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Abstract

Data summarization and triage is one of the current top challenges in visual analytics. The goal is to let users visually inspect
large data sets and examine or request data with particular characteristics. The need for summarization and visual analytics
is also felt when dealing with digital representations of DNA sequences. Genomic data sets are growing rapidly, making
their analysis increasingly more difficult, and raising the need for new, scalable tools. For example, being able to look at very
large DNA sequences while immediately identifying potentially interesting regions would provide the biologist with a
flexible exploratory and analytical tool. In this paper we present a new concept, the ‘‘information profile’’, which provides a
quantitative measure of the local complexity of a DNA sequence, independently of the direction of processing. The
computation of the information profiles is computationally tractable: we show that it can be done in time proportional to
the length of the sequence. We also describe a tool to compute the information profiles of a given DNA sequence, and use
the genome of the fission yeast Schizosaccharomyces pombe strain 972 h2 and five human chromosomes 22 for illustration.
We show that information profiles are useful for detecting large-scale genomic regularities by visual inspection. Several
discovery strategies are possible, including the standalone analysis of single sequences, the comparative analysis of
sequences from individuals from the same species, and the comparative analysis of sequences from different organisms.
The comparison scale can be varied, allowing the users to zoom-in on specific details, or obtain a broad overview of a long
segment. Software applications have been made available for non-commercial use at http://bioinformatics.ua.pt/software/
dna-at-glance.
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Introduction

This paper is about looking at DNA sequences or, more

precisely, at graphical representations of DNA sequences. In other

words, it is about the summarization of DNA data bearing in mind

graphical representations, a problem related to some of the current

challenges in large-scale computing [1]. The idea is old, as the

sayings ‘‘a picture is worth a thousand words’’ and the century-old

advertisement title ‘‘one look is worth a thousand words’’ show. In

fact, the association of graphical information to DNA sequences

has been pursued for long. Sequence logos [2] and the chaos game

representation (CGR) [3] are two well-known examples. Most

often, the underlying motivation is to look for and to display

information related to the degree of randomness of the sequences,

hoping to find meaningful structure. The degree of randomness is

intimately related with the complexity, predictability, compress-

ibility, repeatability and, ultimately, with the information theoretic

notion of entropy of a sequence. Other methods, use the graphical

paradigm for presenting several parameters that can be obtained

from a DNA sequence. For example, the Genome Atlas of Jensen

et al. [4] allows the visualization of information related to repeats,

nucleotide composition, and structural parameters, in microbial

genomes (the genome of E. coli is analyzed in [5] using this

approach).

Some methods provide visual information of global properties of

the DNA sequences. For example, CGR uses the distribution of

points in an image to express the frequency of the oligonucleotides

that compose the sequence [6]. From these CGR images, other

global representations can be derived, such as genomic signatures

[7,8] or entropic profiles [9].

Originally [9], entropic profiles were estimated using global

histograms of the oligonucleotide frequencies, calculated using

CGR images. Later, they have been generalized by Vinga et al.

[10] in order to calculate and visualize local entropic information.

Other approaches for estimating the randomness along the

sequence have also been proposed. For example, Crochemore

et al. [11] used the number of different oligonucleotides that are

found in a window of predefined size for estimating the entropy.

Troyanskaya et al. [12] proposed the linguistic complexity, also

calculated on a sliding window, as a measure of the local

complexity of the DNA sequence.

Both the global and the local estimates of the randomness of a

sequence provide useful information and both have shortcomings.

The global estimates do not show how the characteristics change

along the sequence and the local estimates fail to take into

consideration the global properties of the sequence. This last

drawback was addressed by Clift et al. [13] using the concept of

sequence landscape. Using directed acyclic word graphs, they were

able to construct plots displaying the number of times that

oligonucleotides from the target sequence occur in a given source

sequence. If the target and source sequences coincide, then the
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landscape provides information about self-similarities (repeats) of

the target sequence.

