016, Fig. S1B).

Increased infiltration of CD45ROC and TIA-1C lymphocytes
in MSI tumors

To analyze the function of the tumors’ lymphocytic infiltrate,
we performed immunohistochemistry for CD45RO, CD27,
T-Bet and TIA-1 (Fig. 2A and B). Within the tumor center,
MSI tumors contained more CD45ROC memory T-lympho-
cytes compared with NSMP and p53-mutant tumors (MSI vs
NSMP p D 0.029, MSI vs p53 p D 0.008). MSI tumors also har-
bored more TIA-1C cytolytic lymphocytes within the tumor
center (MSI vs NSMP p D 0.019, MSI vs p53 p D 0.043). There
were no differences in the numbers of CD27C naive T cells and
T-BetC differentiated cells between the four molecular sub-
groups. Combined analysis of molecular groups revealed the
presence of more CD45ROC and TIA-1C cells in POLE-
mutant/MSI tumors compared with NSMP/p53-mutant

Figure 2. Infiltration of TIA-1C, T-BetC, CD20C and CD45ROC cells in POLE-mutant, MSI, NSMP and p53-mutant endometrial cancers. (A) Representative immunohisto-
chemical stainings of CD45ROC, CD27C, T-BetC and TIA-1C cells. (B) Average number of positively stained intratumoral cells for each of the markers in the above panel,
counted per core within the tumor center, corrected for the number of cells present. (C) Average number of positively stained cells for each of the markers in the above
panel, counted per core within the infiltrative margin, corrected for the number of cells present. The numbers of cases analyzed for each molecular subgroup are listed
below the x-axis. Boxes represent the interquartile range (IQR), with the upper whisker indicating the 75th percentile and the lower whisker the 25th percentile. The
median and mean values are indicated by a horizontal line and cross, respectively. Abbreviations: POLE, POLE-mutant; MSI, microsatellite unstable; NSMP, no specific
molecular profile; p53, p53-mutant. �p < 0.05, ��p < 0.01, ���p < 0.001.
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tumors (Fig. S2A). Moreover, this also demonstrated higher
numbers of T-BetC differentiated cells within POLE-mutant/
MSI tumors compared with NSMP/p53-mutant tumors (p D
0.021).

Concordant with our findings in the tumor center, the
infiltrative margin of MSI tumors contained more
CD45ROC lymphocytes (MSI vs NSMP p D 0.002, MSI vs
p53 p D 0.003) and more TIA-1C cytolytic T-lymphocytes
(MSI vs NSMP p D 0.002, Fig. 2C). NSMP tumors demon-
strated more TIA-1C lymphocytes compared with p53-
mutant tumors (NSMP vs p53 p D 0.023). The numbers of

CD27C and T-BetC cells did not significantly differ
between the four molecular subgroups. Data from the com-
bined analyses supported the increased density of
CD45ROC and TIA-1C cells within POLE-mutant/MSI
tumors (Fig. S2B).

Increase in infiltration of PD-1C and PD-L1C lymphocytes
in POLE-mutant and MSI tumors

The increased lymphocytic infiltrate of POLE-mutant and MSI
tumors, in combination with their expected ultramutated

Figure 3. Infiltration of PD-1C and PD-L1C cells in POLE-mutant, MSI, NSMP and p53-mutant endometrial cancers. (A) Representative immunohistochemical stainings of
PD-1C and PD-L1C cells. (B) Average number of PD1C cells counted per core within the tumor center, corrected for the number of cells present. (C) Percentage of PD-L1C

tumor-infiltrating immune cells within the tumor core and infiltrative margin core. (D) Average number of PD1C stained cells counted per core within the infiltrative mar-
gin. The numbers of cases analyzed for each molecular subgroup are listed below the x-axis. Boxes represent the interquartile range (IQR), with the upper whisker indicat-
ing the 75th percentile and the lower whisker the 25th percentile. The median and mean values are indicated by a horizontal line and cross, respectively. Abbreviations:
POLE, POLE-mutant; MSI, microsatellite unstable; NSMP, no specific molecular profile; p53, p53-mutant. �p < 0.05, ��p< 0.01, ���p < 0.001.
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(POLE-mutant tumors) or hypermutated (MSI tumors) status,
prompted us to investigate the presence of PD-1C and PD-L1C

cells within this cohort (Fig. 3A).
The tumor center of POLE-mutant and MSI tumors har-

bored high numbers of PD-1C immune cells (POLE vs NSMP
p < 0.001, POLE vs p53 p D 0.050, and MSI vs NSMP p D
0.003, Fig. 3B). This was supported by the combined analysis
(Fig. S3A). Based on a median of 14.0 PD-1C cells/core in all
patients, 73% of POLE-mutant, 69% of MSI, 31% of NSMP and
48% of p53-mutant tumors were categorized as highly infil-
trated with PD-1C cells.

