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Abstract

Voice synthesis is a useful method for investigating the communicative role of different acoustic features. Although many text-to-
speech systems are available, researchers of human nonverbal vocalizations and bioacousticians may profit from a dedicated simple
tool for synthesizing and manipulating natural-sounding vocalizations. Soundgen (https://CRAN.R-project.org/package=soundgen) is
an open-source R package that synthesizes nonverbal vocalizations based on meaningful acoustic parameters, which can be specified
from the command line or in an interactive app. This tool was validated by comparing the perceived emotion, valence, arousal, and
authenticity of 60 recorded human nonverbal vocalizations (screams, moans, laughs, and so on) and their approximate synthetic
reproductions. Each synthetic sound was created by manually specifying only a small number of high-level control parameters, such
as syllable length and a few anchors for the intonation contour. Nevertheless, the valence and arousal ratings of synthetic sounds were
similar to those of the original recordings, and the authenticity ratings were comparable, maintaining parity with the originals for less
complex vocalizations. Manipulating the precise acoustic characteristics of synthetic sounds may shed light on the salient predictors of
emotion in the human voice. More generally, soundgen may prove useful for any studies that require precise control over the acoustic
features of nonspeech sounds, including research on animal vocalizations and auditory perception.

Keywords Nonverbal vocalizations - Animal vocalizations - Formant synthesis - Parametric synthesis - Voice synthesis - Open
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An important goal for research on acoustic communication is
to determine how the particular characteristics of a produced
sound affect its meaning. For example, acoustic correlates of
different affective states can be identified by comparing re-
cordings that were obtained in different contexts (Briefer,
2012; Hammerschmidt & Jiirgens, 2007) or that are perceived
as expressing different emotions (Banse & Scherer, 1996;
Sauter, Eisner, Calder, & Scott, 2010). Correlation is not cau-
sation, however: To determine which acoustic features actual-
ly influence the perceivers, methodologically the most pow-
erful approach is to modify the signal, one feature at a time
(Scherer, 2003). Speech synthesis is a diverse and mature field
(Schroder, 2009), but fewer options are available to re-
searchers who wish to synthesize or modify human nonverbal
vocalizations, such as laughs and screams, or sounds produced
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by nonhuman animals. For instance, it would be easier to
elucidate the contested role of nonlinear phenomena in pant-
hoots of chimpanzees (Riede, Arcadi, & Owren, 2007) or to
determine what acoustic characteristics help listeners discrim-
inate between spontancous and volitional laughs (Anikin &
Lima, 2018; Bryant & Aktipis, 2014) if there were a simple
way to synthesize these sounds and then manipulate their
acoustic properties. This is the context in which soundgen
(https://CRAN.R-project.org/package=soundgen) was
developed as an open-source tool designed specifically for
the manual, fully controlled synthesis and manipulation of
nonverbal vocalizations.

What is soundgen?

Soundgen is an open-source library that contains tools for
analyzing, manipulating, and synthesizing sounds. Its main
function for sound synthesis, soundgen(), can generate one
or more syllables with voiced and unvoiced segments. The
control parameters refer to acoustically transparent and
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perceptually meaningful characteristics such as amplitude en-
velope, intonation, and various aspects of voice quality. The
input code is sparse, so that an entire vocalization or even
multiple syllables can be created with a single short command.
For example, the intonation of the entire vocalization can be
specified with a few values of the fundamental frequency (fy):
one at 0 ms, another at 300 ms, and a third at 1,000 ms,
producing a smooth f; contour that passes through these an-
chor points. Under the hood, soundgen creates a combined
harmonic-noise excitation source (Erro, Sainz, Navas, &
Hernaez, 2014; Gobl & Ni Chasaide, 2010; Stylianou, 2001)
and then filters it to imitate the effects of the vocal tract, en-
hancing certain frequencies in the spectrum (formants).

Soundgen can be installed, used, and modified freely; it is
distributed under the GPL-2/GPL-3 license as an R package
available for Windows, Mac OSX, and GNU/Linux platforms.
R is a popular general-purpose programming language with
excellent support for sound processing thanks to a number of
dedicated packages that soundgen imports and builds upon,
particularly tuneR (Ligges, Krey, Mersmann, &
Schnackenberg, 2016) and seewave (Sueur, Aubin, &
Simonis, 2008). After installing R (https://www.r-project.
org/), and preferably RStudio (https://www.rstudio.com),
both of which are open-source, sounds can be generated
from the command line using the soundgen() function.
There is also an interactive graphical user interface (GUI),
namely a Web app launched with the soundgen _app()
function (Fig. 1).

Additional documentation is available on the project’s
homepage at http://cogsci.se/soundgen.html. The so-called
“vignette” on sound synthesis, which is published and regu-
larly updated together with the package, provides an illustrat-
ed, step-by-step manual on using the soundgen() function.
Several demos, including the R code for creating dozens of
human vocalizations (laughs, roars, screams, moans, etc.) and
animal sounds, are available on the project’s website. There
are also numerous examples of both human and animal vocal-
izations built into the package itself and available through the
interactive app.

How does soundgen compare
to the alternatives?

In many research applications it is not necessary to synthesize
a vocalization from scratch, but simply to take an existing
recording and modify some of its acoustic characteristics.
Some operations are trivial: for example, the amplitude enve-
lope of a recording can be adjusted with any audio editor.
Other acoustic manipulations are more challenging and re-
quire specialized software. For instance, the effect of f; on
perceived dominance and mating preferences in humans has
been investigated by manipulating £, experimentally, often

together with formant frequencies (e.g., Fraccaro et al.,
2013; Puts, Gaulin, & Verdolini, 2006). However, this manip-
ulation also affects the average distance between neighboring
formants (formant dispersion), making it difficult to determine
whether it was f; or formants that caused the observed eftect. It
is also possible, although more technically challenging, to
avoid this confound by manipulating f, and formant disper-
sion independently of each other (Kawahara, Masuda-
Katsuse, & De Cheveigne, 1999; Reby et al., 2005; Taylor,
Reby, & McComb, 2008). For example, Reby et al. scaled
formants in the roars of male red deer without changing f;
and demonstrated the important role of formant dispersion
for exaggerating apparent body size during roaring contests.