The sequence landscapes of Clift et al. [13] seem to have been

the first attempt of displaying local information while taking into

account the global structure of the sequence. This idea was also

pursed by Allison et al. [14], using a model that considers a

sequence as a mixture of regions with little structure and regions

that are approximate repeats. Based on this statistical model, they

have produced information sequences, which quantify the amount

of surprise of having a given base at a given position, knowing the

remaining left (or right) part of the sequence. When plotted, these

information sequences provide a quick overview of certain

properties of the original symbolic sequence, allowing for example

to easily identify zones of rich repetitive content [15–17].

The interest of complexity measures for DNA sequence analysis

has been explored by several researchers, such as in [18–20]. The

key measure is known as Kolmogorov complexity, and was

independently introduced by Solomonoff [21,22], Kolmogorov

[23] and Chaitin [24], and further developed in [25,26]. The

Kolmogorov complexity of a string is the shortest program for a

universal computer which outputs the string and stops. This

measure is non-computable and is usually approximated by other

computable measures, such as, Lempel-Ziv complexity measures

[18,27], linguistic complexity measures [28], or compression-based

complexity measures [17,29,30].

The information sequences of Allison et al. [14] are intimately

related to data compression. The importance of data compression

for pattern discovery in the context of DNA sequences was already

recognized by Grumbach et al. [31] and, since then, it has been

reinforced by others (e.g. [15,32]). In fact, the existence of

regularities in a sequence renders it algorithmically compressible.

The algorithmic information content of a sequence is the size, in

bits, of the shortest accurate description of the sequence.

Compression-based complexity measures have an intuitive

definition (regular sequences are compressible, as opposed to

random ones) and their efficiency is easily quantifiable by the

number of bits generated by the encoder. DNA is non-stationary,

with regions of low information content (i.e., low entropy or low

complexity) alternating with regions of average entropy close to

two bits per base. This property is modeled by most DNA

compression algorithms with a low-order finite-context model for

the high-entropy regions and a Lempel-Ziv dictionary-based or

copy-based approach for the repetitive, low-entropy regions. XM

[16] has been one of the most successful approaches for

compressing DNA sequence data. Also, because it provides a

probabilistic distribution for each DNA base being encoded, it

offers a natural way of obtaining the above mentioned information

sequences [17].

In this paper we ‘‘look at DNA sequences’’ by using information

profiles derived from a probabilistic model. The model consists of

a combination of several finite-context models, each of a different

depth. Such models have been shown to adequately capture the

statistical properties of DNA sequences [30,33,34] but are

direction-dependent, that is, the results depend on which direction

the DNA sequence is processed. In this work we remove this

directional dependency by combining the amount of information

that a certain DNA base carries in each processing direction.

The information profiles are found using an algorithm based on

finite-context models that needs time proportional to the length of

the sequence. We present a proof-of-concept study of the potential

of information profiles in genome analysis, namely, for detecting

genomic structural and functional regularities. We uncover

genomic regularities on a large-scale, such as, centromeric and

telomeric regions of a chromosome, or transposable elements. In

this context, we use the genome of the fission yeast Schizosacchar-

omyces pombe strain 972 h2 as case-study. We also present the

potential of information profiles in a comparative genomics

approach, using five human chromosomes 22. This example

provides evidence that the proposed method scales well when

applied to larger genomic sequences.

Materials and Methods

Genomic Data
We use chromosomes I (accession number NC003424.3), II

(accession number NC003423.3) and III (accession number

NC003421.2) of the genome of the fission yeast Schizosaccharomyces

pombe strain 972 h2 [35], retrieved from the National Center for

Biotechnology Information (NCBI) website (http://www.ncbi.nlm.

nih.gov/). We also use the human chromosome 22 of the reference

genome assembly GRCh37.p9 (accession number NC000022.10,

[36]), the alternate Celera assembly (accession number

AC000065.1, [37]), the genome of J. Craig Venter (HuRef

assembly, accession number AC000154.1, [38]), the genome of a

Han Chinese individual (YH assembly, [39]), and the genome of a

Korean individual (KOREF 20090224 assembly, [40]). The first

three mentioned versions of human chromosome 22 were also

retrieved from NCBI, the YH chromosome 22 was retrieved from

the Beijing Genomics Institute (BGI) website (ftp://public.

genomics.org.cn/BGI/yanhuang/fa/), and the KOREF chromo-

some 22 was retrieved from ftp://bioftp.org/BiO/Store/Genome/

KOREF_KoreanReferenceGenome/KOREF_20090224/fasta/.

