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Abstract: We used arrays of bioprinted renal epithelial cell spheroids for toxicity testing with cisplatin. The concentration-
dependent cell death rate was determined using a lactate dehydrogenase assay. Bioprinted spheroids showed enhanced 
sensitivity to the treatment in comparison to monolayers of the same cell type. The measured dose-response curves revealed an 
inhibitory concentration of the spheroids of IC50 = 9 ± 3 µM in contrast to the monolayers with IC50 = 17 ± 2 µM. Fluorescent 
labeling of a nephrotoxicity biomarker, kidney injury molecule 1 indicated an accumulation of the molecule in the central 
lumen of the spheroids. Finally, we tested an approach for an automatic readout of toxicity based on microscopic images 
with deep learning. Therefore, we created a dataset comprising images of single spheroids, with corresponding labels of the 
determined cell death rates for training. The algorithm was able to distinguish between three classes of no, mild, and severe 
treatment effects with a balanced accuracy of 78.7%.
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1. Introduction
The development of novel three-dimensional (3D) cell 
culture models is motivated by their better accuracy in 
predicting the physiological response of a target organ 
in vitro[1]. This would be beneficial for a variety of 
applications, including preclinical drug testing for toxicity 
or personalized treatment optimizations. In this context, 
the kidney plays a crucial role. Many substances show 
nephrotoxic side effects in late stage clinical studies, which 
were not covered in preclinical screenings[2]. To model the 
kidney, specific cell types were isolated or reprogrammed 
to provide basic characteristics of the cells found in the 
functional units of the kidney, that is, the nephric tubules. 
These include the frequently used renal proximal tubule 
epithelial cells (RPTECs[3]), or the more sophisticated 
induced renal epithelial cells (iRECs[4]). The latter could 
be used prospectively to establish personalized testing, 

since they are derived by reprogramming fibroblasts, an 
accessible cell source. Besides the cell type, the structure 
of the cell models was found to significantly influence 
their functionality[1-3]. The simplest cell models are two-
dimensional (2D) monolayers. On top of this, the structural 
complexity could be increased by embedding cells in 
artificial 3D scaffolds to mimic the natural extracellular 
matrix (ECM). In various tissue engineering studies, 
the embedded cells showed unique mechanisms of self-
assembly and formed complex 3D structures over time, 
including hollow spheroids[4,5] and tubules[3], both of which 
recapitulated nephron tubule organization and functionality. 
Direct comparisons with 2D monolayers revealed 
an increased sensitivity to treatment with the known 
nephron-toxicant cisplatin, which is a common reference 
substance[3]. Bioprinting was established as an enabling 
technology for the biofabrication of 3D cell culture models 
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by providing a high degree of automation and spatial 
resolution. Various bioprinting techniques were developed 
and applied to fabricate 3D cell models with defined size 
and shape by spatially controlling the cell distribution in an 
artificial ECM[6]. In this study, we used a drop-on-demand 
(DoD) bioprinting technology which was previously 
applied in the production, handling, and treatment of cell 
spheroids[7], attributed to its capability to precisely deposit 
low volumes of low viscous bioinks, such as spheroids 
or cells in suspensions. Compared to classical tissue 
engineering approaches, bioprinting provides increased 
sample reproducibility, which is one key requirement for 
systematic screening applications. In previous studies, we 
have described a scalable concept of DoD bioprinting and 
controlled cellular self-assembly to fabricate size-defined 
renal spheroids and tubules in a hydrogel scaffold[8]. These 
structures comprise of a hollow lumen surrounded by an 
organized epithelial cell layer, thereby closely mimicking the 
nephron tubule structure. Here, we applied this concept to 
fabricate 3D renal spheroids from iRECs for a head-to-head 
comparison with 2D monolayers of the same cell type. The 
sensitivity to the nephron-toxicant cisplatin was investigated 
with different readout methods. First, we determined the 
cell death rate Ψ using a lactate dehydrogenase (LDH) 
quantification assay. Next, we fluorescently labeled a 
nephrotoxicity biomarker for microscopic imaging. In the 
context of bioprinting, machine learning image processing 
could prospectively contribute to improve 3D cell model 
generation, fabrication, and readouts[9,10]. In the latter, 
microscope images of cell morphology could be used to 
assign biochemical values (e.g., viability) in an automated 
manner without requiring additional assays to be conducted 
for each experimental setting. This again addresses 
important aspects of prospective screening applications, 
such as automation and high throughput. Here, we present 
a feasibility study for an automated toxicity readout using 
deep learning image classification based on bioprinted renal 
spheroids[11,12]. We trained a convolutional neural network 
(CNN) through supervised learning to predict the Ψ of a 
spheroid from its microscopic image.