Morphing is an interesting special case of manipulating
existing recordings, in which certain acoustic features of
sound A are gradually adjusted to match those of sound B,
producing several hybrid sounds that combine characteristics
of both A and B. A popular choice for such work is to use the
STRAIGHT algorithm, which can morph broadly similar
sounds on the basis of several manually specified landmarks
that identify corresponding parts of the two spectrograms
(Kawahara et al., 1999). For example, this technique was used
to demonstrate categorical perception of macaque vocaliza-
tions by human listeners (Chakladar, Logothetis, & Petkov,
2008), to study acoustic features enabling individual recogni-
tion in macaques (Furuyama, Kobayasi, & Riquimaroux,
2017), and to prepare morphs of emotional vocalizations for
a neuroimaging study (Salvia et al., 2014).

The techniques described above require that the researcher
should prepare the stimuli in advance. For real-time manipu-
lation, a promising tool is the David software (Rachman et al.,
2018), which can modify the intonation and some aspects of
voice quality and feed the new auditory stream back to the
speaker with only a short delay. This technique was used to
demonstrate that covert manipulation of a speaker’s voice
suggestive of particular emotional states induces the same
emotion in the speaker, as predicted by the self-perception
framework (Aucouturier et al., 2016). When a slightly longer
delay is acceptable—for example, for voice manipulation dur-
ing interaction instead of sensorimotor feedback—a powerful
technique to use is frequency warping (Erro, Navas, &
Hernéez, 2013). By stretching and warping the spectral enve-
lope on the basis of a user-defined nonlinear function, it can
achieve complex manipulations of the filter in real time, for
example, raising the frequencies of a few individual formants
to produce the impression that the speaker is smiling (Arias et
al., 2018).

The greatest advantage of sound manipulation over synthe-
sis is that it preserves subtle characteristics of the original
recording. The results can be highly naturalistic, and as long
as it is feasible to achieve the desired manipulation without
resynthesizing the entire sound, this is the preferred method.
However, some acoustic features cannot be modified so easily
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Fig. 1 Graphical user interface for soundgen

(e.g., the harmonic structure of the glottal source) or require
complex transformations that may degrade the quality of the
manipulated sound (e.g., frequencies of individual formants).
Because of these limitations, sometimes it is preferable to
synthesize a vocalization de novo, which requires an algo-
rithm for generating a waveform from a list of control param-
eters—a so-called “vocoder.”

Any parametric text-to-speech engine includes a vocoder,
and any vocoder can potentially be used to generate nonverbal
vocalizations as well as speech (e.g., Klatt & Klatt, 1990;
Kreiman, Antonanzas-Barroso, & Gerratt, 2010; Morise,
Yokomori, & Ozawa, 2016). However, text-to-speech plat-
forms usually prioritize efficiency and high-fidelity output
(Tokuda et al., 2013; van den Oord et al., 2016; Wu, Watts,
& King, 2016) over control of individual acoustic features
(but see Birkholz, Martin, Xu, Scherbaum, & Neuschaefer-
Rube, 2017; Drugman, Kane, & Gobl, 2012). As a result, they
are not always optimal for academic acoustic research, partic-
ularly when working with non-speech sounds. One feature of
the vocoders developed for speech synthesis is that they re-
quire a separate list of parameter values for each short frame.
In other words, control parameters even for a short vocaliza-
tion add up to a large matrix, which is unwieldy to work with
manually. In addition, many control parameters resist simple
adjustments. For example, the parameters that control voice
quality do so by changing the shape of glottal pulses, and there
is no simple way to predict which changes in control param-
eters will achieve the desired change in the output spectrum
(Kreiman, Garellek, Chen, Alwan, & Gerratt, 2015).

Because of this complexity and opacity, vocoders are nor-
mally controlled by statistical models rather than manually;
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popular choices are hidden Markov models (HMM; Tokuda et
al., 2013; Zen, Tokuda, & Black, 2009) or neural networks
(Juvela et al., 2016; Ling et al., 2015; Wu et al., 2016). An
even more “black-box” approach to statistical parametric syn-
thesis is to build neural networks that directly generate raw
waveforms (van den Oord et al., 2016). Whatever the exact
statistical model, first it must be trained on a large annotated
corpus, and the purpose of such tools is to take text as input
and produce audio as output.

Text-to-speech systems are thus not the most appropriate
tools if the input categories are longer than phonemes (e.g.,
vocalizations) or if the goal is to synthesize nondiscrete
sounds (e.g., continuous modulated tones for psychophysical
experiments). There have been a few attempts to synthesize
nonverbal vocalizations, usually laughter, by adapting
existing text-to-speech engines based on concatenative
(Campbell, 2006), articulatory (Lasarcyk & Trouvain, 2007),
or HMM parametric synthesis (Haddad, Cakmak, Sulir,
Dupont, and Dutoit, 2016), but this research is scarce. An
interesting alternative developed for resynthesis and manipu-
lation of short verbal fragments is the UCLA Voice
Synthesizer (Kreiman et al., 2010). This is an integrated ana-
lyzer—vocoder that can be analyze, reproduce, and then ma-
nipulate a recording, although it is optimized for working with
speech and does not offer the researcher an easy solution for
generating a completely new vocalization based on a high-
level acoustic description.

Unlike integrated platforms for parametric speech synthe-
sis, which consist of a vocoder and a statistical model to op-
erate it, soundgen is essentially only a vocoder, giving the user
direct access to acoustic controls. As a result, its control
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parameters must be kept transparent and sparse—defined at a
low temporal resolution with a few anchor points. Another
difference between soundgen and the vocoders used for text-
to-speech conversion is that the latter are designed to synthe-
size speech, so their settings are optimized for human voice,
more specifically for the voice quality typically encountered
in ordinary conversation. In particular, several mathematical
models can approximate the shape of glottal pulses (Fant,
Liljencrants, & Lin, 1985; Rosenberg, 1971; Shue & Alwan,
2010), but they are less accurate for nonmodal phonation
(Gobl & Ni Chasaide, 2003) and may not be suitable for
nonverbal vocalizations such as high-pitched screams or noisy
roars. It is even less certain whether the same parametric
models of glottal pulses will capture the excitation source in
nonhuman animals, who display a variety of sound production
mechanisms, from the glottal whistles of rodents to the
syringeal phonation of birds (Goller, 2016). In fact, even if a
vocoder closely matches the shape of glottal pulses, it does not
guarantee that the perceptually relevant spectral characteristics
will be captured successfully. This is why it has been sug-
gested that auditory perception in humans is better modeled
in the frequency than time domain (Doval & d’Alessandro,
1997; Kreiman et al., 2015). Furthermore, despite all the di-
versity of sound sources in the animal world, the source-filter
model (Fant, 1960) still holds across species (Goller, 2016;
Taylor & Reby, 2010). Capitalizing on the flexibility and
general applicability of spectral-domain modeling,
soundgen creates individual harmonics instead of individ-
ual glottal pulses (it does support pulse-by-pulse synthesis,
but this is not the default method), making it straightfor-
ward to directly adjust the perceptually relevant character-
istics of the glottal source for any mode of phonation and
potentially across species.

