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INTRODUCTION

Over the past two decades, intravenous administration of 
recombinant tissue plasminogen activator has been the only 
standard therapy for the treatment of acute ischemic stroke 
despite its limited efficacy for recanalization of emergent 
large vessel occlusion (ELVO) (1-4). Recently, several 
randomized clinical trials on endovascular therapy (EVT) 
using a stent retriever have shown better treatment outcomes 
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in patients with acute stroke due to ELVO compared with 
intravenous thrombolysis only (5-8). Of the various causes 
of ELVO, intracranial atherosclerotic stenosis (ICAS) has 
garnered little attention from treating physicians compared 
with other stroke etiologies, such as embolic occlusions. This 
is probably because previous randomized trials have mostly 
been conducted in Western populations (9-11).

ICAS is a progressive disease characterized by the 
accumulation of lipids and fibrous elements in the walls 
of intracranial arteries, which leads to arterial changes 
ranging from mild wall thickening to hemodynamically 
significant luminal stenosis (12, 13). ICAS can lead to acute 
ischemic stroke through various mechanisms, including 
in situ thrombotic occlusion, artery-to-artery embolism, 
hemodynamic compromise, and branch vessel occlusion. 
Of these mechanisms, ELVO is typically related to in situ 
thrombotic occlusion, which occurs when unstable plaque 
ruptures in patients with advanced ICAS (10, 12). This 
type of ELVO is often associated with complicated or failed 
endovascular thrombectomy procedures, especially when the 
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treating neurointerventionists have little knowledge about 
the characteristics and management of this special type 
of stroke (14, 15). In this review, we discuss the unique 
pathologic basis of ELVO with underlying ICAS, which may 
complicate EVT procedures. Additionally, we review EVT 
data for patients with ELVO due to underlying ICAS and 
suggest an optimal endovascular recanalization strategy 
based on the existing literature. Finally, we present future 
perspectives on this subject.

Clinical Characteristics of Patients with ELVO 
Due to Underlying ICAS

Worldwide, 20–40 per 100000 population are estimated to 
have experienced ICAS-related stroke. ICAS is more prevalent 
in Asian, Black, and Hispanic populations than in Western 
populations (10, 11). In one Korean study, ICAS with > 50% 
luminal stenosis was found in 29.6% of patients with acute 
infarction or transient ischemic stroke and nonvalvular 
atrial fibrillation (9). A Chinese postmortem study reported 
that 31.4% of 114 general autopsy populations were found 
to have ICAS with > 50% luminal stenosis (16). Notably, 
the Chinese Intracranial Atherosclerosis study reported 
that the prevalence of ICAS was 46.6% (1335/2864 stroke 
patients) and concluded that ICAS was the most common 
vascular lesion of stroke patients in China (17). In an 
American study, symptomatic ICAS accounted for 9%, 15%, 
and 17% of all cases of first ischemic strokes in White, 
Hispanic, and Black patient populations, respectively (18). 
Most of the epidemiologic studies conducted to date have 
dealt with the prevalence of ICAS in the general population 
or stroke patient population without confirmed large vessel 
occlusion. There have been very few studies reporting on 
the incidence of underlying ICAS in patients who presented 
with ELVO. Several retrospective case studies reported that 
the incidence of severe underlying ICAS ranged from 15.2–
30.3% in patients receiving endovascular thrombectomy for 
ELVO treatment (19-21).

Differentiating between ICAS- and embolism-related 
occlusions is important when performing EVT because the EVT 
strategy used for ICAS-related occlusions is different from 
that used for embolic occlusions. This strategy may include 
the use of a different front-line thrombectomy technique 
and require rescue treatments in addition to thrombectomy. 
However, it is generally difficult to differentiate the two 
types of ELVO based on pre-treatment baseline angiography 
(18). Thus, understanding the different clinical characteristics 

of the two types of ELVO is important. Until now, published 
data specifically focused on the demographics and clinical 
characteristics of patients with ELVO due to underlying ICAS 
have been insufficient (15, 19-21).