2. Materials and methods
2.1. Cell culture and hydrogels
For all sample preparations, we used iRECs[4]. A detailed 
description of the cell type and culture conditions can 
be found in previous studies[4]. The cells were cultured 
in Dulbecco’s Modified Eagle Medium (DMEM, 
#41966029, Gibco), with additives of fetal bovine 
serum (10%) and penicillin/streptomycin (1%), for cell 
expansion. Matrigel (100%, #356231, Corning) was used 
as artificial ECM material. The 3D spheroid models were 
cultured in renal epithelial growth medium (REGM, 
#CC-3190, Lonza), without addition of additives.

2.2. DoD bioprinting
For bioprinting, we used a piezo-actuated DoD 
bioprinting technology (PipeJet®, Biofluidix GmbH). 
A detailed description of the printing process can be 
found in our previous study[6]. In brief, single droplets 
(10 nl) each containing about 150 cells were deposited 
onto a Matrigel substrate layer. The printed cell clusters 
were encapsulated with a second layer of Matrigel and 
incubated for subsequent incubation supporting the 
cellular self-assembly of one spheroid per cluster.

2.3. LDH toxicity assay
We used a colorimetric LDH Assay Kit (ab65393, Abcam) 
to quantify the cellular release of LDH enzyme caused 
by a treatment with different concentrations of cisplatin 
(ab141398, Abcam). The cell death rate Ψ was determined 
relative to a lysed control (Lysed Ctrl) obtained by 
sample treatments with Triton X (30 min, 37°C). The 
treatment was conducted by incubating the cells for 24 h 
and changing medium subsequently. To determine Ψ, 
the supernatant of treated samples was collected (10 µl) 
and compared to an un-lysed control (Neg. Ctrl). The 
measured absorbance was determined by measurements 
of the optical density at 450 nm wavelength (OD450). 
A normalized solution of LDH enzyme (0.25 µg/µl, LDH 
Ctrl) was used to assess the assay performance.

2.4. Fluorescent image acquisition
The treated samples were imaged using a fluorescence 
microscope (Axio Observer.Z1/7, Carl Zeiss) with a 
20-fold magnification objective (EC Plan-Neofluar 
20x/0.5 M27), LED excitation, and fluorescently labeled 
biomarkers for nephrotoxicity. The obtained images 
were correlated with the treatment dose and Ψ, which 
was chemically determined as the relative cytotoxicity 
with the released LDH amount. As primary biomarker 
of cytotoxicity, the integrity of the cell membranes was 
observed, which were labeled in the cell line (iRECs) 
with a stable expression of membrane-localized green 
fluorescent protein (GFP). The kidney injury molecule 
1 (KIM-1) was labeled as a specifically expressed 
biomarker of nephrotoxic effects[13]. For this, the protein 
was fluorescently labeled post-treatment with a primary 
antibody (Invitrogen, #PA5-79345), and a secondary 
antibody (Abcam, #ab6939) for the microscopic detection 
within spheroids. For cultivation and microscopy, 
the spheroid arrays were fabricated in an 8-chamber 
microscopy slide (µ-Slide 8 well; ibidi GmbH, #80826).