In this sense soundgen is more similar to the Mammalian
Vocal Synthesizer implemented in the MiRo biomimetic robot
(Moore, 2016), which specifically aims to model voices of
different mammals and has inspired some of soundgen’s fea-
tures. The main difference is that soundgen offers more flex-
ible control, making it more suitable for perceptual experi-
ments that involve precise acoustic manipulations. On the oth-
er hand, the Mammalian Vocal Synthesizer is easier to control,
and it runs in real time, making it a better choice for interactive
systems such as social robots.

Implementation details

A brief summary of the fundamental principles of voice syn-
thesis with soundgen is provided below. The actual control
parameters are described fully from a user’s perspective in
the package documentation, particularly in the so-called
“vignette” on sound synthesis.

Excitation source Although early vocoders used a train of
rectangular impulses as a source of excitation, this produced
a relatively flat source spectrum with too much high-
frequency energy, which made the voice sound buzzy
(Cabral, Renals, Richmond, & Yamagishi, 2007). Modern vo-
coders solve this problem by using more realistic excitation
sources that resemble actual glottal pulses produced by vibrat-
ing vocal folds (Fant et al., 1985; Klatt & Klatt, 1990). In
contrast to this time-domain model of the glottal excitation
source, soundgen generates a separate sine wave for each har-
monic, covering one voiced syllable instead of one glottal pulse
at a time. At each time point the frequency of each sinusoidal
component is an integer multiple of f,, which can vary within
one syllable. This approach is similar to tonal synthesis as im-
plemented in the seewave R package and described in detail by
Sueur (2018). For each harmonic 4 in {1, 2, . . .}, the waveform
wy(?) for harmonic 4 is synthesized as a sine wave with time-
varying frequency / * fy(f) and amplitude a,(?):

wi(t) = ap(t)*sin(2%pi*h/s*y) £ (1)),

where ¢ is an integer index of the synthesized point, fo(?) is
the instantaneous fundamental frequency at time ¢, a;,(¢) is the
instantaneous amplitude of harmonic / at time ¢z, and s is the
number of points per second of audio (sampling rate). The
phase of each harmonic is set to zero. The final waveform is
then given by the sum of all harmonics. The number of syn-
thesized harmonics is determined by the sampling rate: no
harmonics are synthesized above the Nyquist frequency (half
the sampling rate) to avoid aliasing. The relative strength of
harmonics relative to f, is governed by a family of rolloff
parameters, the most important of which gives the rate of
exponential decay in the amplitude of upper harmonics: with
each octave above f;, the power of harmonics decreases by
rolloff dB. Rolloff can also be automatically adjusted depend-
ing on f, and the source spectrum may assume more complex
shapes than a simple exponent, providing more flexibility with
the excitation source.

In addition to the harmonic component, soundgen gener-
ates broadband noise with a spectrum that is flat up to a certain
threshold (by default 1200 Hz) and has an adjustable linear
spectral slope of rolloffNoise dB/kHz in higher frequencies
(Johnson, 2011; Stevens, 2000). Noise is created in the fre-
quency domain by drawing from a uniform distribution, mul-
tiplied by the rolloff function and the vocal tract transfer func-
tion (see below), and then converted to a waveform via inverse
short-time Fourier transform (STFT). The noise component is
then modulated with its own amplitude envelope, which is
specified independently of the amplitude envelope of the
voiced component.

The manner in which the harmonic and noise components
are added up depends on whether or not they should be filtered
with the same vocal tract transfer function. The default behav-
ior is to assume that the noise originates close to the glottis and

@ Springer



782

Behav Res (2019) 51:778-792

passes through the same vocal tract, as when an animal is
breathing. If the source of the obstruction lies further from
the glottis, its filter is different from that of the harmonic
component (Stevens, 2000). To synthesize such non-glottal
noises as hissing, soundgen can handle a separate filter func-
tion for its noise component. It is also possible to synthesize
voiceless sounds without any harmonic component.

Filter The sound changes as it passes through the vocal tract:
Some frequencies, known as “formants,” are amplified,
whereas other frequencies may be dampened (Fant, 1960).
The spacing between formant frequencies depends on the
length of the vocal tract from the source of excitation (glottis
in mammals, syrinx in oscine birds) to the opening through
which the air escapes. In soundgen an entire vocalization is
first synthesized without formants, and then it is filtered
through the vocal tract transfer function—a matrix that spec-
ifies a scale coefficient for each frequency bin and each time
step in the spectrogram of an unfiltered waveform. This pro-
cess involves taking an STFT of the generated waveform,
multiplying the resulting spectrogram by the vocal tract trans-
fer function, and then performing inverse STFT to transform
the signal back to a waveform.

The transfer function is determined by time-varying fre-
quencies, amplitudes, and bandwidths of several formants,
which are either specified by the user or estimated from the
length ofthe vocal tract. If the user provides the frequencies of
the first few formants, these are used to estimate the apparent
vocal tract length (VTL) using the regression method de-
scribed in Reby et al. (2005). Additional formants are then
added above the user-specified ones, with frequencies deter-
mined according to the uniform tube model (Stevens, 2000):
F,=(2"n-1)/27d,

d=c/(2"VIL),

where F), is the nth formant, d is formant dispersion, and ¢ is
the speed of sound in warm air (35,400 cm/s). If only VTL is
specified, a neutral schwa [ ] with equidistant formants is pro-
duced. Formant frequencies are adjusted according to the degree
of mouth opening using a formula adapted from Moore (2016):

AF = (m-0.5)" ¢/ (4" VIL),

where AF is the change in formant frequency and m is the
degree of mouth opening (0 = closed, 1 = fully open, 0.5 =
default neutral position, no adjustment). When the mouth is
completely closed, the sound is also nasalized by increasing
the bandwidth of the first formant to 175 Hz and creating a
new zero-pole pair in the vicinity of the first formant, as de-
scribed in Hawkins and Stevens (1985). These settings are
presumably specific to human voice, so it is not recommended
to use the closed mouth feature for animal vocalizations; the
corresponding formant transitions can be specified manually
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instead. The effects of sound radiation through the lips or the
nose are controlled by two separate parameters instead of em-
bedding them in the source spectrum, which makes it easy to
adjust the settings for nonhuman biological sounds.