In a retrospective single-center study including patients 
with middle cerebral artery (MCA) M1 occlusions, ELVO 
with underlying ICAS was more frequent in male patients; 
however, the statistical significance was only marginal 
(67.5% vs. 51.2%, p = 0.072) (15). In another comparative 
study, there were more men with ICAS- than embolism-
related occlusions (91.7% vs. 53.7%, p < 0.001) (19). 
Baseline stroke severity is also different between patients 
with ICAS- and embolism-related ELVO. In a retrospective 
study that investigated the role of tirofiban in treating 
patients with ELVO due to ICAS, the baseline National 
Institute of Health Stroke Scale (NIHSS) score was 
significantly lower in the ICAS group compared with the 
non-ICAS group (mean, 14.6 vs. 17.9, p < 0.001) (21). Yoon 
et al. (20) also found that the baseline NIHSS score was 
significantly lower in the ICAS group compared with the 
control group (median, 10 vs. 12, p = 0.002). Such a trend 
was also observed in patients with posterior circulation 
stroke. Kim et al. (22) showed that the initial median NIHSS 
score tended to be lower in patients with ELVO and ICAS 
compared with those with an embolism-related stroke (14 
vs. 22, p = 0.096). Lower infarct severity in ELVO patients 
with underlying ICAS might be explained by preexisting 
sufficient collateral circulation in these patients. Kim et al. 
(23) reported that patients with ICAS had better collateral 
flow than those with other stroke subtypes, presumably 
because ICAS requires a longer time for complete arterial 
occlusion, which allows for the development of adequate 
collateral flow before the onset of acute stroke. Similarly, 
another study showed that intracranial large artery 
atherosclerotic stroke had a much higher mismatch ratio 
(p = 0.003), lower severity of perfusion defect (p = 0.001), 
and higher likelihood of better collaterals (p < 0.001) (24).

Vascular risk factors were also different between ELVO 
with ICAS and other stroke subtypes. Current smoking 
was more frequent in patients with MCA occlusions due 
to ICAS than in those without ICAS (57.5% vs. 26.8%, p 
< 0.001) (15). Lee et al. (19) also reported that smoking 
was more closely related to ICAS- than embolism-related 
occlusions (50% vs. 13.4%, p < 0.001). Diabetes mellitus 
and hyperlipidemia were other possible risk factors for 
ICAS-related ELVO. In a study of 140 patients with ELVO, 
diabetes mellitus and dyslipidemia were more frequent in 
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patients with ICAS than in those without ICAS (diabetes 
mellitus, 45% vs. 18.9%, p = 0.001; and dyslipidemia, 
50% vs. 25.8%, p = 0.004) (20). In another study, high 
total cholesterol levels were independently associated 
with ICAS-related ELVO (odds ratio, 1.019 per 1 mg/dL of 
total cholesterol level, p = 0.008) (19). However, in two 
separate studies, the prevalence of diabetes mellitus did 
not differ between patients with and without ICAS-related 
stroke (15, 19). Thus, the relationship between diabetes 
mellitus and ICAS is still a matter of controversy because 
this relationship can be partly mediated by concomitant 
hypertension and hyperlipidemia (25).

Pathologic Basis of ELVO Due to Underlying 
ICAS

Atherosclerosis is a chronic inflammatory disease 
characterized by the accumulation of lipids and fibrous 
tissues in the arterial wall. The “Response to Injury Theory” 
is now widely accepted to explain the pathogenesis of 
atherosclerosis (26). The earliest events in atherosclerosis 
can be triggered by several insults, including physical 
injury as a result of high blood pressure, turbulent blood 
flow, hyperlipidemia, or hyperglycemia. Atherosclerosis 
proceeds from endothelial dysfunction to the formation of a 
lipid layer or fatty streak within the intima. Subsequently, 
leukocytes and smooth muscle cells migrate into the vessel 
wall, and ultimately, degradation of the extracellular matrix 
and plaque formation occur (27, 28). The most common 
intracranial arteries involved are the proximal and middle 
segments of the MCAs followed by the basilar artery, 
supraclinoid internal carotid arteries, and intracranial 
vertebral arteries (29, 30).