2.5. Deep learning
The code was written in Python 3.8.10 using Pytorch 
1.8.1. Detailed information is listed in the Supplementary 
File. The dataset was made of 4974 spheroid images taken 
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after 3 days of treatment with different concentrations of 
cisplatin. The composition of this dataset is described in the 
Table S1. The network architecture and hyperparameters 
were chosen by automatic hyperparameter optimization. 
The selected architecture was a VGG11 optimized with 
ADAM for 90 epochs. The full list of hyperparameters 
is provided in the Supplementary File. The concept of 
automated treatment effect readout was adapted from 
previous studies[11,12].

3. Results and discussion
3.1. Required 3D cell count for toxicity 
quantification
First, the required total cell count per 3D sample was 
defined, which enabled the quantification of toxicity with 
a chemical LDH assay readout. Therefore, cell cluster 
arrays were fabricated, ranging from 1 to 400 spheroids 
(Figure 1A). The cell clusters self-assembled to spheroids 
of uniform size within 4 days of incubation[8]. Then, the 
spheroids were lysed (Lysed Ctrl), and the amount of 
released LDH was compared to the Neg. Ctrl. (Figure 1B). 
The Lysed Ctrl samples showed an increasing amount 
of LDH in the supernatant in relation to an increasing 
number of spheroids per array, as expected. In contrast, 
the Neg. Ctrl samples showed a constant absorbance, 
independent of the cell count. The positive to negative 
signal ratio (SP/N = Lysed Ctrl/Neg. Ctrl) was calculated 
to determine the minimum spheroid count required 
to distinguish the Lysed Ctrl. from the Neg. Ctrl. The 
desired value of SP/N ≥3 was achieved for arrays with 
at least 100 spheroids. For these, an OD450_100 = 0.8 ± 0.6 
was measured, showing a high coefficient of variation 
(75%). A number of 225 spheroids showed an absorbance 
of OD450_225 = 1.3 ± 0.4. In addition, the lowest coefficient 
of variation was found for this format (30%). In addition, 
the value was in the range of the LDH Ctrl, which was 
measured to OD450_LDH Ctrl = 1.6 ± 0.3, corresponding 
to 83 ± 25%. The largest array format (400 spheroids) 
showed an absorbance of 114 ± 47% relative to the LDH 
Ctrl, however, with an increased coefficient of variation. 
Based on these findings, spheroid arrays consisting of 
225 spheroids, or 34×106 cells, were selected for the 
quantification of toxicity using an LDH assay.

3.2. 3D response time to toxic treatment
Next, a suitable time-point for the toxicity readout was 
determined. A schematic timeline of the experimental 
procedure is shown in Figure 1C. All samples were 
prepared by bioprinting 4 days before a treatment with 
cisplatin, a common nephrotoxic substance[14]. Two types 
of samples were prepared, either classical monolayers 
(2D) or bioprinted arrays of 225 spheroids (3D Samples). 
On day 4 of incubation, the medium was replaced by a 