Information Profiles based on Finite-context Models
To ‘‘look at DNA’’ at different scales we rely on information

profiles that quantitatively measure the local complexity of the

DNA sequence. The profiles provide a visual representation of the

sequence, and can be interpreted in a simple way. The less regular

the behaviour, the higher the numerical values. Thus, visual

inspection immediately shows regions of low complexity (for

example, repetitions), regions of high complexity, and other

patterns of possible interest.

The probabilistic models required to draw the information

profiles are, not surprisingly, related to data compression and

information-theoretic concepts such as entropy. Compression and

modeling are intertwined: the problem of discovering an efficient

representation of the information source can be stated as a data

modeling problem.

A probabilistic model of a DNA sequence is a mathematical

description of the sequence, viewed as an information source. The

model provides an estimate of the probability of the next DNA

symbol. The entropy of the model sets a lower bound on the

compression performance. Conversely, compression performance

yields a bound on the entropy. However, a given compression

Figure 1. Information profiles of the chromosomes of S. pombe highlighting centromeric and telomeric regions. The profiles are the
result of eight competitive finite-context models with context depths 2, 4, 6, 8, 10, 12, 14 and 16. They represent the minimum of the combined direct
and reversed profiles, low-pass filtered with a Blackman smoothing window of 1,001 bp. Probabilities were estimated with a~1=20 for contexts 14
and 16. For clarity, the full chromosome profiles were sampled every 20 bp. Zoomed in profiles Ltel and Rtel display telomeric and subtelomeric
regions of each chromosome, and zoomed in Cen profiles display the respective centromeric regions.
doi:10.1371/journal.pone.0079922.g001
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method may have limited potential or interest in connection with

information profiles.

Of the myriad of coding methods proposed for compressing

genomic sequences (e.g. [16,30,31,33,34,41–49]), most are based

on search procedures for finding exact or approximate repeats, in

the sequence itself or in its reversed complement. Although this

may lead to interesting compression rates, it generally requires a

significant computational effort. Recently, it has been shown that

appropriate combinations of finite-context models are able to give

competitive [30] or even superior [34] compression results, at a

smaller computational cost.

Finite-context models are probabilistic models based on the

assumption that the information source is Markovian, i.e., that the

probability of the next outcome depends only on some finite

number of (recent) past outcomes referred to as the context. The

proposed approach is based on a mixture of finite-context models.

We assign probability estimates to each symbol in

A~fA,C,G,Tg, regarding the next outcome, according to a

conditioning context computed over a finite and fixed number

k.0 of past outcomes xn{kz1::n~xn{kz1 . . . xn (order-k finite-

context model with DADk states).

Figure 2. Information profiles of the chromosomes of S. pombe highlighting Tf2-type retrotransposons. Parameters are the same as in
Fig. 1. Zoomed in profiles display the 13 full length Tf2 elements and an additional display of other Tf2-type retrotransposons.
doi:10.1371/journal.pone.0079922.g002