POLE-mutant and MSI tumors showed markedly increased
infiltration of PD-L1C immune cells within the tumor center
compare with NSMP and p53-mutant tumors (POLE vs NSMP
p < 0.001, POLE vs p53 p < 0.001, MSI vs NSMP p < 0.001,
MSI vs p53 p D 0.002, Fig. 3C). The combined analysis showed
similar results (Fig. S3B). In total, 100% of POLE-mutant, 71%
of MSI, 18% of NSMP and 29% of p53-mutant tumors were
categorized as PD-L1C (based on the immune score). Strik-
ingly, only one tumor sample, a p53-mutant EC, contained
PD-L1 expressing tumor cells (noted as a positive tumor score,
data not shown).

Within the infiltrative margin, only the POLE-mutant sub-
group showed high densities of PD-1C immune cells (POLE vs
NSMP p D 0.008, POLE vs p53 p D 0.007, Fig. 3D). Combined
analysis supported the presence of high numbers of PD-1C cells
within the POLE-mutant/MSI group compare with the NSMP/
p53-mutant group (Fig. S3C).

PD-L1 is preferentially expressed on myeloid cells

Recently, several studies have shown PD-L1 expression on
tumor-associated myeloid cells.1,27-30 Therefore, to determine
whether this was also the case for our cohort, we performed
two multi-color immunofluorescence stainings on consecutive
whole slides of a highly infiltrated POLE-mutant tumor sample
using the following combinations of monoclonal antibodies:
CD68–CD163 – epithelial cell marker cytokeratin, and PD-L1–
PD-1, respectively (Fig. 4). CD68C and/or CD163C myeloid
cells (including macrophages and myeloid dendritic cells) were
found in the stromal regions within the center of the tumor,
demarcated by the cytokeratinC tumor cells (Fig. 4A). PD-1C

and PD-L1C cells were seen in close proximity, also predomi-
nantly located in the intratumoral stromal areas (Fig. 4B).
A co-immunofluorescent staining of PD-1 and CD8 shows
frequent co-localization, indicating that PD-1 can be expressed
by (cytotoxic) T cells (Fig. S4). PD-L1 expression co-localized
with CD68 and CD163, supporting the idea that in our cohort
PD-L1 is not mainly expressed by tumor cells but by myeloid
cells (Fig. 4C and D).

TCGA RNA sequencing data demonstrates higher
expression of CD8A, CD3E, ITGAE (CD103), MS4A1 (CD20),
PTPRC (CD45RO), CD27,TBX21 (T-Bet) and PDCD1 (PD-1) in
POLE-mutant and MSI tumors

Next, we compared our data with the expression of above-
described immune markers in The Cancer Genome Atlas
(TCGA) cancer cohort, which was originally used to devise the

molecular classification of EC (Fig. 5).19 Previously, we have
shown higher expression of, among others, CD3E, CD8A,
TBX21 (T-Bet) and PDCD1 (PD-1) in POLE-mutant compared
with MSI and MSS tumors.20 We now extend this analysis to
specifically compare the four proposed prognostic subgroups.19

Of the 244 informative samples, the TCGA cohort included 18
POLE-mutant, 69 MSI, 96 NSMP and 62 TP53-mutant. Analy-
sis of the RNA sequencing data of this cohort demonstrated
higher expression of CD8A, CD3E, ITGAE (CD103), MS4A1
(CD20), PTPRC (CD45RO), CD27,TBX21 (T-Bet) and
PDCD1 (PD-1) in POLE-mutant and MSI tumors compare
with NSMP and TP53-mutant. TIA-1 expression did not differ
between the four molecular subgroups. POLE-mutant ECs
showed a trend toward increased expression of CD274 (PD-L1)
(p D 0.057).

Patients with POLE-mutated and MSI tumors have higher
numbers of predicted neoantigens, regardless of their
immune infiltration status

The presence of a subset of POLE-mutant and MSI tumors with
a relatively low immune infiltration and NSMP and TP53-
mutant tumors with a relatively high immune infiltration led
us to evaluate the relationship between immune infiltrate and
numbers of predicted neoantigens within the TCGA cohort
(Fig. 6). First of all, we demonstrated the presence of higher
numbers of expected neoantigens in POLE-mutant and MSI
tumors compared with NSMP and TP53-mutant tumors
(Fig. 6A). The molecular subgroups were dichotomized accord-
ing to CD8A expression from RNAseq data, with high infiltra-
tion defined as expression above the median of the respective
molecular subgroup. Subsequently, we quantified predicted
neoantigens for high and low infiltrated tumors within the
molecular subgroups (Fig. 6B). No differences were found in
the numbers of predicted neoantigens between samples with
high or low CD8A expression within the molecular subgroups.

Discussion

In this study we demonstrate the presence of high numbers of
tumor-infiltrating T cells in POLE-mutant and MSI tumors,
both predicted to be neoantigen-rich, from a clinically relevant
cohort of high-risk EC patients. Moreover, these two molecular
subtypes harbor high densities of PD-1- and PD-L1-expressing
immune cells, rendering them attractive candidates for immune
checkpoint inhibition strategies.