cell culture medium containing a dilution of cisplatin 
(cCisplatin = 100 µM). The treatment was conducted at 
37°C for 24 h. Then, the cisplatin dilution was replaced 
by fresh medium. At this time point, we started the 
readout. During the subsequent incubation period, the 
supernatant was sampled at different time points (0, 12, 
24, 36, 48, and 72 h post treatment), and the release of 
LDH was quantified. The measured LDH release curves 
for the 2 sample types are shown in Figure 1D and E. 
For 2D monolayer cultures, no significant LDH release 
was detected within the first 24 h (Figure 1D). After 
36 h, the LDH release accounted for 60 ± 20% and 
increased to 96 ± 20% after 48 h, relative to the Lysed 
Ctrl. At 72 h post-treatment, the released LDH decreased 
to 42 ± 23%. The decrease in measured LDH could be 
related to the degradation of the enzyme in the culture 
supernatant. For the untreated control group (Neg. Ctrl), 
the release of LDH continuously increased over time, 
reaching a maximum of 10 ± 7% at 72 h. This could be 
explained by the fact that the 2D monolayer cultures 
were fully confluent. At this point, the cells in culture 
need to adapt to the limited growth area and nutrient 
deficiency, which could cause unspecific cell lysis and 
LDH release. The 3D spheroid arrays showed a distinct 
behavior compared to the 2D monolayers (Figure 1E). 
The first increase in LDH release occurred 24 h post-
treatment, reaching 60 ± 32% of the Lysed Ctrl. After 
48 h, the maximum was reached at 96 ± 7%. Afterward, 
the value declined to 79 ± 27% (72 h). Again, this decline 
could be explained by an impairment of the LDH activity 
due to the progressive incubation period. The untreated 
control shared a similar behavior with the 2D monolayers, 
with a slight and static linear increase of released LDH 
over time, reaching a maximum of 23 ± 1% at 72 h. 
This indicates again that within 3D spheroid cultures, 
unspecific cell lysis occurred, which was not related to a 
toxic treatment. This finding is in good accordance with 
the previously published data[15]. Taken together, from 
the experiments, the optimal time-point for the LDH-
assay based readout was found to be at ttreatment = 48 h. 
The dynamic observation of LDH release after cisplatin 
treatment indicated significant differences between 
2D and 3D cell models. The faster onset of toxicity in 
3D models could be related to a more efficient uptake 
of the toxin. In the case of cisplatin, the uptake occurs 
through transport proteins located on the basal side of the 
cells. This side is facing toward the cisplatin containing 
culture medium in the case of hydrogel embedded 3D 
spheroids, while in 2D monolayers it is in contact to the 
solid culture vessel surface.

3.3. Dose-response curves
Next, dose-dependent treatment effects were quantified 
to derive dose-response curves for different cell culture 
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Figure 1. LDH toxicity readout with 3D renal spheroids. (A) Fluorescent microscope images of bioprinted spheroid arrays with different formats. 
Scale bars: 500 µm. (B) Quantification of total LDH release after lysis of different array formats. (C) Schematic timeline of sample preparation, 
treatment, and readout. (D and E) Time-dependent LDH release of 2D monolayers versus 3D spheroids at different time points post-treatment.
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models. For head-to-head comparison, three parameters 
were used, including the inhibitory concentration leading 
to 50% cell death (IC50), and the maximum and minimum 
response (Emax, Emin). As described in literature, clinically 
relevant cisplatin concentrations were in the range of 
10 µM[16]. Based on this value, we prepared a dilution 
series (cCisplatin = 0.075, 0.5, 1, 2, 4, 8, 16, 32, 64, and 
128 µM) for the treatment. Representative fluorescence 
microscope images of each sample type are shown in 
Figure 2A. For both sample types, the mean absorbance 
of three replicates for each treatment condition was 
calculated relative to the Lysed Ctrl. The dose-response 
curves were derived using a pharmacological dose-
response fit function (see equation (1) in Supplementary 
File). The 2 sample types showed distinct curves and 
relations to the treatment concentration (Figure 2B). 2D 
monolayers showed an IC50 2D Ref. = 17 ± 2 µM, with a 
maximum response of Emax = 95 ± 7% and Emin = 15 ± 8% 
relative to the Lysed Ctrl. A significant lower IC50 was 
found for treated spheroid arrays compared to 2D 
monolayers, with an IC50 3D Spheroids = 9 ± 3 µM and similar 
values of Emin and Emax. The determined IC50 values of 

the 3D bioprinted models were in good accordance with 
the previously published data. In other studies, reported 
values were 5.72 µM[17], between 10 and 50 µM[3],  
or > 30 µM[18]. It should be noted that each of the 
reported data was based on experiments on different cell 
types, treatment protocols, and readout methods. Thus, 
a quantitative head-to-head comparison would not be 
conclusive. The reported values herein indicated that 
the fabricated 3D models showed similar sensitivities 
to cisplatin treatments as reported for other 3D models. 
In addition, a higher sensitivity compared to a 2D cell 
culture of the same cell type under identical treatment 
conditions were found, which is consistent with previous 
reports[3].