Figure 3. Information profile of chromosome 22 of the GRCh37 human reference genome assembly. Parameters are similar to those of
Fig. 1, except for the smoothing window, which has a value of 100,001 bp in the upper plot, 10,001 bp in the middle plot, and 1,001 bp in the lower
plot. Zoomed-in profiles reveal regularities at increasingly larger resolution, including several genes from duplicated gene families in the lower plot.
The lower panel was downloaded from the NCBI website and it identifies annotated genes in the zoomed-in region.
doi:10.1371/journal.pone.0079922.g003
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The probability estimates P(xnz1Dxn{kz1::n) are calculated

using symbol counts that are accumulated while the sequence is

processed, making them dependent not only on the past k symbols,

but also on n. We use the estimator

P(sDxn{kz1::n)~
C(sDxn{kz1::n)za

C(xn{kz1::n)zDADa
, ð1Þ

where C(sDxn{kz1::n) represents the number of times that, in the

past, symbol s was found having xn{kz1::n as the conditioning

context and where

C(xn{kz1::n)~
X

a[A
C(aDxn{kz1::n) ð2Þ

is the total number of events that has occurred so far in association

with context xn{kz1::n. Parameter a allows balancing between the

maximum likelihood estimator and an uniform distribution (when

the total number of events, n, is large, it behaves as a maximum

likelihood estimator). For a= 1, (1) reduces to the well-known

Laplace estimator.

The per symbol information content average provided by the

finite-context model of order-k, after having processed n symbols,

is given by

Hk,n~{
1

n

Xn{1

i~0

log2 P(xiz1Dxi{kz1::i) ð3Þ

bits per symbol. When using several models simultaneously, the

Hk,n can be viewed as measures of the performance of those

models until that instant. Therefore, the probability estimate can

be given by a weighted average of the probabilities provided by

each model, according to

P(xnz1)~
X

k

P(xnz1Dxn{kz1::n) wk,n, ð4Þ

where wk,n denotes the weight assigned to model k and

X

k

wk,n~1: ð5Þ

Our modeling approach is based on a mixture of probability

estimates. In order to compute the probability estimate for a

certain symbol, it is necessary to combine the probability estimates

given by (1) using (4). The weight assigned to model k can be

computed according to

wk,n~P(kDx1::n), ð6Þ

i.e., by considering the probability that model k has generated the

sequence until that point. In that case, we would get

wk,n~P(kDx1::n)!P(x1::nDk)P(k), ð7Þ

where P(x1::nDk) denotes the likelihood of sequence x1::n being

generated by model k and P(k) denotes the prior probability of

model k. Assuming

P(k)~
1

K
, ð8Þ

where K denotes the number of models, we also obtain

Figure 4. Information profiles of chromosome 22 in five human genome assemblies. Parameters are similar to those of Fig. 1, except for
the smoothing window, which has a value of 100,001 bp. GRCh37 is the reference human genome assembly, YH is the genome assembly of a Han
Chinese individual, KOREF is the genome assembly of a Korean individual, HuRef is the genome assembly of J. Craig Venter, and Celera is an alternate
human genome assembly. These plots highlight, on the one hand, the high similarity between the GRCh37 assembly and the YH and KOREF
assemblies. On the other hand, it is also easy to find out regions where both the HuRef and Celera assemblies diverge considerably from the GRCh37
reference assembly (e.g., in the range 20–23 Mb).
doi:10.1371/journal.pone.0079922.g004
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wk,n!P(x1::nDk): ð9Þ

Calculating the logarithm we get

log2 P(x1::nDk)~ log2 P
n

i~1
P(xi Dk,x1::i{1)~ ð10aÞ

~
Xn

i~1

log2 P(xi Dk,x1::i{1), ð10bÞ

which is related to the number of bits that would be required by

model k for representing the sequence x1::n. It is, therefore, the

accumulated measure of the performance of model k until instant

n. DNA sequences are known to be non-stationary. Due to this, the

performance of a model may vary considerably from region to

region of the sequence. In order to extract the best possible

performance from each model, we adopted a progressive

forgetting mechanism. The idea is to allow each model to

progressively forget the distant past and, consequently, to give

more importance to recent outcomes. Therefore, we rewrite (11) as

Xn

i~1

log2 P(xi Dk,x1::i{1)~ ð11aÞ

~c
Xn{1

i~1

log2 P(xi Dk,x1::i{1)