There are several possible mechanisms of stroke in patients 
with ICAS, which include in situ thrombotic occlusion, 
artery-to-artery embolism, hemodynamic compromise, and 
branch vessel occlusion. Of these mechanisms, ELVO due 
to underlying ICAS is mainly caused by in situ thrombosis 
at the stenotic site (31). When inflammation occurs near 
an unstable atherosclerotic plaque, it can promote physical 
disruption of the plaque by superficial erosion, neo-vessel 
disruption, or fracturing its fibrous elements. Inflammation 
may promote sudden atheromatous lesion expansion and 
trigger luminal thrombosis by aggregating platelets, and 
ultimately, occluding the vessel (32). These findings agree 
with a postmortem study on MCA plaques. In that study, 
the authors performed a histologic comparison and found 

that the degree of luminal stenosis, percentage of plaques 
containing > 40% lipid area, and prevalence of intraplaque 
hemorrhage, neo-vasculature, and thrombus were higher 
in plaques associated with MCA infarctions compared with 
those without infarctions (33).

On this pathologic basis, ELVO due to underlying ICAS has 
a few distinctive features compared with embolism-related 
occlusions. First, it tends to have a smaller clot burden. 
Yoon et al. (20) reported on the detailed findings of EVT 
procedures in patients with ELVO due to underlying ICAS. 
Of the 29 patients who showed an occlusion with ICAS 
on the initial angiography and underwent stent-retriever 
thrombectomy (SRT), only 15 patients showed visible 
thrombi that were captured on the retrieved stent. The 
remaining 14 (48.3%) patients had no captured thrombi 
despite multiple stent-retriever passages and follow-up 
angiography in these patients showed severe underlying 
ICAS. These findings suggested the possibility that very 
small thrombi might be lost during stent retrieval. Another 
investigation compared the clot burden scores on gradient 
echo (GRE) magnetic resonance imaging between ICAS- and 
embolism-related occlusions (34). In that study, the clot 
burden score was higher in ICAS- compared with embolism-
related occlusions (median clot burden score on GRE, 8 vs. 
6, p = 0.009). In the analysis of that study, higher scores 
indicated smaller clot burdens. These findings suggest 
that, during EVT procedures, ICAS-related occlusions may 
be suspected when the clot burden is small. However, a 
tendency toward smaller clot burdens with ICAS-related 
occlusions is not directly related to a lower chance of a GRE 
susceptibility vessel sign. In the past, the GRE susceptibility 
vessel sign has been regarded to be more associated with 
embolism-related stroke (35). However, a more recent 
study reported a high frequency of GRE susceptibility vessel 
signs (60.5%) in patients with ICAS-related occlusions, 
potentially due to in situ thrombosis (36). This finding 
was consistent with another study that showed that GRE 
susceptibility vessel sign frequency was not significantly 
different between ICAS- and embolism-related occlusions 
(71.4% vs. 84.1%, p = 0.239) (34). 

The second distinctive feature of ELVO due to underlying 
ICAS is a strong tendency for reocclusion or flow stagnation 
after achieving initial reperfusion with endovascular 
thrombectomy (21, 31, 37). Reocclusion may result from 
subsequent platelet aggregation at the injured endothelium 
of the occlusion site if the ruptured atherosclerotic plaque 
remained unchanged after successful removal of the 
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intraluminal thrombus. Accordingly, when ICAS-related 
occlusion is suspected during an endovascular procedure, a 
repeat angiography 5–10 minutes after the initial reperfusion 
is needed to observe whether reocclusion occurs (31, 38). 
If reocclusion occurs, additional rescue treatment is usually 
required to stabilize the irritable endothelium. Reocclusion 
is a major cause of failed or complicated EVT procedures 
in patients with ELVO and underlying ICAS (14). Such 
procedural difficulty may lead to poor functional recovery in 
these patients. Kim et al. (22) reported that an ICAS-related 
occlusion was an independent predictor of poor functional 
outcomes in patients with acute vertebrobasilar occlusions 
who were treated with EVT. These authors suggested that 
poor outcomes in ICAS-related occlusion cases could be 