The presence of a prominent immune infiltrate in POLE-
mutant and MSI high-risk EC is in concordance with our previ-
ous findings in a pre-selected cohort including 47 POLE-
mutant, 49 microsatellite unstable and 54 microsatellite stable
tumors, in which we demonstrated that POLE-mutant tumors,
and to a lesser extent MSI tumors, are characterized by a robust
intratumoral T-cell response.20 These initial findings have
recently been extended to other unselected EC cohorts, in
which high densities of peritumoral and tumor-infiltrating
T-lymphocytes have been described in POLE-mutant
tumors.21,22,31 High expression of PD-1 and PD-L1 on intraepi-
thelial immune cells in POLE-mutant and MSI ECs has previ-
ously been suggested by Howitt et al, albeit in a cohort which
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included only three POLE-mutant cases.21 An interesting dif-
ference between the data presented by Howitt et al. and the
present study is the expression of PD-L1 on tumor cells. Howitt
et al. describe that 20% of ECs (POLE-mutant, MSI and MSS)
show PD-L1C tumor cells, whereas within our high-risk cohort
only 1 out of 116 tumors showed any expression of PD-L1 on
the tumor cells (using the same PD-L1 antibody). Our use of
tissue microarrays may have led to an underestimation of PD-
L1 expressing tumor cells, as PD-L1 expression is known to be
heterogeneously distributed.32 Moreover, consecutive full slides
of one POLE-mutant case were stained using multi-color
immunofluorescence: PD-L1 expression was predominantly
found in the intratumoral stromal regions in close proximity
with PD-1C cells. Furthermore, PD-L1 expression co-localized
with CD68 and CD163, suggesting that in this case PD-L1 is

primarily expressed by myeloid cells rather than tumor cells.
PD-L1C immune cells have previously been described by
(among others) Heeren et al. and Herbst et al.; the latter also
showed that PD-L1 positivity on immune cells, but not on
tumor cells, was associated with response to immune check-
point inhibition.1,28

Comparisons of outcomes from our immunohistochemical
analyses in the TransPORTEC high-risk cohort and analyses of
the RNA sequencing data from The Cancer Genome Atlas
(TCGA) showed similar results for five out of ten markers,
namely CD3, CD8C, CD103, CD45RO and PD1. The immuno-
histochemical analyses of the TransPORTEC cohort did not
reveal significant differences in numbers of CD20C and CD27C

cells between the four molecular subgroups, while analysis of
the TCGA cohort demonstrated increased expression of

Figure 4. Immunofluorescent stainings of PD-1, PD-L1 and myeloid markers. Representative image of a POLE-mutant endometrial cancer stained with keratin (green)–
CD163 (blue)–CD68 (red) in (A), and PD-1 (green)–PD-L1 (blue) in (B). The two triple immunofluorescent stainings from A and B, performed on sequentially cut slides, are
layered in (C), with single channel markers for the inset in (D), with keratin (green), PD-L1 (blue), CD68 (red) and CD163 (yellow), demonstrating the co-localization of PD-
L1 with myeloid markers.
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CD20C and CD27C cells within the POLE-mutant and MSI
subgroups. This inconsistency may be attributed to the use of a
TMA for immunohistochemical analyses of CD20C and
CD27C cells. These immune cells frequently reside in tertiary
lymphoid structures in the myometrium, which are frequently
seen in POLE-mutant tumors.20,33-35 The areas containing these
structures may not have been present in the TMA. Second, out-
comes regarding TIA-1, T-Bet and PD-L1 positivity were dis-
cordant. These differences may be due to the known
discrepancy between mRNA and protein expression.36 Another
possible explanation for these discrepancies may be the rela-
tively high proportion of clear cell EC (15.5%) within the
TransPORTEC high-risk cohort, while only endometrioid,
serous and mixed histologies were included in the TCGA study.

The presence of high numbers of CD8C and PD-1C cells in
POLE-mutant and MSI tumors may suggest the presence of
high numbers of tumor-specific T cells targeting neoantigens
within these subgroups of patients. Similarly, our analysis of
the TCGA EC cohort demonstrates that POLE-mutant and
MSI tumors are characterized by a significantly higher number
of mutations predicted to result in major histocompatibility

complex-binding neoantigens, and a correspondingly higher
number of tumor-infiltrating CD8C T cells, as assessed by
CD8A mRNA levels. This link between neoantigen accumula-
tion and infiltration by immune cells is supported by a recent
genomic characterization of colorectal cancers, in which an
association between high neoantigen load, overall lymphocytic
infiltration, tumor-infiltrating lymphocytes and survival was
demonstrated.10

Surprisingly, the number of predicted immunogenic
mutations did not directly reflect the levels of CD8A mRNA
expression within each molecular subgroup (Fig. 6). Simi-
larly, in our immunohistochemical analysis, we found MSI
tumors, expected to be neoantigen-rich, with almost no signs
of CD8C T-cell infiltration, and p53-mutant tumors,
expected to have low numbers of neoantigens, with an
enhanced intratumoral immune response. One explanation
for this apparent discrepancy between immune infiltration
and the number of predicted neoantigens could be that the
nature (i.e., clonal vs subclonal) of the neoepitopes, instead
of the crude number of predicted neoantigens, determine the
degree of immune response.13 Another explanation may be