Unless specified by the user, formant bandwidths are esti-
mated from frequency using an empirical formula derived
from human phonetic research, namely the TNF-63 approxi-
mation (Tappert, Martony, & Fant, 1963) corrected below 500
Hz to increase bandwidth at low frequencies (Khodai-Joopari
& Clermont, 2002). Once time-varying formant frequencies
and bandwidths have been determined, the vocal tract transfer
function is calculated in the frequency domain by using a
standard all-pole model if there are only formants, or a zero-
pole model if there are also antiformants (Stevens, 2000). The
only modification of these models in soundgen was to enable
more flexible control over the strength of individual formants.
Mathematical details of this algorithm are beyond the scope of
the present article; the relevant code can be found in the func-
tion getSpectralEnvelope().

Other control parameters Both the source of excitation and
the filter can be modified in many ways using a number of
control parameters, some of which are mentioned below. Most
of these parameters are vectorized, so that the amount and
quality of each effect can vary over time. A vibrato can be
added as a sinusoidal modulation of f, with adjustable fre-
quency and depth. Variation in f; can also be stochastic (jitter),
again with time-varying depth and frequency—from slow,
vibrato-like random fluctuations to very rapid pitch jumps that
can be used to simulate harsh voices in roars and noisy
screams. Attack at the beginning and end of voiced fragments
can be specified separately from the overall amplitude enve-
lope, and rapid stochastic amplitude modulation can be added
to simulate pulse-to-pulse variation in glottal pulses (shimmer).
Low-frequency amplitude modulation with adjustable depth,
frequency, and shape is useful for making trill-like sounds.

A special subroutine in soundgen is devoted to nonlinear
effects, namely subharmonics (or sidebands) and deterministic
chaos (Wilden, Herzel, Peters, & Tembrock, 1998).
Subharmonics are created by generating additional harmonics
in the excitation source, which corresponds to introducing an
additional fundamental frequency (go) at an integer ratio to f;.
Chaos is simulated by adding strong jitter and shimmer. The
parts of vocalization affected by nonlinear phenomena can be
specified explicitly by the user or determined stochastically. A
random walk is generated,; its bottom part corresponds to frag-
ments with no nonlinear effects, the middle part to
subharmonics, and the highest part to both subharmonics
and chaos (cf. Fitch, Neubauer, & Herzel, 2002). This makes
it possible to generate sounds with unpredictable transitions
between different regimes of nonlinear phenomena.

Soundgen contains a number of high-level hyperparameters
that affect multiple acoustic features at once. For example, fq
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and formant frequencies can be adjusted in a coordinated man-
ner with the maleFemale parameter. The most important
hyperparameter, temperature, adjusts the amount of stochastic
variation in f; contour, voice quality, and most other control
parameters. A natural vocalization is seldom completely stat-
ic, and this stochastic behavior offers an easy way to introduce
some variability without manually coding every irregularity. If
temperature is above zero, calling the soundgen() function
repeatedly with the same settings does not produce identical
output every time. This is helpful when the purpose is to create
a number of authentic-sounding and similar, but not identical,
vocalizations. When the goal is to generate a sound with high
precision (e.g., when synthesizing multiple modifications of
the same basic vocalization for perceptual testing), stochastic
behavior is not desirable, and temperature should be set to a
small positive value (setting it to exactly zero disables the
addition of new formants above the user-specified ones and
is not recommended).

Validation experiment

To validate soundgen as a tool for synthesizing human non-
verbal vocalizations, a number of laughs, screams, moans, and
other sounds were synthesized aiming to approximately repro-
duce the original recordings. The similarity of the synthetic
stimuli to their originals was then assessed in a perceptual
experiment by means of comparing their ratings on three con-
tinuous scales—valence, arousal, and authenticity—as well as
their classification by emotion.

Method

Stimuli Sixty authentic human nonlinguistic vocalizations
were chosen from a previously published corpus (Anikin &
Persson, 2017) and reproduced with soundgen 1.1.1. The se-
lection criteria were (1) a minimum amount of background
noise, echo, clipping, or other acoustic impurities, (2) a high
degree of consensus on what acoustic type (laugh, scream, and
so on) the sound represented in a previous cross-linguistic
naming study (Anikin, Baath, & Persson, 2018), and (3) high
perceived authenticity, as reported by Anikin and Lima
(2018). To constrain the acoustic complexity of the stimuli,
longer bouts were truncated. The average duration was 1.5 £+
0.7 s (M + SD), range 0.3 to 3.4 s (Table 1). All sounds were
then normalized for peak amplitude and down-sampled to a
rate of 22050 Hz.

Control parameters were chosen manually, on the basis of
an iterative visual comparison of the spectrogram with the
target. The difficulty of this task varied depending on the
complexity of the target, from a few minutes of work for
simple moans or screams to a few hours for some laughs.
Whenever possible, the entire sound was synthesized with a
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Table 1 Characteristics of the original recordings in Experiment 1
Acoustic type Number of sounds (M/F) Duration, s
Mean [range]
Cry 10 (4/6) 2.1[1.3,2.7]
Gasp 521/3) 1.6 [1.1,2.6]
Grunt 5@3/2) 0.5[0.3,0.8]
Laugh 10 (5/5) 1.9[1.0, 3.4]
Moan 10 (5/5) 1.7 0.7, 3.1]
Roar 10 (6/4) 1.4 0.6, 3.2]
Scream 10 (2/8) 1.4 0.4, 3]
TOTAL 60 (27/33) 1.5[0.3,3.4]

single command (see Table 2 for an annotated example).
Some of the more complex polysyllabic vocalizations were
synthesized one segment at a time and then concatenated.
The temperature parameter was usually kept positive—that
is, most sounds were synthesized in a stochastic mode. For
example, for polysyllabic vocalizations the length of syllables
and pauses between them was deliberately allowed to vary at
random and deviate from the original. The synthetic sounds
were thus not meant to be exact replicas of the originals, but
only approximations. Highly stochastic sounds, such as
screams consisting of segments with various vocal regimes
(tonal, subharmonics, deterministic chaos) were generated
several times with the same settings, and the copy closest to
the original was retained for testing.