3.4. Microscopic readout
In addition to the chemical readout, we investigated 
whether microscopic observations of the cell 
morphology could be used to assess toxicity effects 
in the 3D spheroids. With this, we aimed to achieve a 
higher sensitivity, compared to the chemical readout. 
Cytotoxic effects could become detectable before cell 

Figure 2. Head-to-head comparison. (A) 2D monolayers and 3D spheroid arrays, comprising of iREC cells. (B) Dose-response curves for 
a treatment with cisplatin.
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membrane lysis occurs, which leads to the release 
of LDH. Since the lysis of the cell membrane is 
considered the final step of cell death, this assumption 
is plausible. A cisplatin serial dilution was prepared in 
REGM, and the treatment was conducted according 
to the process and timeline described in Figure 1C. 
Three replicates of each treatment condition were 
used for microscopic observations. For the KIM-1 
nephrotoxicity marker expression assessment, samples 
were fixed (PFA 4%, 1 h) before immunolabeling was 
performed. Representative false-color images of the 
observed spheroid morphologies for different treatment 
concentrations are shown in Figure 3. The observations 
showed a disintegration of the spheroids at treatment 
concentrations cCisplatin ≥ 32 µM. The outer boundary of 
the spheroids was found to be disrupted in the bright 
field and GFP channel, and no intact cell layer was 
outlining the spheroids. The KIM-1 signal was detected 
throughout the entire spheroid structures. For lower 
treatment concentrations (cCisplatin ≤ 16 µM), a distinct 
signal distribution was detected. The KIM-1 positive 
signal was exclusively located at the central lumen of the 
spheroids. Furthermore, we observed an intact cell layer 
surrounding the lumen without positive KIM-1 signal. 
This indicated that the KIM-1 proteins were transported 
out of the cells and accumulated in the lumen of the 
spheroids. This accumulation was later found to undergo 
a decline with decreasing treatment concentrations. The 
untreated control showed very low levels of KIM-1 
positive signals. The KIM-1 unlabeled samples showed 
no detectable KIM-1 signals, confirming the specificity 
of the immunolabeling process. This observation was 
in good accordance with physiological observations in 
patients, where an increase in KIM-1 signal at the apical 
side of the renal tubules was detected as a consequence of 
kidney injury. This, in turn, led to an increase of KIM-1 
concentrations in the urine, indicating an active transport 
and release of KIM-1 into the nephron lumen[19]. Thus, 
the accumulation of KIM-1 molecules found here hints 
at a basic physiological transport mechanism within the 
developed spheroid models.

3.5. Deep learning
Finally, we investigated the feasibility of automatic 
determination of Ψ of single spheroids from their 
morphological appearance in microscope images. 
A schematic process diagram is shown in Figure 4A. 
For this purpose, we developed a deep learning system 
based on CNN trained via supervised learning. We used 
fluorescence images from the GFP channel. The images 
were labeled with their Ψ values, as estimated by the dose-
response curves (Figure 2). The network was trained 
as a regressor that takes an image of a single spheroid 
as input and a scalar corresponding to its estimated 