z log2 P(xnDk,x1::n{1),

ð11bÞ

Figure 5. Information and conditional profiles of three pairwise comparisons of human chromosomes 22. Parameters are similar to
those of Fig. 1, except for the smoothing window, which has a value of 100,001 bp. GRCh37 is the reference human genome assembly, KOREF is the
genome assembly of a Korean individual, HuRef is the genome assembly of J. Craig Venter, and Celera is an alternate human genome assembly. The
conditional profiles were obtained using the statistics of the finite-context models trained over the GRCh37 human genome assembly. Peaks in these
profiles highlight regions of sequence divergence in the KOREF, HuRef and Celera chromosomes, with respect to the GRCh37 one. As an example of
the additional information conveyed by these conditional profiles, we highlight the peak in the Celera assembly around base 43 Mb. Whereas slightly
perceivable in the non-conditional profiles, the divergence of the two assemblies (GRCh37 and Celera) at this particular location is much more
evident in the conditional profile.
doi:10.1371/journal.pone.0079922.g005

DNA Sequences at a Glance

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79922



where c[½0,1) dictates the forgetting factor to be used. Defining

pk,n~ P
n

i~1
P(xi Dk,x1::i{1) ð12Þ

and removing the logarithms, we can rewrite (0) as

pk,n~p
c
k,n{1P(xnDk,x1::n{1) ð13Þ

and, finally, set the weights to

wk,n~
pk,nP

k

pk,n
: ð14Þ

This probabilistic model yields an estimate of the probability of

each symbol in the DNA sequence, and as such it allows us to

quantify the degree of randomness or surprise along one direction

of the sequence.

Results and Discussion

Chromosomes are processed both in the downstream, or direct

(59R39), and upstream, or reversed (39R59), directions. This dual

processing aims at eliminating the directionality bias introduced

when only one of the two possible directions is taken into

consideration. Therefore, the information content of each DNA

base is calculated by running the statistical model in one direction,

then in the other direction, and finally by taking the smallest value

obtained.

Fission Yeast
Figure 1 displays the information profiles of the three

chromosomes in the genome of S. pombe, obtained independently

for each chromosome. The profiles are the result of the

combination of eight finite-context models with context depths

of 2, 4, 6, 8, 10, 12, 14 and 16. They represent the minimum of the

combined direct and reversed profiles, low-pass filtered with a

Blackman window of 1,001 bp. Probabilities were estimated with

a~1=20 in Eq. 1 for the larger contexts of k = 14 and k = 16. For

clarity, the full chromosome profiles shown result from sampling

every 20 bp.

Low-information regions in Fig. 1 are associated with the

presence of repetitive sequences. For example, chromosome III

has more and often more prominent low-information regions than

chromosomes I and II, which is in compliance with some

properties of this chromosome concerning repetitive structures,

such as, the presence of tandem rDNA repeats [50] or the density

of transposable element remnants in this chromosome being twice

that of chromosomes I and II [35]. Annotated with Ltel and Rtel

are regions of low-information content pertaining the telomeric

(where available; see http://www.sanger.ac.uk/Projects/S_pombe/

telomeres.shtml) and subtelomeric regions of each chromosome.

Annotated with Cen are regions of low-information content

pertaining the centromeric regions of each chromosome.

Telomeres in S. pombe consist of ,300 bp long tandemly

repeated 59-GGTTACA026C021G026-39sequences, with the

GGTTAC repetitive unit being the most commonly found

[51,52]. Chromosomes I and II share some subtelomeric

sequences, while the telomeric repeats at both ends of chromo-

some III are immediately flanked by tandem arrays of rRNA genes

[50,53]. The highly repetitive content of these regions, including

degenerate and tandem telomeric repeats [50], and duplicated and

highly-similar subtelomeric regions [35,50], is captured in the low-

information Ltel and Rtel regions of the profiles in Fig. 1.