Supplementary materials for this article, including all sound
files, R code for their generation, raw data from the validation
experiment, and R scripts for statistical analyses, can be
downloaded from http://cogsci.se/publications/anikin 2018
sova.html. Note that soundgen has been extensively upgraded
since the time of the validation experiment. It may therefore be
preferable to use the more up-to-date demos from the project’s
website, rather than the code from the supplementary materials,
as templates for sound synthesis.

Procedure The validation experiment included three separate
tasks, which were performed by different groups of partici-
pants. In Tasks 1 and 2, participants rated 60 synthetic (Task 1)
or real (Task 2) vocalizations on three scales: valence (“How
pleasant or unpleasant is the experience?”), arousal (“How
high is the level of energy, alertness?”), and authenticity
(“Does the person sound natural, like in real life?”). Prior to
testing, each participant was informed which type of sounds,
human or synthetic, they would hear, ensuring that authentic-
ity ratings would not be interpreted as binary guessing be-
tween “real” and “fake” sounds. To minimize the correlation
between ratings on the three scales, only one scale was
displayed in each block. Each sound was thus presented three
times. The order of blocks and of sounds within each block
was randomized for each participant.
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Table2 R code for generating moaning in soundgen version 1.1.1 and above (stimulus #38)

# Begin call to soundgen()

s = soundgen(
nSyl =3,
sylLen = 520,
pauseLen = 400,
pitchAnchors = ¢(270, 210),
vibratoDep = .5,
rolloff = ¢(-20, -30),
formants = ¢(900, 1400, 3100, 3750,

4900, 6200, 6800),
mouthAnchors = ¢(.5, .6),
noiseAnchors = data.frame(
time = ¢(0, 350, 520, 530, 700, 830),
value = ¢(-55, -40, -45, -60, -40, -60)

),
rolloffNoise = ¢(0, 0, -5),
temperature = 0.15,
tempEffects = list(formDrift = 2),
samplingRate = 22050,
play =T, plot=T, osc =T

)

# Play, plot, export
playme(s, 22050)
spectrogram(s, 22050)

# number of voiced syllables

# average length of syllables (ms)

# average pause between syllables (ms)

# fo drops from 270 to 210 Hz in each syllable

# add vibrato, half a semitone deep

# rolloff drops from -20 to -30 dB/oct in each syllable

# formants F1 to F7 (Hz)
# mouth opens slightly across syllables

# time anchors (ms) at which noise amplitude is defined
# loudness (dB) of turbulent noise at each time anchor

# time-varying slope of noise spectrum

# general level of stochasticity (0.15 is very high)

# higher-than-default stochasticity in random drift of formants
# desired sampling rate of output (Hz)

# play and plot the output, show oscillogram

seewave::savewav(s, f = 22050, filename = 'moans.wav')

For more examples, see demos on the project’s homepage: http://cogsci.se/soundgen.html

In Task 3, participants indicated the emotion portrayed by
each sound and rated their confidence in this classification.
There were ten emotional categories to choose from:
amusement, anger, disgust, effort, fear, pain, pleasure,
sadness, surprise, and other/neutral/don’t know. To avoid pre-
senting the same sound twice (the original and the synthetic
version), this task was split into two subtasks, each with 60
unique sounds (30 human + 30 synthetic). Each subtask was
performed by a different sample of participants. Sounds could
be repeated as many times as needed. The average completion
time was 10—15 min.

Participants Out of the 106 participants included in the final
analysis, 47 were volunteers contacted via online advertise-
ments, and 59 were recruited via https://www.prolific.ac and
received £1 or £1.5, depending on the task. An informal
comparison of the data from volunteers and paid participants
revealed no systematic differences, and their responses were
pooled. Each participant performed only one task. The
numbers of responses per sound were as follows: ratings of
synthetic sounds 19.6 (range 19.0 to 20.3), ratings of human
sounds 21.7 (range 21.0 to 22.0), forced choice classification
of emotion for mixed human and synthetic sounds 30.7 (range
28.0 to 35.0).
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Data were collected via the Internet. Participants were in-
formed about the goal of the study and agreed with the con-
ditions of confidentiality by clicking the active link after read-
ing the instructions. No personal or demographic information
was collected. Online experiments are increasingly being used
for academic research (Hewson, Vogel, & Laurent, 2016), but
the responses may be noisy compared to those from face-to-
face testing. To ensure data quality, all submissions were first
manually checked for fraud (e.g., clicking through stimuli
very fast and without varying the responses). Once data col-
lection was complete, a second round of verification was per-
formed by means of correlating the ratings provided by each
participant with the median ratings per stimulus aggregated
from all responses. Participants were excluded from the
analysis on the basis of the following criteria: (1) correla-
tion with global median < 0.3 on any two scales, or (2)
correlation with global median < 0 on either valence or
arousal scale, or (3) proportion of emotion classification
corresponding to the most commonly chosen emotion per
stimulus < 0.3. This identified five participants, typically
with very short response times, who were removed from
further analysis. In addition, all trials with response time
under 1 s (0.4% of the data) were excluded, since they
presumably represented technical glitches.
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Statistical analysis Except when otherwise stated, all analyses
were performed on unaggregated, trial-level data using mixed
models. To account for non-independence of observations, all
models included random intercepts per participant and per
stimulus. Ratings on continuous scales were not normally dis-
tributed, and they were modeled with beta distributions.
Bayesian models were created in Stan computational frame-
work (http://mc-stan.org/) accessed with brms package
(Biirkner, 2017). To improve convergence and guard against
overfitting, mildly informative regularizing priors were used
for all regression coefficients. Fitted values are reported as the
median of the posterior distribution and 95% credible interval
(CI). Intraclass correlation coefficients were calculated with
the ICC package (Wolak, Fairbairn, & Paulsen, 2012).