Figure 5. Expression of immune markers in according to tumor molecular subtype in TCGA series. RSEM normalized RNAseq data were log2 transformed and analyzed
according to tumor molecular subtype. Boxes represent the interquartile range (IQR), with the upper whisker indicating the 75th percentile and the lower whisker the
25th percentile. The median and mean values are indicated by a horizontal line and cross, respectively. Abbreviations: POLE, POLE-mutant; MSI, microsatellite unstable;
NSMP, no specific molecular profile; p53, p53-mutant. �p < 0.05, ��p < 0.01, ���p < 0.001.
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that within our analyses only predicted binding to HLA-
A�02:01 was taken into account rather than to individual
HLA alleles. Furthermore, immune responses may be
impeded by impairment of major histocompatibility complex
(MHC) class I expression due to mutations in HLA, b-2
microglobulin and JAK-1 in highly mutated ECs.20,37 There-
fore, a logical next step in understanding the interaction
between neoepitopes and immune response within the four
molecular subgroups would be the direct identification and
characterization of tumor-specific T cells targeting these neo-
antigens, as has recently been performed by Gros et al. in
melanoma.24

With regard to the p53-mutant tumors with an enhanced
antitumor immune response despite low expected neoantigen
load, we hypothesize that this response may be aimed at self-
antigens or cancer/testis antigens instead of neoepitopes. Tak-
ing into account their unfavorable survival outcomes, further
investigation of the highly infiltrated p53-mutant subset will be
of great interest as this may provide new insight in the selection
of candidates for immune checkpoint therapies.

The data on mutational load, neoantigens and immune infil-
tration reported by us and others suggest that checkpoint inhi-
bition may be a strategy of particular interest for treating
advanced stage patients with POLE-mutant and MSI tumors.

Figure 6. Predicted number of HLA-A2-binding neoantigens across the four molecular subgroups in The Cancer Genome Atlas endometrial cancer cohort. (A) Comparison
between the number of predicted HLA-A2 binding neoantigens in POLE-mutant, MSI, NSMP and TP53-mutant subgroups based on RNAseq. (B) Comparison between
patients with high and low infiltration (based on CD8A expression from RNAseq, relative to median within the group) of lymphocytes within POLE-mutant, MSI, NSMP
and TP53-mutant subgroups. The numbers of cases analyzed for each molecular subgroup are listed below the x-axis. Boxes represent the interquartile range (IQR), with
upper whisker indicating the 75th percentile and the lower whisker the 25th percentile. The median and mean values are indicated by a horizontal line and cross, respec-
tively. Abbreviations: POLE, POLE-mutant; MSI, microsatellite unstable; NSMP, no specific molecular profile; p53, p53-mutant. �p < 0.05, ��p < 0.01, ���p < 0.001.
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Recent case reports provide proof of principle by demonstrat-
ing the efficacy of anti-PD-1 inhibitors in a limited number of
advanced stage POLE-mutant or mismatch repair deficient can-
cers.7,25,26 Moreover, a Phase II trial evaluating immune related
objective responses to Pembrolizumab in patients with or with-
out mismatch repair (MMR) deficiency, demonstrated objective
responses in 40% of patients with MMR deficient colorectal
cancer and 71% of patients with MMR deficient non-colorectal
cancers (including two ECs). Contrastingly, no objective
responses were observed in the MMR proficient colorectal can-
cers. Moreover, data from this study adds to the growing body
of evidence suggesting that high numbers of somatic mutations
(in this case due to MMR deficiency) and high numbers of
predicted neoantigens play an important role in the
sensitivity to checkpoint inhibition.11-13,15 Furthermore, an in-
depth analysis of patients treated with anti-PD-1 therapy prior-
itized PD-L1 expression as being the most closely associated
with objective tumor regression.38 Further analyses of non-res-
ponders may uncover other mutations affecting epitope presen-
tation, T-cell infiltration and response to checkpoint inhibition.

From a clinical point of view, as checkpoint inhibitors are
associated with significant costs and potential toxicities, it is
essential to select individual patients that will benefit from these
therapies. Patients with low/intermediate-risk disease carrying
POLE mutations have an excellent prognosis under standard
treatment, and therefore checkpoint inhibition is unlikely to be
appropriate for this group.19,39-41 However, (although infre-
quently occurring) POLE-mutant and MSI patients with recur-
ring or metastatic disease are possible candidates.7,25,26 Clinical
trials, in which high-risk EC patients are grouped according to
molecular subtype, will be required to determine clinical benefit
of immunotherapy.

Importantly, the data thus far regarding POLE-mutant EC
may be applicable to other tumor types harboring POLE muta-
tions. While POLE mutations are found in 7–12% of EC, they
are also found in other malignancies including colorectal can-
cers, cancers of the brain, breast, pancreas and stomach, albeit
at lower frequencies.19,39,42-48 Although a prognostic advantage
of this mutation has now been established in glioblastoma and
stage II/III colorectal cancer, patients with recurrent or meta-
static hypermutated disease may also benefit from immuno-
therapeutic strategies such as checkpoint inhibitors as
proposed for EC.7,47,49 Basket trials stratifying patients accord-
ing to tumor molecular alterations such as POLE mutations
should be initiated to investigate whether these patients may
also benefit from checkpoint inhibition.