attributed to longer procedure durations and complicated 
procedures due to frequent reocclusions. These observations 
are in agreement with the notion that achieving effective 
and successful reperfusion is one of the most important 
determinants of functional outcomes in patients with ELVO 
undergoing EVT (39, 40). In the following sections, we 
discuss an endovascular recanalization strategy for patients 
with ELVO due to underlying ICAS. 

Front-Line Thrombectomy Technique for ELVO 
Due to Underlying ICAS: Stent Retriever versus 
Contact Aspiration

Patients with ICAS-related occlusions require a different 

ELVO with
underlying ICAS

Front-line
thrombectomy

Primary
recanalization

Reocclusion due
to rethrombosis

on unstable
endothelium

Rescue treatment
to stabilize
endothelium

Final
recanalization

Contact aspiration IA tirofiban infusion

Stent retriever
Emergent 

angioplasty/stenting

Fig. 1. Therapeutic algorithm for ELVO due to underlying ICAS.
Upper row: A. Baseline angiography shows occlusion (arrow) at distal M1 segment of right MCA. B. Contact aspiration thrombectomy using large-
bore aspiration catheter. Arrow indicates tip of aspiration catheter. C. Primary reperfusion. Arrows indicate underlying atherosclerotic stenosis. 
D. Reocclusion and flow stagnation due to rethrombosis on irritable endothelium. E. IA infusion of tirofiban (0.5 mg) over 10 minutes. F. Final 
reperfusion. Lower row: A. Baseline angiography shows occlusion (arrow) at proximal M1 segment of left MCA. B. Stent-retriever thrombectomy. 
C. Primary reperfusion. Arrow indicates underlying atherosclerotic stenosis. D. Reocclusion and flow stagnation. E. Emergent angioplasty with 
stenting. F. Final reperfusion. ELVO = emergent large vessel occlusion, IA = intraarterial, ICAS = intracranial atherosclerotic stenosis, MCA = 
middle cerebral artery

A

A B C D E F

B C D E F
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EVT strategy from that used for patients with embolic 
stroke. The treatment strategy may consist of the following 
two components (Fig. 1): 1) front-line thrombectomy to 
achieve primary recanalization of the target artery and 
2) rescue treatment to stabilize an irritable endothelium 
on the ICAS segment to prevent reocclusion (20, 21, 31). 
Currently, there are two major thrombectomy techniques for 
treating ELVO, SRT and contact aspiration thrombectomy 
(CAT). Although several studies have shown comparable 
efficacy between these two techniques in patients with 
ELVO (41-44), it remains unclear as to which EVT technique 
is more effective as a front-line thrombectomy in patients 
with ELVO due to underlying ICAS. To date, data from only a 
few small, single-arm case series are available regarding the 
efficacy of SRT or CAT as a front-line thrombectomy for ELVO 
with underlying severe ICAS. Kang et al. (21) reported that 
front-line CAT was effective in 62.5% (25/40) of patients 
with in situ thrombo-occlusion, and conversion to SRT was 
required for the remaining 37.5% of cases. In contrast, two 
separate front-line SRT studies for ICAS-related occlusions 
demonstrated that SRT was effective in 88.9% (8 of 9) and 
93.1% (27 of 29) of cases as a front-line thrombectomy, 
even though additional rescue treatment was required in 
the majority of the cases (77.8% and 95%, respectively) (20, 
37). Recently, we conducted a multicenter retrospective 
analysis to compare the procedural characteristics and 
outcomes between front-line SRT and CAT in 130 patients 
with ELVO due to underlying ICAS (unpublished data). We 

found that SRT was associated with a shorter time from 
puncture to initial reperfusion (17 vs. 31 min), shorter 
procedure duration (39 vs. 75.5 min), and lower rate 
of switching to an alternative thrombectomy technique 
(4.3% vs. 40%) compared with CAT. Thus, SRT may be more 
suitable than CAT as a front-line thrombectomy technique 
in patients with ELVO due to ICAS.