Ψ as output. The hyperparameters of the training 
pipeline were tuned via Bayesian Optimization[20], 
as implemented by (Bayesian Optimization with 
Hyperband [BOHB][20]). The hyperparameter search 
space and the optimum configuration found by BOHB 
are shown in the Table S2. The following results 
originate from this configuration. The dataset was split 
for training and testing in the proportions of 80 – 20%, 
respectively. The images were cropped to 450 × 450 px 
with the spheroid positioned at the center of the image. 
Online data augmentation was used. At each epoch, the 
images were randomly transformed within the ranges 
as shown in the Table S3. Training was conducted for 
90 epochs, which resulted in a test mean squared error 
of 7.67×10-3. Figure 4B shows the predictions made by 
the network on the test dataset. It is possible to see that 
it performs well to differentiate spheroids with Ψ < 30% 
from those above 80%. Nevertheless, it fails to tell 
apart rates above 50%. Visual inspection of the dataset 
demonstrated that this was indeed a difficult task, as 
shown in Figure 4C. The accuracy of this network can 
be appreciated by framing the regression problem as 
a classification by binning the regressor outputs into 
discrete intervals.

We report the results of 2 classification 
formulations: first, a 3-class problem, where classes are 
divided based on death rate, that is, < 33.3%, between 
33.3% and 66.6%, and more than 66.6%; second, a 
binary classification to distinguish 2 classes, either below 
or above the IC50. The results are shown as confusion 
matrices in Figure 4D and E. The 3-class problem 
achieved a balanced accuracy (mean per-class accuracy) 
of 78.7%. As expected, the main issue was to correctly 
differentiate spheroids with intermediary death rates from 
those with high death rates. On the other hand, the binary 
classification achieves a balanced accuracy of 98.2%, 
which confirms that the network can differentiate extreme 
values of death rate. These results are encouraging for 
a proof-of-concept study, but in the short term, small 
improvements should be attempted to further increase the 
network’s accuracy. The first step is to collect a dataset 
with good quality bright-field images. These images may 
contain vital information to improve the performance on 
the medium to high death rate range, where our network 
performed the worst. Second, the dataset should cover 
the intermediate death rate values better. The dataset 
used in this study has a uniform distribution of cisplatin 
concentrations (in the log scale), but due to the sigmoidal 
profile of the dose-response curve, this distribution 
translates to a sparse sampling of intermediate values 
of death rate. The current lack of training data for 
intermediate death rates is very likely to be reducing the 
performance of the deep learning network.
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Figure 3. Fluorescence microscope images of cisplatin treated renal spheroids. The fluorescence channels show membrane-localized GFP 
(green) and nephrotoxicity biomarker KIM-1 (red). Scale bars: 100 µm.
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Figure 4. (A) Schematic of automatic toxicity readout. (B) Class vs. prediction box plot. (C) Fluorescent images of spheroids treated 
with different cisplatin concentrations c and corresponding cell death rates Ψ: Spheroids with low death rates (I) show obviously different 
appearances. Spheroids with intermediate (II) and high (III) death rates show similar appearances. (D and E) Confusion matrices when using 
the neural network as a classifier. The 2-class problem delivered a balanced accuracy: 98.2%. The 3-class problem delivered an accuracy 
of 78.7%.
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4. Conclusion and outlook
The presented results successfully demonstrated a concept 
for automated toxicity testing with renal spheroids. 3D 
bioprinting technology enabled scalable, reproducible, 
and automated fabrication of renal spheroids. In a head-to-
head comparison, functional differences between 2D and 
3D cell models were found. Toxic treatment effects varied 
with time and quantity, indicating increased sensitivity to 
the specific toxicant. This clearly demonstrated how 3D 
cell models could be of increasing relevance for future 
applications, such as toxicity studies. Deep learning 
image classification enabled an automated image-based 
readout. Although relatively high accuracies were 
achieved in this study, further improvements could be 
implemented in the future. To improve the performance, 
the present dataset could be augmented with additional 
images of the cell morphologies. Therefore, more 
biomarkers[13] and cell viability assays (e.g., MTT, 
PrestoBlue, etc.)[21] could be applied to generate ideally 
multi-channel and -dimensional fluorescence images, 
which could then be used to train the algorithm. With this 
additional image information, an increased performance 
could potentially be achieved, which would contribute 
to image-based toxicity readouts with higher precision 
in the future.
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