In summary, taking into account the strong immune infil-
tration, high numbers of PD-1C and PD-L1C lymphocytes,
large numbers of somatic mutations and neoantigens, and the
recently demonstrated clinical efficacy in these cohorts of
patients, POLE-mutant and MSI tumors are expected to benefit
from checkpoint inhibition.21,25,50

Methods

Selection of patients and tissues

A previously described cohort of 116 high-risk EC patients was
used in this study (Table 1).42 In brief, tumor tissues from

high-risk EC patients were selected from partner institutions of
the TransPORTEC consortium using inclusion criteria of the
PORTEC-3 study. Patients included in the PORTEC-3 had EC
with one of the following FIGO 2009 stages and grade: 1A
grade 3 with myometrial and lymphovascular space invasion;
IB grade 3; II, IIIA or IIIC; IIIB if only parametrial invasion;
stage IA (with invasion), 1B, II or III with serous or clear cell
histology.51

Construction of tissue microarray

Morphologically representative paraffin-embedded tissue
blocks containing at least 70% tumor cells were selected by two
experienced gyneco-pathologists (VS and TB). The selected
tumor blocks were used to construct (and validate) a Tissue
Microarray (TMA) as previously described.42 One millimeter-
sized tumor (center of the tumor) and tumor/stroma (invasive
margin) cores of each tumor block were randomly distributed
on the TMA in triplicate.

Assessment of POLE, MSI, p53 and NSMP status

Classification of patients into the four molecular subgroups was
performed as previously described.42 In brief, tumor DNA iso-
lation was performed fully automated using the Tissue Prepara-
tion System (Siemens Healthcare Diagnostics).52 Bi-directional
Sanger sequencing was used to screen exons 9, 13 and 14 of the
POLE exonuclease domain for somatic mutations. Microsatel-
lite instability and p53 mutational status were determined as
previously described.42,53

Immunohistochemistry

TMA sections were deparaffinized and rehydrated. Antigen
retrieval was performed using 0.01M citrate buffer pH 6.0, and
endogenous peroxidase activity was blocked. Slides were incu-
bated overnight at room temperature (CD3, TIA-1, T-Bet and
PD-1), for 1 h at room temperature (CD8C, CD20) or over-
night at 4 �C (CD103) with primary antibodies against CD3
(1:100, clone PS-1, Diagnostic BioSystems), CD8C (1:50, clone
C8/144B, DAKO), CD20 (1:200, clone L26, DAKO), CD103
(1:200, Integrin aEb7, Abcam), TIA-1 (1:200, clone 2G9A10F5,
Beckman Coulter), T-bet (1:400 in 10% normal goat serum, sc-
21003, Santa Cruz Biotechnology), PD-1 (1:200, AF1086,
R&D), and PD-L1 (1 mg/mL, clone E1L3N, Cell Signaling
Technology). Slides were incubated with BrightVision Poly-
HRP (poly-HRP-GAM/R/R, DPV0110HRP, Immunologic;
CD3, TIA-1, T-bet), a goat HRP-polymer kit (GHP516H, Bio-
care Medical; PD-1), anti-mouse secondary antibody (K4007,
DAKO, CD8C, CD20) or anti-rabbit secondary antibody
(K4011, DAKO, CD103) for 30 min. For CD103, a slightly dif-
ferent method using avidin/biotin blocking was used as
described previously.54 PD-L1 staining was performed using
the Ventrana Discovery Ultra Platform for automatic staining,
detection was performed using the Discovery Amp-HQ kit
(tyramide-based amplification). Antibody binding was visual-
ized with 3,30-diamino-benzidine-tetrahydrochloride (DAB)
and haematoxylin counterstaining. Slides were dehydrated and
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mounted before digitalization (Ultra Fast Scanner 1.6 RA. Phi-
lips or ScanScope, Aperio technologies) and analysis.

Quantification of IHC

Total numbers of CD3C, CD8C, CD103C, CD27C, TIA-1C,
T-BetC, CD20C, CD45ROC and PD-1C cell numbers were
quantified per core. The percentage of tumor and stroma sur-
face area within each core were estimated, and used to extrapo-
late cell counts to 100% surface area. Cores taken from the
tumor center were included in the analysis if at least two out of
the three cores contained >20% tumor. Cores from the infiltra-
tive margin were included in the analysis if at least two out of
the three cores contained >20% stroma and if there was tumor
tissue present. Average cell counts per 100% surface area were
recorded for the tumor center and infiltrative margin. Slides
were counted manually by two individuals (FE and IG) that
were blinded for other clinicopathological data. Inter-observer
variation was evaluated by Spearman rank correlation (median
R2 0.935, range 0.682–0.988).