There are several possible explanations for the superiority 
of SRT over CAT as a front-line thrombectomy achieving 
primary reperfusion. First, a contact problem may exist 
with the CAT technique. Because ICAS-related occlusions 
tend to have a smaller clot burden than embolism-related 
occlusions, clot aspiration is not very difficult when the 
contact is appropriate between the aspiration catheter tip 
and thrombus (Fig. 2A, B). However, most ICAS segments 
are tapered and irregularly shaped due to preexisting 
atherosclerosis within the vessel wall. Therefore, it may be 
difficult to place the tip of a large-bore aspiration catheter 
into contact with the proximal surface of a thrombus (Fig. 
2C). With the CAT technique, contact is the primary factor 
for achieving successful recanalization. In contrast, the 
stent retriever is deployed across the stenotic segment and 
becomes fully engaged with the entire length of a clot (Fig. 
2D). Second, when performing SRT, a temporary bypass 
can be achieved by placing the stent retriever across the 
target arterial occlusion site. The temporary restoration 
of flow may cause thrombus reduction or dissolution via 
endogenous thrombolysis. In addition, this can provide 

Fig. 2. Illustrations of front-line thrombectomy in EVT for ELVO due to underlying ICAS. 
A. In situ thrombosis is one of main pathologies of ELVO due to underlying ICAS. Arrow indicates antegrade blood flow. B. Clot retrieval is not 
very difficult when contact is appropriate between large-bore aspiration catheter tip and proximal surface of clot. C. At times, it may be difficult 
to place catheter tip in contact with clot because of tapered and irregular anatomy of stenotic lumen. D. Stent retriever is deployed across 
stenotic segment and becomes fully engaged with entire length of clot. EVT = endovascular therapy

A

C

B

D
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another potential advantage by more readily revealing 
the underlying culprit stenosis after retrieving the stent. 
Therefore, it is possible to plan a subsequent rescue therapy 
earlier, which may be helpful for reducing procedure time 
and achieving successful reperfusion.

Rescue Treatment for Underlying ICAS: 
Intraarterial Infusion of an Antiplatelet Agent 
versus Emergent Angioplasty with or without 
Stenting

As previously mentioned, instant reocclusion frequently 
occurs in ELVO with underlying ICAS even when a front-
line EVT is successful in achieving primary reperfusion 
(21, 37) (Fig. 3A). In a study on the outcomes of ELVO 

with underlying ICAS, the incidence of reocclusion was 
significantly higher in the ICAS-related occlusion group 
compared with the embolism-related occlusion group (65% 
vs. 3.3%, p < 0.001) (21). Lee et al. (37) also reported that 
seven of nine patients with ICAS-related occlusions required 
additional rescue treatment due to reocclusion after primary 
reperfusion. 