Results

Valence, arousal, and authenticity ratings The reliability of
valence ratings was moderate: The intraclass correlation coef-
ficients (ICCs) were .61 for human sounds and .54 for syn-
thetic sounds. The average per-stimulus valences of human
and synthetic sounds were highly correlated: Pearson’s » =
.88, F(1, 58) =207.1, p <.001. A more nuanced analysis with
mixed models revealed that human and synthetic sounds were
rated similarly on the valence scale for all call types except
laughter (Fig. 2A), for which the real recordings were judged
to be more positive than the synthetic sounds: by + 0.41 on a
scale of — 1 to + 1, 95% CI [0.29, 0.52].

The consistency with which participants used the arousal
scale was again moderate: ICCs = .42 for human and .55 for
synthetic sounds. The average arousal ratings of human and
synthetic sounds were highly correlated: » = .92, F(1, 58) =
327.8, p <.001. There was a slight tendency for human sounds
to have higher arousal ratings than the synthetic sounds for
several call types (Fig. 2B), but the difference was statistically
significant only for gasps: + 0.44, 95% CI [0.29, 0.60].
Interestingly, the valence and arousal scales were not
completely orthogonal. Averaging per stimulus, there was a
quadratic relationship between valence and arousal ratings,
F(2,117)=43.4, p < .001, R? = .43: Sounds with either very
positive or very negative valence tended to have high arousal
ratings.

There was little agreement among participants about the
authenticity of individual sounds, with ICCs of only .15 for
human sounds and .27 for synthetic sounds. The correlation
between the average authenticity ratings for human and syn-
thetic sounds was also weaker than in the case of valence and
arousal ratings, although it was still significantly higher than
would be expected by chance: Pearson’s r = .33, F(1, 58) =
6.9, p = .01. As expected, the real recordings were overall
judged to be more authentic than the computer-generated
sounds: + .22 on a scale of — 1 to + 1, 95% CI [.07, .36]. It
is worth emphasizing that before the experiment, participants

were informed which type of sounds, human or synthetic, they
would hear. Nevertheless, the difference in authenticity was
statistically significant only for laughs (.74 [.57, .89]), roars
(.33 [.17, .49]), and cries (.27 [.09, .44]), but not for the re-
maining four call types (Fig. 2C). In fact, the average authen-
ticity of 22 out of the 60 synthetic sounds was higher than the
authenticity of the original recordings.

Considering the experimental nature of the algorithms used
for adding subharmonics and chaos, it was important to check
the authenticity of sounds containing these nonlinear vocal
phenomena. Out of 60 stimuli, six were synthesized with pitch
jumps, another six with subharmonics, two with biphonation
(the originals contained ingressive whistles), 23 with chaos,
and 23 without nonlinear effects. The differences in authen-
ticity between the real and synthetic versions were similar for
sounds with subharmonics versus no nonlinear effects (.12 [—
.05, .28], on a scale of — 1 to + 1), chaos versus no nonlinear
effects (— .09 [- .19, .01]; a marginal advantage for sounds
with chaos), and pitch jumps versus no nonlinear effects (.03
[~ .13, .19]). More stimuli would need to be synthesized to test
this further, but at least there was no obvious disadvantage of
synthetic sounds with nonlinear effects, in terms of their per-
ceived authenticity.

Recognition of emotion A new sample of participants classi-
fied a mixture of the same 60 real and 60 synthetic sounds by
emotion. The stated certainty of this classification was high for
all sounds (Fig. 2D), but it was .12 (95% CI [.09, .15]) higher
for the original recordings than for their synthetic reproduc-
tions. This difference was small but consistent across most call
types. Synthetic sounds were also slightly more likely to be
placed in the residual category of Other/neutral/don’t know:
In 19.1% of trials for synthetic sounds, and only 6.6% for hu-
man sounds, predicted difference = 12.4%, 95% CI [10.3,
14.6]. The normalized Shannon entropy of the counts of emo-
tional labels applied to a particular sound (hereafter, “emotion
vectors”; see Anikin et al., 2018) was 14.4% (95% CI [7.5,
21.0]) higher, on a scale of 0% to 100%, for synthetic versus
human sounds. This suggests that there was slightly less agree-
ment among the listeners about the emotion portrayed by syn-
thetic sounds than with the original recordings.

The emotions associated with each call type were broadly
similar for both real and synthetic vocalizations (Fig. 3).
Looking at individual stimuli rather than call types, the corre-
lation between the matrices of classification counts for real
and synthetic sounds was high: » = .82, x*(531) = 4,644.5, p
< .001. Common measures of interrater agreement, such as
Fleiss’s kappa, were not strictly appropriate: Although this
was a forced choice classification task, the categories over-
lapped semantically and were not exclusive. For example, if
laughs were classified as amusement by some participants and
pleasure by others (as, indeed, sometimes happened), this
might not be a sign of genuine disagreement among the raters,
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Fig. 2 Ratings of 60 human and 60 synthetic nonlinguistic vocalizations.
Violin plots show the distributions of individual ratings for each call type
(the “overall” category is aggregated per stimulus), with individual
stimuli marked by indices from 1 to 60. Solid points with error bars

but kappa would drop. A more appropriate method might be
to compare the classifications of each real and synthetic sound
by correlating their emotion vectors. Correlations close to 1
would indicate that the distributions of responses were nearly
identical for the original and synthetic versions of a particular
sound, whereas low correlation would indicate systematic
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differences in the ways these sounds were categorized by par-
ticipants. The average observed correlation between the emo-
tion vectors of human and synthetic sounds was high (r=.77),
as compared to the correlation expected by chance (r = .16,
estimated by permutation). As is shown in Fig. 4, the correla-
tions of emotion vectors were over .75 for almost all cries,
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Fig. 3 Forced choice classification of sounds in terms of their underlying
emotion: Proportions of responses averaged per call type. Assuming that
the synthetic versions are functionally equivalent to the original

laughs, and screams, but they were more variable in the re-
maining four call types, suggesting that a few synthetic stimuli
differed from the original recordings in terms of perceived
emotion.