Quantification of PD-L1 was evaluated on tumor-infiltrating
immune cells and tumor cells as previously described.1 In brief,
the proportion of PD-L1 expressing tumor cells (tumor score)
was noted as a percentage of the total number of tumor cells
within that core. Due to very low expression of PD-L1 it was

decided to consider any expression of PD-L1 on tumor cells
as positive. Furthermore, the percentage of tumor-infiltrating
immune cells (immune score) with moderate to strong PD-
L1 expression was registered. Immune cells were defined
positive when cells displayed clearly visible cytoplasmic and/
or membranous staining. Patients were included in the anal-
ysis if at least two out of three cores were evaluated; the final
score was based on the core with the highest PD-L1 expres-
sion. For the analyses of the immune score, PD-L1 positivity
was defined as >1% (based on the median score in the
cohort).

Immunofluorescence

Three combinations of multi-color immunofluorescent stain-
ings were performed as described previously.55 The first combi-
nation consisted of anti-CD163 (polyclonal rabbit, ab87099,
Abcam), anti-CD68 (monoclonal mouse IgG2a, clone 514H12,
ABDserotec) and anti-keratin (monoclonal mouse IgG1, clone
AE1/AE3, MAB3412, Millipore). The second combination con-
sisted of anti-PD-L1 (polyclonal rabbit, clone SP142, Roche)
and anti-PD1 (monoclonal mouse IgG1, clone NAT105,
Abcam), and the third consisted of anti-CD8C (mouse mono-
clonal IgG2b, clone 4B11, Novo Castra) and anti-PD-1 (poly-
clonal goat, R&D Systems).

Table 1. Clinicopathological characteristics of the high-risk endometrial cancer patient cohort.

All patients POLE-mutant MSI NSMP p53-mutant
N D 116 N D 15 N D 19 N D 42 N D 40

N % N % N % N % N % p-value

Age at diagnosis (years)
Mean (range) 66 (21–85) 61 (49–80) 65 (49–82) 64 (21–84) 71 (45–85) 0.004

Stage
I 42 36.2 8 53.3 5 26.3 16 38.1 13 32.5 0.246
II 21 18.1 3 20.0 2 10.5 12 28.6 4 10.0
III 41 35.3 3 20.0 10 52.6 11 26.2 17 42.5
IV 11 9.5 1 6.7 2 10.5 3 7.1 5 12.5
Unknown 1 0.9 0 0.0 0 0.0 0 0.0 1 2.5

Tumor type
Endometrioid 86 74.1 14 93.3 17 89.5 35 83.3 20 50.0 <0.001
Serous 12 10.3 0 0.0 0 0.0 0 0.0 12 30.0
Clearcell 18 15.5 1 6.7 2 10.5 7 16.7 8 20.0

Grade
1 13 11.2 0 0.0 2 10.5 8 19.0 3 7.5 0.036
2 5 4.3 1 6.7 3 15.8 1 2.4 0 0.0
3 98 84.5 14 93.3 14 73.7 33 78.6 37 92.5

Lymphovascular space invasion
Yes 55 47.4 6 40 15 78.9 18 42.9 16 40 0.103
No 40 34.5 9 60.0 2 10.5 18 42.9 11 27.5
Unknown 21 18.1 0 0.0 2 10.5 6 14.3 13 32.5

Depth of myometrial invasion
<50% 23 19.8 4 26.7 2 10.5 6 14.3 11 27.5 0.261
>50% 87 75.0 11 73.3 17 89.5 33 78.6 26 65.0
Unknown 6 5.2 0 0.0 0 0.0 3 7.1 3 7.5

Adjuvant therapy
Yes 82 70.7 14 93.3 15 78.9 33 78.6 20 50.0 0.134
No 10 8.6 1 6.7 1 5.3 2 4.8 6 15.0
Unknown 24 20.7 0 0.0 3 15.8 7 16.7 14 35.0

Characteristics are shown for the whole group, as well as for each of the molecular subgroups analyzed. Abbreviations: MSI, microsatellite unstable; NSMP, no specific
molecular profile.
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In short, after slides were deparaffinized and rehydrated,
antigen retrieval was achieved by microwave oven treatment in
a Tris–EDTA buffer at pH 9.0. Slides were incubated with the
listed primary antibodies overnight. The following secondary
Alexa Fluor labeled antibodies were used for the CD163–
CD68–keratin and PD-L1–PD-1 combinations: 647 goat anti-
rabbit, 546 goat anti-mouse IgG2a, and 488 goat anti-mouse
IgG1 (all from Invitrogen, Life Technologies, Carlsbad, USA).
Donkey anti-goat 488 and donkey anti-mouse IgG 647 were
used for PD-1/CD8C detection. The slides were counterstained
with DAPI and coverslipped. Immunofluorescent images were
acquired with an LSM700 confocal laser scanning microscope
equipped with an LCI Plan-Neofluar 25£/0.8 Imm Korr DIC
M27 objective (Zeiss, G€ottingen, Germany). Double or triple
positivity of cells in the center of the tumor as well as at the
invasive margin was determined using LSM Image Browser
(version 4.2.0.121, Zeiss). Images from the two triple immuno-
fluorescent stainings were merged using Adobe Photoshop CS6.

TCGA RNA sequencing

TCGA RNAseq analysis was performed as previously
reported.19,20 Data were downloaded from FireBrowse on
November 11, 2014 (http://firebrowse.org/?cohortDUCECand
download_dialogDtrue). In total, 245 samples with RSEM nor-
malized data were available for analysis.