Mammalian centromeres contain a large number of tandemly

arranged repetitive sequences. Wood et al. [35] reported an

estimated length of 35 kb for the centromere of chromosome I,

65 kb for the centromere of chromosome II, and 110 kb for the

centromere of chromosome III, in inverse proportion to the

lengths of the respective chromosomes, namely, 5.7 Mbp,

4.6 Mbp, and 3.5 Mbp. However, updated centromere positions

are cen1: 3,753,687–3,789,421 bp, cen2: 1,602,264–1,644,747 bp,

and cen3: 1,070,904–1,137,003 bp (http://www.sanger.ac.uk/

Projects/S_pombe/centromere.shtml), which correspond to a

decrease of ,30% in the length of annotated centromeric regions

cen2 and cen3 with respect to previous values [35]. These updated

lengths of the centromeric regions and inverse proportionality to the

chromosome size are recovered in the information profiles of Fig. 1.

Figure 6. Information profile of part of human chromosome Y integrated in the UCSC Genome Browser. The custom track named
‘‘DNAatGlace’’ was uploaded to the browser in WIG format.
doi:10.1371/journal.pone.0079922.g006
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Cen1 consists of a non-conserved central core (cnt1) of 4.1 kb

flanked by two 5.6-kb imperfect inverted imr1 repeats (imr1L,

imr1R) that display sequence identity with each other, and two pairs

of 4.4-kb dg and 4.8-kb dh repeats (dg1, dh1) separated by cen253, a

repeat of ,0.3 kb. The maps of the other two centromeres have the

same basic structure, with central cnt regions flanked by imr repeats

and by variable numbers of dg and dh repeats separated by cen253.

Moreover, there are many tRNA genes in the centromeric regions,

with clusters flanking cen2 and cen3 and also within the imr regions

of all three centromeres [35,52]. This centromeric mirror-like

repetitive structures are captured in the Cen regions of the profiles

in Fig. 1, with the core cnt regions evident by higher-information

central peaks, the imr and dg/dh repeats accounting for regions of

low-information content, and t-RNA genes contributing to other

peaks of higher-information e.g. at the frontiers of cen2.

Figure 2 displays again the information profiles of the three

chromosomes in the genome of S. pombe, obtained and sampled

similarly as in Fig. 1. Highlighted are again low-information

regions associated with the presence of repetitive sequences, now

focusing on transposable elements.

Two related families of long terminal repeat (LTR)-

retrotransposons, named transposon of fission yeast 1 (Tf1) and

2 (Tf2), have been identified in S. pombe [54]. Retrotransposons are

mobile DNA elements ubiquitous in eukaryotic genomes, which

remain active in most mammalian genomes. They mobilize via an

RNA intermediate that is then reverse transcribed and reintegrat-

ed into the genome by a copy-and-paste mechanism, thereby

duplicating the element. Strain 972 h2 of S. pombe contains 13 full

length Tf2 elements of length ,4.9 kb and no Tf1 elements. It

also contains many single LTRs derived from Tf1 and Tf2

elements [52]. Annotated in Fig. 2 are all 13 full length Tf2

elements, plus an additional display of other Tf2-type retro-

transposons. Plot Tf23 in chromosome I displays that retro-

transposon in the first low-information region, followed by a large

retrotransposon in the second low-information region, which is in

accordance with the annotations in [52]. The wider low-

information region in plot Tf27 and Tf28 includes both elements.

Plot Tf211 in chromosome II displays that retrotransposon in the

second low-information region, preceded by a large retrotranspo-

son. The plot annotated with retrotransposons in chromosome III

showcases some of the LTRs derived from Tf1 and Tf2 elements,

where a large repeat is associated to the wider low-information

region and two smaller elements are identified in the two

additional low-information regions.