Discussion of the validation experiment

The validation experiment was designed to investigate wheth-
er parametric voice synthesis, as implemented in the open-
source R library soundgen, is sufficiently flexible and precise
to reproduce human nonverbal vocalizations in such a way
that the perceived valence, arousal, authenticity, and emotion
of the synthetic versions would be similar to those of the
original recordings. It must be reiterated that synthetic sounds

recordings, the two halves of the figure should be mirror images of
each other. All bars over 12% high are labeled, to simplify reading the
graph

were not exact replicas of the originals, but stochastic gener-
ative models that aimed to preserve only the most salient and
easily identifiable acoustic characteristics of the original.
Even so, valence and arousal ratings of human and syn-
thetic sounds were tightly correlated, demonstrating that
the perceived affective meaning of synthetic vocalizations
was very close to that of the original recordings. More
importantly, synthetic vocalizations covered the entire
available range on valence and arousal scales and were
rated as consistently as the original human recordings.
The validation study thus demonstrated that all kinds of
human nonverbal vocalizations—high- or low-intensity,
hedonistic or aversive—can potentially be synthesized
with soundgen.
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Fig. 4 Pearson’s correlations between emotion vectors (counts of
emotional labels applied to a particular sound) for real and synthetic
vocalizations. Solid points mark the median for each call type, and
violin plots show the distribution of values for individual stimuli, which

In addition to ensuring that synthetic sounds were close to
the originals in terms of the perceived valence and arousal of the
speaker, it was important to ascertain that they sounded natural
and not too machine-like. Participants in the validation study
were told beforehand whether they would hear human or syn-
thetic vocalizations and then had to rate them on naturalness
(authenticity). The motivation for this design was the need to
evaluate the relative authenticity of both human and synthetic
sounds without making the task into an attempt to guess which
sounds were synthetic and which were not—this would not be
particularly meaningful, since many recordings contain extra-
neous clues to their nonsynthetic nature (traces of background
noise, a slight echo, and so on). In addition, the aim was to
synthesize natural-sounding vocalizations, not to trick the lis-
teners into believing them to be real, which is also the
established practices when testing the naturalness of synthetic
speech (e.g., Erro et al., 2014; van den Oord et al., 2016).

In line with previous reports (Bénziger, Mortillaro, &
Scherer, 2012; Lima, Castro, & Scott, 2013), authenticity rat-
ings were highly variable for both human and synthetic
sounds and presumably depended on how often similar
sounds occurred in everyday life, how genuine the speaker’s
emotion appeared to be, and (for synthetic sounds) how con-
vincing or “human-like” they sounded. Given the diversity of
factors that may have affected authenticity rating of individual
stimuli, they are not easy to interpret in themselves—the key
metric is the difference in perceived authenticity within each
pair of real and synthetic sounds. As it turned out, recordings
of real people had a 10% advantage in terms of authenticity,
but this difference strongly depended on the acoustic type: It
was pronounced for laughs, moderate for cries and roars, and
absent for gasps, grunts, moans, and screams. In other words,
it was hardest to succeed in synthesizing the most acoustically
complex, polysyllabic vocalizations such as cries and laughs.
These vocalizations contain a rich gamut of unvoiced sounds
and physiological noises (snuffling, spluttering, gurgling,
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are marked 1 to 60. The shaded area shows the correlation that would be
expected by chance (median and 95% CI), which was estimated by
permuting the dataset

wheezing, etc.), rapid formant transitions, episodes of
biphonation, and a variety of transients that make it difficult
for the operator to read the relevant acoustic parameters off a
spectrogram and to control the synthesis manually. In addi-
tion, laughs and cries often contain a variety of syllables—
they are not at all as repetitive as suggested by the conven-
tional Ha-ha-ha. As a result, they have to be painstakingly
synthesized in multiple steps, sometimes one syllable or even
one acoustic “layer” at a time, which is time-consuming for
the researcher.

Despite their lower authenticity ratings compared to the real
recordings, most synthetic laughs and cries were readily recog-
nized and correctly labeled in terms of the underlying emotion.
It is therefore still possible to synthesize them, particularly if
only the most authentic-sounding stimuli are retained for test-
ing. Nevertheless, acoustically simpler vocalizations, such as
moans and screams, represent much easier targets for synthesis
with soundgen. Most synthetic vocalizations of these call types
were judged to be highly authentic by the raters, although in a
few cases the emotion they expressed was different from the
emotion expressed by the original recording. This may partly be
explained by the inherently ambiguous nature of such vocali-
zations as moans, grunts, and gasps (Anikin et al., 2018). In
fact, the consistency with which only human (not synthetic)
sounds were classified by emotion also varied across call types:
The correlation of emotion vectors estimated by permutation
was on average high (r > .95) for laughs, cries, and screams,
whereas for gasps, grunts, and roars it was lower (r ~ .80).
When there is no obvious emotion category to which to assign
a sound, responses become noisier, so it is less likely that the
classification decisions will be exactly the same for an original
recording and its synthetic version.

There is also a second potential explanation for differences
in emotional classification of certain real and synthetic sounds
with high authenticity ratings. Since vocalizations like grunts
and moans can potentially express a wide range of meanings,
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even relatively minor acoustic variations might suffice to shift
the interpretation from one emotion to another. For example,
Gasps 11 and 15 both had low correlations of emotion vectors
between the original and synthetic versions (Fig. 2C), but for
entirely different reasons. Gasp 11 had a low authenticity rat-
ing and a higher proportion of Don’t know responses than did
the original recording, indicating that it was not synthesized
very successfully. In contrast, the synthetic Gasp 15 had
above-average authenticity ratings and was consistently clas-
sified as Pleasure, whereas the original recording was vari-
ously classified as Surprise, Don’t know, or Effort (the actual
emotion expressed by the speaker was pleasant surprise).
Subtle acoustic changes may thus suffice to cause a consider-
able change in the meaning of an inherently ambiguous vo-
calization, and identifying the responsible acoustic character-
istics is exactly the kind of task that soundgen was designed
for.

Taken together, the results of the validation experiment
suggest that most of the synthetic sounds preserved the essen-
tial acoustic characteristics of the original recordings to the
extent that listeners exposed to human and synthetic sounds
drew the same inferences about the mental state of the caller,
as measured by either continuous (valence, arousal) or cate-
gorical (emotion) outcomes. However, the most successful
synthetic stimuli in the validation experiment were relatively
short and simple, whereas complex and polysyllabic vocaliza-
tions, such as bouts of laughing or crying, were often rated as
less natural, demonstrating that there are limits to the level of
complexity that soundgen (or its operator) can handle.