Prediction of antigenic neoepitopes

Prediction of antigenic neoepitopes was performed as previ-
ously reported.20 In brief, an algorithm was developed to esti-
mate the immunogenicity of individual tumors in which the
following considerations were taken into account: (i) to gener-
ate a functional neoepitope a missense mutation must be
expressed; (ii) most functional neoepitopes are predicted to
bind MHC class I molecules (IC50 < 500 nM) by NetMHC-
Pan.8,56,57; (iii) the likelihood that a neoepitope is antigenic is
reduced if the corresponding wild-type peptide also binds the
MHC with similar affinity as T cells to the epitope may be cen-
trally deleted or tolerized.58 Our strategy was similar to that
reported by others.8,13,57,59 For each tumor all possible 9mers
for every missense mutation in expressed genes (defined as
non-zero reads from RNAseq) and the binding affinity of the
mutant and corresponding wild-type peptide for HLA-A�02:01
were calculated using NetMHCPan 2.8.56 If several peptides
had an IC50 <500 nM, the strongest binder was used for analy-
sis. We defined antigenic mutations as neoepitopes predicted to
bind MHC molecules (IC50 < 500 nM) for which the corre-
sponding wild-type peptide was not predicted to bind MHC
(IC50 > 500 nM).

Statistical methods

Comparison between clinicopathological characteristics of the
four molecular subgroups was made using Kruskal–Wallis fol-
lowed by Mann–Whitney U (for age) and x2 tests (for all other
variables). Correlations between immunohistochemical stain-
ings and the four molecular subgroups were evaluated using
Kruskal–Wallis followed by Mann–Whitney U tests. The same

method was used to evaluate correlations between RNA expres-
sion from the TCGA cohort of immune-related genes and the
four molecular subgroups. Additionally, analyses were per-
formed combining POLE-mutant and MSI samples vs NSMP
and p53-mutant samples. All tests were performed two-sided.
Significance was defined as a p-value of < 0.05. Statistical anal-
yses were performed using IBM SPSS version 22 (SPSS, Inc.,
Chicago, USA) and GraphPad Prism (GraphPad Software, Inc.,
CA, USA).
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47. Erson-Omay EZ, Ça�glayan AO, Schultz N, Weinhold N, Omay SB,
€Ozduman K, K€oksal Y, Li J, Serin Harmancı A, Clark V et al. Somatic
POLE mutations cause an ultramutated giant cell high-grade glioma
subtype with better prognosis. Neuro Oncol 2015; 17:1356-64;
PMID:25740784; http://dx.doi.org/10.1093/neuonc/nov027

48. Rayner E, van Gool IC, Palles C, Kearsey SE, Bosse T, Tomlinson I,
Church DN. A panoply of errors: polymerase proofreading domain
mutations in cancer. Nat Rev Cancer 2016; 16:71-81;
PMID:26822575; http://dx.doi.org/10.1038/nrc.2015.12

49. Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeu-
len L, Fessler E, Medema JP, Boot A, Morreau H et al. Somatic POLE
proofreading domain mutation, immune response, and prognosis in
colorectal cancer: a retrospective, pooled biomarker study. Lancet
Gastroenterol Hepatol 2016; 1:207-16; http://dx.doi.org/10.1016/
S2468-1253(16)30014-0

50. Gargiulo P, Della Pepa C, Berardi S, Califano D, Scala S, Buonaguro L,
Ciliberto G, Brauchli P, Pignata S. Tumor genotype and immune
microenvironment in POLE-ultramutated and MSI-hypermutated
Endometrial Cancers: New candidates for checkpoint blockade
immunotherapy? Cancer Treat Rev 2016; 48:61-8; PMID:27362548;
http://dx.doi.org/10.1016/j.ctrv.2016.06.008

51. De Boer SM, Powell ME, Mileshkin L, Katsaros D, Bessette P, Haie-
meder C, Ottevanger PB, Ledermann JA, Khaw P, Colombo A et al.
Toxicity and quality of life after adjuvant chemoradiotherapy versus
radiotherapy alone for women with high-risk randomised, phase 3
trial. Lancet Oncol 2016; 17:1-13; PMID:26758748; http://dx.doi.org/
10.1016/S1470-2045(15)00568-9

52. van Eijk R, Stevens L, Morreau H, van Wezel T. Assessment of a fully
automated high-throughput DNA extraction method from formalin-
fixed, paraffin-embedded tissue for KRAS, and BRAF somatic muta-
tion analysis. Exp Mol Pathol 2013; 94:121-5; PMID:22750048; http://
dx.doi.org/10.1016/j.yexmp.2012.06.004

53. Van Gool IC, Stelloo E, Nout RA, Nijman HW, Edmondson RJ,
Church DN, MacKay HJ, Leary A, Powell ME, Mileshkin L et al. Prog-
nostic significance of L1CAM expression and its association with
mutant p53 expression in high-risk endometrial cancer. Mod Pathol
2016; 29:174-81; PMID:26743472; http://dx.doi.org/10.1038/
modpathol.2015.147