Stabilization of an irritable endothelium on the stenotic 
segment appears to be an important rescue treatment to 
prevent reocclusion for ELVO with underlying ICAS. However, 
studies regarding such treatments have been limited. Some 
case series have reported on outcomes after treatment 
with an intraarterial antiplatelet agent (glycoprotein 
IIb/IIIa inhibitor) or intracranial angioplasty with or 
without stenting to prevent reocclusion (20, 21, 45, 46). 
Tirofiban is a short-acting glycoprotein IIb/IIIa inhibitor 
and competitively inhibits platelet aggregation mediated 
by fibrinogen. Because the major components of clots 
formed by in situ thrombosis are platelets and fibrin, intra-
arterial infusion of an antiplatelet drug at the occlusion 
site may be a reasonable therapeutic option in patients 
with in situ thrombosis (Fig. 3B) (32). The intraarterial 
use of tirofiban during EVT procedures has been shown to 
be safe and effective (21, 47). Kang et al. (21) previously 
reported on the efficacy of intraarterial low-dose tirofiban 
infusion in patients with ICAS and instant reocclusion 
following thrombectomy. When reocclusion occurred after 
primary reperfusion with front-line EVT, the authors intra-
arterially administered low-dose tirofiban to stabilize the 
irritable endothelium. Of the 35 patients who experienced 
reocclusion, 85.7% (30/35) had modified treatment in 
cerebral infarction (m-TICI) 2/3 recanalization and 74.3% 
(26/35) had m-TICI 2b/3 recanalization. Rescue stenting 
was necessary for the remaining five patients. Notably, 
there were no symptomatic intracranial hemorrhages in 
this cohort, which might be related to the lower dosage 
of tirofiban (0.5–1.0 mg), absence of additional systemic 
tirofiban maintenance after the procedure, and routine 
checkup with flat-detector C-arm cone-beam computed 
tomography to exclude intracranial hemorrhage prior to 
tirofiban infusion (21).

The main disadvantage of intraarterial tirofiban infusion 
is the development of subacute or late reocclusion of the 
treated artery due to the underlying severe stenosis itself 
remaining unresolved (15, 21). Recent studies have also 
suggested that emergent angioplasty with or without 
stenting can be a viable therapeutic option in patients 

Fig. 3. Illustrations of rescue treatment for reocclusion and 
flow stagnation after primary reperfusion in EVT for ELVO due 
to underlying ICAS. 
A. Although front-line thrombectomy can be successful in achieving 
primary reperfusion in ICAS-related ELVO, instant reocclusion can 
frequently occur because remaining endothelium is irritable due to 
rethrombosis. B. Intraarterial use of glycoprotein IIb/IIIa inhibitors, 
such as tirofiban, can stabilize irritable endothelium. C. Emergent 
angioplasty with or without stenting can treat stenosis and is another 
viable option for preventing reocclusion.

A

B

C
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with ELVO secondary to underlying ICAS (Fig. 3C) (20, 47). 
The possible disadvantages of intracranial angioplasty 
with or without stenting with hyperacute stroke include 
adjacent perforator occlusion, vessel injury, and in-stent 
thrombosis (30, 48). Despite these concerns, emergent 
angioplasty with or without stenting has been shown to 
be feasible with favorable outcomes. In a United States 
population-based study, Al Kasab et al. (45) reported that 
emergent intracranial angioplasty with (32/36 patients) 
or without (2/36 patients) stenting using the Wingspan 
stent system (Stryker, Fremont, CA, USA) was safe and 
had good functional outcomes in patients with ICAS-
related occlusions. Although, in that study, the procedure 
time was significantly longer in the ICAS group compared 
with the embolism group (98.5 vs. 37.1 min) due to EVT 
complexity, 64.7% of the patients had final successful 
reperfusion (m-TICI 2b or 3) and 42.4% showed good 
recovery (modified Rankin scale [mRS]: 0–2) at 3 months. 
Yoon et al. (20) reported on the outcome of the emergent 
angioplasty with or without stenting rescue strategy using 
the Wingspan stent system (Stryker) in patients with 
insufficient reperfusion achieved by SRT. Of the 40 patients 
with ELVO due to underlying ICAS, 38 patients received 
intracranial angioplasty with (n = 24) or without (n = 14) 
stenting. This rescue strategy was associated with a high 
rate of good outcomes (62.5%, mRS: 0–2 at 3 months) and 
low rate of hemorrhagic complications (7.5%, symptomatic 
hemorrhage). Based on these results, it can be re-
emphasized that achieving successful reperfusion is one of 
the most important predictors of good functional recovery 
and is more important than time for patients with ELVO as 
well as those with ICAS-related occlusions (40). 