This accurate matching of the low-information regions in Figs. 1

and 2 to annotated repetitive genomic structures, such as the

centromeric and telomeric regions of a chromosome or its

transposable elements, proves information profiles may be useful

in de novo discovery of large-scale genomic regularities. Clearly, it is

not possible to infer the genomic sequence per se from the

information profiles, or the location of genomic regularities within

base pair resolution. However, it is possible to discover the

presence of regularities on a genome-wide scale, which may be

useful for an exploratory genome analysis or for genome

comparisons.

Human Chromosome 22
To illustrate the potential of information profiles in the analysis

of larger and more complex genomes, we use the human

chromosome 22 as case-study. This ,51 Mbp chromosome is

the second smallest human autosome and it was the first to be fully

sequenced [55].

Figure 3 displays the information profile of chromosome 22 of

the GRCh37 reference human genome assembly. As before, the

profiles are the result of the combination of eight finite-context

models with context depths of 2, 4, 6, 8, 10, 12, 14 and 16. They

represent the minimum of the combined direct and reversed

profiles, low-pass filtered. Probabilities were estimated with

a~1=20 in Eq. 1 for the larger contexts of k = 14 and k = 16. As

the first 15 Mbp remain unsequenced (containing solely Ns), the

upper plot in Fig. 3, which displays the information profile of the

whole chromosome, ignores this region. In order to display the

global information of such a large chromosome, the profile should

be heavily low-pass filtered. Here, we used a smoothing window

size of 100,001 bp.

The first striking feature of this chromosome-wide profile is that

the average information content is considerable lower than that of

the chromosomes of S. pombe (Figs. 1 and 2). This is a direct

consequence of the fact that ,42% of the human chromosome 22

comprises interspersed and tandem repeats [55].

The middle plot in Fig. 3 shows a 5 Mbp zoomed-in region of

the chromosome (22–27 Mbp), filtered with a smoothing window

of 10,001 bp. Clearly, additional detail and regularities are

observable at increasingly larger resolution. Highlighted in the

lower plot is a region of low entropy, as consequence of being

densely occupied by genes from duplicated gene families, filtered

with a smoothing window of 1,001 bp. For completeness, the final

plot in Fig. 3 shows an image of gene annotations taken from the

NCBI nucleotide browser corresponding to the displayed region.

One example of such gene families are the glutathione S-

transferases, with several genes and pseudogenes annotated to

this region. Gene LOC100652871, a glutathione S-transferase

theta-4-like, is located in region 24,278,480–24,284,985 bp.

Another glutathione S-transferase theta-4-like gene, LOC

100996594, is located in region 24,350,125–24,352,036 bp of

the reversed complement. Gene LOC100996580, a glutathione S-

transferase theta-1-like, is located in region 24,292,105–

24,306,644 bp. Another glutathione S-transferase theta-1-like

gene, LOC100996588, is located in region 24,319,105–

24,333,620 bp of the reversed complement. Gene GSTT2 (ID

2953), a glutathione S-transferase theta 2, is located in region

24,322,314–24,326,106 bp. Gene/pseudogene GSTT2B (ID

653689), a glutathione S-transferase theta 2B is located in region

24,299,601–24,303,368 bp of the reversed complement. Finally,

the pseudogene GSTTP1 (ID 25774), a glutathione S-transferase

theta pseudogene 1, is located in region 24,340,595–24,347,258 bp

of the reversed complement.

We selected this particular region of chromosome 22 for

showcasing because it reinforces the reason why this new tool may

be valuable. During our own exploration of this analysis method,

we were browsing through the information profile of the human

chromosome 22, observing regions of roughly 1 Mbp in length,

when that striking and almost symmetric profile of about

100,000 bp caught our attention. Many more similarly interesting

regions can be observed along the chromosome. Hence, the tool

here proposed provides a handy procedure for quickly detecting

potentially interesting genomic regions.

To illustrate the potential of information profiles in the context

of comparative genomics, we use again the human chromosome

22 as case-study.