54. Workel HH, Komdeur FL, Wouters MCA, Plat A, Klip HG, Eggink
FA, Wisman GBA, Arts HJG, Oonk MHM, Mourits MJE et al. CD103
defines intraepithelial CD8C PD1C tumour-infiltrating lymphocytes
of prognostic significance in endometrial adenocarcinoma. Eur J Can-
cer 2016; 60:1-11. Available from: http://www.ncbi.nlm.nih.gov/
pubmed/27038842; PMID:27038842; http://dx.doi.org/10.1016/j.ejca.
2016.02.026

55. Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG,
van der Burg SH, Fleuren GJ. Human leukocyte antigen class I, MHC
class I chain-related molecule A, and CD8C/regulatory T-cell ratio:
which variable determines survival of cervical cancer patients? Clin
Cancer Res 2008; 14:2028-35; PMID:18381941; http://dx.doi.org/
10.1158/1078-0432.CCR-07-4554

56. Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Jus-
tesen S, Røder G, Peters B, Sette A, Lund O et al. NetMHCpan, a
method for quantitative predictions of peptide binding to any HLA-
A and -B locus protein of known sequence. PLoS One 2007; 2:e796;
PMID:17726526; http://dx.doi.org/10.1371/journal.pone.0000796

57. Khalili JS, Hanson RW, Szallasi Z. In silico prediction of tumor anti-
gens derived from functional missense mutations of the cancer gene
census. Oncoimmunology 2012; 1:1281-9; PMID:23243591; http://dx.
doi.org/10.4161/onci.21511

58. Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP,
Blanchard T, McMahon D, Sidney J, Sette A et al. Genomic and bioin-
formatic profiling of mutational neoepitopes reveals new rules to pre-
dict anticancer immunogenicity. J Exp Med 2014; 211:2231-48;
PMID:25245761; http://dx.doi.org/10.1084/jem.20141308

59. van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M,
Heemskerk B, van Dijk LJA, Behjati S, Hilkmann H, El Atmioui
D et al. Tumor exome analysis reveals neoantigen-specific T-cell
reactivity in an ipilimumab-responsive melanoma. J Clin Oncol
2013; 31:e439-42; PMID:24043743; http://dx.doi.org/10.1200/
JCO.2012.47.7521

ONCOIMMUNOLOGY e1264565-13

http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
http://dx.doi.org/25505230
http://dx.doi.org/10.1093/jnci/dju402
http://dx.doi.org/10.1038/modpathol.2015.43
http://dx.doi.org/23528559
http://dx.doi.org/10.1093/hmg/ddt131
http://dx.doi.org/10.1038/nature12477
http://dx.doi.org/25228659
http://dx.doi.org/10.1101/gr.174789.114
http://dx.doi.org/10.1093/neuonc/nov027
http://dx.doi.org/10.1038/nrc.2015.12
http://dx.doi.org/27362548
http://dx.doi.org/10.1016/j.ctrv.2016.06.008
http://dx.doi.org/26758748
http://dx.doi.org/10.1016/S1470-2045(15)00568-9
http://dx.doi.org/22750048
http://dx.doi.org/10.1016/j.yexmp.2012.06.004
http://dx.doi.org/10.1038/modpathol.2015.147
http://dx.doi.org/10.1038/modpathol.2015.147
http://www.ncbi.nlm.nih.gov/pubmed/27038842
http://www.ncbi.nlm.nih.gov/pubmed/27038842
http://dx.doi.org/10.1016/j.ejca.2016.02.026
http://dx.doi.org/10.1016/j.ejca.2016.02.026
http://dx.doi.org/18381941
http://dx.doi.org/10.1158/1078-0432.CCR-07-4554
http://dx.doi.org/23243591
http://dx.doi.org/10.4161/onci.21511
http://dx.doi.org/10.1084/jem.20141308
http://dx.doi.org/10.1200/JCO.2012.47.7521
http://dx.doi.org/10.1200/JCO.2012.47.7521

	Abstract
	Introduction
	Results
	Enhanced infiltration of intratumoral CD3, CD8 and CD103 lymphocytes in POLE-mutant and MSI tumors
	Increased infiltration of CD45RO and TIA-1 lymphocytes in MSI tumors
	Increase in infiltration of PD-1 and PD-L1 lymphocytes in POLE-mutant and MSI tumors
	PD-L1 is preferentially expressed on myeloid cells
	TCGA RNA sequencing data demonstrates higher expression of CD8A, CD3E, ITGAE (CD103), MS4A1 (CD20), PTPRC (CD45RO), CD27,TBX21 (T-Bet) and PDCD1 (PD-1) in POLE-mutant and MSI tumors
	Patients with POLE-mutated and MSI tumors have higher numbers of predicted neoantigens, regardless of their immune infiltration status

	Discussion
	Methods
	Selection of patients and tissues
	Construction of tissue microarray
	Assessment of POLE, MSI, p53 and NSMP status
	Immunohistochemistry
	Quantification of IHC
	Immunofluorescence
	TCGA RNA sequencing
	Prediction of antigenic neoepitopes
	Statistical methods

	Disclosure of potential conflicts of interest
	Acknowledgments
	Funding
	References