Suggested applications

Soundgen is not designed for text-to-speech conversion.
Speech consists of very rapid, highly variable formant transi-
tions and amplitude modulation. It is too complex to encode
more than a few phonemes manually, which is why statistical
modeling of the parameters controlling the vocoder is predom-
inant in parametric text-to-speech systems (Schrdder, 2009).
However, soundgen’s explicit manual control becomes more
appealing when the target vocalization is short or repetitive,
since a reasonable synthetic approximation can be created
rapidly, without having an annotated training corpus and with-
out recalibrating the algorithm for each new species. More
specifically, soundgen can be useful for the following
applications:

1. Synthesis of human nonverbal vocalizations, as in the
validation experiment. Naturally, the mission of paramet-
ric voice synthesis is not simply to recreate existing re-
cordings, but to modify them in systematic ways or to
generate novel sounds with desired acoustic properties
(e.g., Gobl & Ni Chasaide, 2003). To explore some of

these possibilities, in a follow-up study (Anikin, 2018)
soundgen was used to manipulate two acoustic features
that could previously be analyzed only indirectly—non-
linear vocal phenomena and the rolloff of harmonics in
the source spectrum. This study provided the first evi-
dence that perceptual effects of nonlinear phenomena
depended on their type (subharmonics, chaos, or pitch
jumps) and on the type of vocalization in which they
occurred. It also shed new light on the effect of source
spectrum on the perceived level of arousal and, for rela-
tively ambiguous vocalizations, their valence. Such
acoustic manipulations would be difficult, if not impossi-
ble, to perform without resynthesizing the sound. It would
be equally difficult to elucidate the perceptual effects of
such relatively subtle acoustic features on the basis of a
traditional acoustic analysis of recorded vocalizations. In
the future, it will also be interesting to test the perceptual
consequences of manipulating other acoustic features that
have previously been reported to correlate with affective
states and intentions: intonation (Banse & Scherer, 1996;
Ohala, 1984; Schréder, Cowie, Douglas-Cowie,
Westerdijk, & Gielen, 2001), formant frequencies and
transitions (Puts et al., 2006; Reby et al., 2005; Wood,
Martin, & Niedenthal, 2017), the duration and number
of syllables (Briefer, 2012), and many others. Moreover,
synthetic vocalizations can easily be morphed by interpo-
lating between values of control parameters manually or
with the help of the built-in morph() function, which
makes it straightforward to create series of graded stimuli,
test for categorical perception, and so on.

Synthesis of animal vocalizations. Although not yet for-
mally tested, soundgen should be capable of creating
high-quality synthetic versions of animal calls. In fact,
many design features of soundgen (focus on nonlinear
effects, excitation source defined in the frequency rather
than time domain, etc.) were specifically intended to make
the algorithm generalizable to nonhuman sounds. Sine-
wave synthesis has been used to produce mammalian
(DiMattina & Wang, 2006; Snowdon & Pola, 1978) and
avian (Margoliash, 1983) calls since the 1970s, but with-
out specialized software only simple, pure-tone vocaliza-
tions could be created. Soundgen’s closest modern rela-
tive is the Mammalian Vocal Synthesizer (Moore, 2016),
which is intended for real-time generation of biologically
plausible sounds in a biomimetic robot. Some examples
of animal calls synthesized with soundgen are included in
the preset library published with the package.

Synthesis of voice-like stimuli for psychophysical
experiments. Soundgen may prove useful for research
on psychophysics, auditory perception, and cross-modal
associations, since it offers a straightforward way to cre-
ate acoustically complex sounds with precisely controlled
temporal and spectral characteristics. For example, it was
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used to create the stimuli for research on cross-modal
sound-color correspondences that required finely con-
trolled acoustic manipulations, such as generating for-
mant transitions without modifying the spectral centroid
of synthetic vowels (Anikin & Johansson, 2018).

4. Teaching of phonetics and bioacoustics. The interactive
app (Fig. 1) offers the advantage of immediately hearing
and visualizing the effects of modifying individual acous-
tic features such as the glottal source, frequencies and
bandwidths of individual formants, various nonlinear ef-
fects, and other acoustic features that are easier to under-
stand with an interactive demonstration. This functional-
ity of soundgen can be valuable in an educational setting.

5. Integration with text-to-speech platforms, use in human—
machine interaction. Although suboptimal for synthesiz-
ing speech as such, soundgen or some of its subroutines
can be adapted for introducing simple nonverbal vocali-
zations into speech synthesized with another engine. One
way of adapting soundgen for this purpose would be to
compile a library of presents for several common vocali-
zations, such as laughing or sighing, and to vary them on
the basis of simple rules for modifying the acoustic pa-
rameters in accordance with the desired level of emotion
intensity and valence. Nonverbal vocalizations as well as
artificial, nonbiological sounds (Read & Belpaeme, 2016)
are particularly interesting in the context of social robot-
ics, since they have the potential to enrich interaction
without an “uncanny valley” effect. Soundgen is an
open-source project, so the relevant code can be easily
adapted or translated to fit another platform, potentially
facilitating the development of other tools. However, the
principle of continuous sine-wave synthesis makes
soundgen less suitable for the real-time generation of con-
tinuously concatenated short fragments than are vocoders
that generate individual glottal pulses. In addition,
soundgen is currently somewhat slower than real time
(the exact speed depends on the nature of the synthesized
sound). Computational efficiency would have to be im-
proved for it to be used in interactive systems, such as
social robots, but this slowness is not a drawback when
the goal is to synthesize stimuli for testing.

6. Creation of special sound effects. Soundgen is primarily
developed as a research tool, but it can be adapted for the
task of creating a wide variety of nonrepetitive, paramet-
rically controlled human and animal sounds, which can
potentially be of interest for the gaming and entertainment
industry.

Author note Tam grateful to Dan Stowell, Jérome Sueur, Nick Campbell,
Rasmus Baath, Robert Eklund, Roger Moore, Sarah Hawkins, and Tobias
Mahlmann for their help with developing soundgen and to Tomas Persson
and three anonymous reviews for commenting on an earlier version of
this article.
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