Figure 4 displays the information profiles for five human

chromosomes 22. As before, the profiles are the result of the

combination of eight finite-context models with context depths of

2, 4, 6, 8, 10, 12, 14 and 16. They represent the minimum of the

combined direct and reversed profiles, and low-pass filtered with a

smoothing window of 100,001 bp. Here, similarities and differ-

ences between the sequences are clearly visible. Both YH and

KOREF human genome assemblies were obtained from
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resequencing experiments that used the GRCh37 reference

human genome assembly for mapping their short reads. This is

the main reason why both profiles are so similar to that of

GRCh37. On the other hand, the HuRef and Celera assemblies

are two de novo assemblies [37,38], hence their profiles are

considerably more dissimilar to that of GRCh37.

Figure 5 repeats the information profiles for four human

chromosomes 22, as well as, the conditional profiles of three

pairwise comparisons between those chromosomes. Here, the

discovery strategy was different, as the conditional profiles were

obtained using the statistics of the finite-context models trained

over the GRCh37 chromosome, with the same parameters as

described above. As such, the baseline-like regions highlight

sequence similarity between both chromosomes, whereas peaks

highlight regions of clear sequence divergence in the KOREF,

HuRef and Celera chromosomes, with respect to the GRCh37

one. The main observation stemming from these conditional

profiles pertains the large-scale structural variation between these

human chromosomes. For the de novo assemblies (HuRef and

Celera), most of the observed variation occurs in the beginning of

the profiles. The peak a little over the 24 Mb mark is common to

all three conditional profiles, hinting at the possibility of this being

a highly-variable region in the human population.

Conclusion

We introduced an algorithm to detect genomic regularities

within a blind discovery strategy. The algorithm uses information

profiles built using an efficient DNA sequence compression

method. The results described support our claim that information

profiles provide a valuable discovery tool for the genome-wide

individual or comparative analysis of genomes, through the

detection of biologically-relevant genomic regularities. We used

the genome of the fission yeast Schizosaccharomyces pombe strain

972 h2 for illustration. This model-organism was chosen because

of its genome size, which renders visualization of the information

profiles easier. Nevertheless, to give evidence that the tool is also

applicable to larger genomes, we included information profiles at

several scales of the human chromosome 22. Using five human

chromosomes 22, we also showcased the potential of this

methodology for comparative genomics analyses.

Our algorithm relies on the efficient probabilistic modeling of

the genomic sequence based on finite-context (Markov) models.

The approach is sufficiently flexible and powerful to enable

addressing various biological questions and quickly obtaining the

corresponding information profiles for a first-hand assessment.

Indeed, the creation of information profiles does not require

unusual computational facilities. Building an information profile

requires a computation time that varies only linearly with the size

of the sequence. For example, the information profile of human

chromosome 22 was created in a laptop computer in less than five

minutes. Moreover, the amount of computer memory required

does not depend on the size of the sequence, but only on the depth

of the finite context models used for modeling the sequence.

To facilitate the exploration of the information profiles here

introduced, we made available two software applications: one is

highly flexible but command-line based; the other has a graphical

user interface and was designed to be very easy to use. Both

applications are freely available for non-commercial use and can

be downloaded from http://bioinformatics.ua.pt/software/dna-

at-glance.

Due to its exploratory nature, these software applications

currently offer a number of options that allow for many

combinations of the parameters. Nevertheless, for ease of use,

they can also be ran with default parameters. A detailed

explanation of these parameters and some examples of their use

is included in the packages.

In Figure 6 we show an example of integration of the

information profiles in the UCSC Genome Browser, in this case

displaying a segment of human chromosome Y. The data were

uploaded as a custom track in WIG format (that can be produced

by the supporting software applications). As can be seen in this

example, there are two relatively large regions of low information

content that are not easily guessed by inspection of the output

provided by the RepeatMasker tool, giving evidence of the

complementary nature of the approach described in this paper.

The ability ‘‘to look at a DNA sequence’’ and immediately

being able to visually identify regions of potential interest is, in our

opinion, a valuable tool for the biologist. The work that we present

in this paper is an important step in that direction.
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