We recently published a multicenter study comparing 
intraarterial tirofiban infusion and intracranial angioplasty 
with or without stenting in patients with ELVO due to 
underlying ICAS (49). Our study demonstrated that both 
of the treatment approaches were comparably safe and 
effective as rescue treatments for reocclusion. In our study, 
overall successful reperfusion and good functional outcome 
were achieved in 95% and 60% of patients, respectively. 
Based on these data, we suggested that physicians 
might choose the therapeutic option that they are more 
familiar with (i.e., either intraarterial tirofiban infusion or 
intracranial angioplasty with or without stenting) as an 
adjuvant strategy to prevent reocclusion. If one of these 
methods failed to achieve effective reperfusion, the other 
could be used as an additional rescue approach. However, 

each option has advantages and disadvantages, such as 
elevating hemorrhagic concerns with tirofiban infusion 
and the chance of rethrombosis with angioplasty with or 
without stenting. Thus, selection of the safer option based 
on patient condition (i.e., baseline infarct volume, degree 
of stenosis, arterial tortuosity, and lesion length) may be 
advantageous.

Future Perspectives and Conclusions

Until now, there have been no large clinical trials focused 
on patients with ELVO due to underlying ICAS , and the 
reported data are mostly based on retrospective case 
series. There are several practical issues that need to be 
investigated within the next couple of years. First, the 
efficacy of detachable stent retrievers (Solitaire; Medtronic, 
Irvine, CA, USA) for permanent deployment as a rescue for 
ELVO due to underlying ICAS should be evaluated. Most 
previous intracranial stenting studies have been performed 
using a Wingspan stent system. Recently, in cases of failed 
thrombectomy, researchers have reported a high rate of 
successful recanalization using a permanent stenting rescue 
strategy with the Solitaire stent (50, 51). The evaluation 
of the long-term efficacy of such a practice is needed 
to ensure that the radial forces of the Solitaire stent are 
sufficient to endure the remaining ICAS. Second, it is still 
unclear whether any additional endovascular procedures are 
always required in patients with ICAS-related occlusions, 
even after adequate reperfusion has been achieved by 
front-line EVT. Given that these patients have presumably 
had long-standing stenosis that was not symptomatic until 
the acute event, it should be investigated whether an EVT 
followed by the best medical therapy strategy could be an 
alternative option for patients with ELVO due to underlying 
ICAS. Third, postprocedural medical treatment is very 
important for ICAS. The current best medical treatments for 
ICAS involve strong antiplatelet and statin administration, 
which leads to stenosis regression more often than 
expected, even in patients without intervention (52). 
However, such treatments should be cautiously applied 
during the immediate postprocedural period for patients 
with ICAS-related occlusion, especially when EVT follows 
intravenous thrombolysis. 

In summary, ICAS is one of the most common causes of 
acute ischemic stroke worldwide. Therefore, it is not rare for 
neurointerventionists to encounter ELVO due to underlying 
ICAS during EVT procedures. In situ thrombotic occlusion, 
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which is the main mechanism of ELVO due to underlying 
ICAS, is strongly related to inflammatory processes due 
to unstable atherosclerotic plaques and plaque rupture. 
Because of its unique pathologic basis, ELVO due to 
underlying ICAS generally requires two endovascular 
treatment strategy steps, including front-line thrombectomy 
to achieve primary recanalization and rescue treatment to 
stabilize the irritable endothelium on the ICAS segment to 
prevent reocclusion. Previous case series have suggested 
that endovascular thrombectomy using modern devices and 
subsequent rescue therapy, such as intraarterial tirofiban 
infusion and angioplasty with or without stenting, are also 
effective and safe for treating patients with ELVO due to 
severe underlying ICAS. Further randomized studies are 
needed to establish the optimal endovascular treatment 
option as well as the best periprocedural management for 
ELVO due to underlying ICAS. 
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