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Wildfires enhance phytoplankton production in
tropical oceans
Dongyan Liu 1✉, Chongran Zhou 1, John K. Keesing 2✉, Oscar Serrano 3,4, Axel Werner 3,

Yin Fang 5, Yingjun Chen 6✉, Pere Masque 3,7,8, Janine Kinloch 9, Aleksey Sadekov10 & Yan Du 11

Wildfire magnitude and frequency have greatly escalated on a global scale. Wildfire products

rich in biogenic elements can enter the ocean through atmospheric and river inputs, but their

contribution to marine phytoplankton production is poorly understood. Here, using geo-

chemical paleo-reconstructions, a century-long relationship between wildfire magnitude and

marine phytoplankton production is established in a fire-prone region of Kimberley coast,

Australia. A positive correlation is identified between wildfire and phytoplankton production

on a decadal scale. The importance of wildfire on marine phytoplankton production is sta-

tistically higher than that of tropical cyclones and rainfall, when strong El Niño Southern

Oscillation coincides with the positive phase of Indian Ocean Dipole. Interdecadal

chlorophyll-a variation along the Kimberley coast validates the spatial connection of this

phenomenon. Findings from this study suggest that the role of additional nutrients from

wildfires has to be considered when projecting impacts of global warming on marine phy-

toplankton production.
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Marine phytoplanktons are critical primary producers,
contributing nearly half of the biosphere’s net primary
production1. The impact of global warming on marine

phytoplankton production (MPP) has become increasingly evi-
dent in the past few decades2, but how MPP is affected at dif-
ferent latitudes remains controversial3–5. For example,
assimilating ocean colour satellite data into a marine biogeo-
chemical model showed that global net MPP experienced a small
yet significant decline of −0.8 Pg C yr−1 or −2.1% decade−1 from
1998 to 20154. Ocean stratification enhanced by warming has
been invoked as a major mechanism to explain the decline in
MPP: warming modifies the mixed layer depth and reduces the
vertical mixing of the surface layer and underlying cooler
nutrient-rich waters below the permanent pycnocline6. Changes
in these physical processes lead to a reduced supply of nutrients
to the upper ocean and, consequently, have a negative impact on
MPP; for example, large-sized phytoplankton species, such as
diatoms, can significantly decrease in abundance and cause MPP
decline in the upper ocean7,8. However, although this might be
true in temperate oceans, it is not always the case in the tropics
and Polar Regions9,10. Generally, the rise in temperature and
changes in stratification in tropical oceans are smaller than in
temperate oceans because of their larger heat capacity and ther-
mal inertia9. Moreover, warming-induced secondary climate
effects, such as increased tropical cyclones and upwellings, can
compensate for nutrient depletion in the upper ocean by accel-
erating turbulent mixing and promoting rainfall11. Phytoplankton
metabolic capacity in the tropics is also higher than that at high
latitudes12. These factors can partially offset the negative effect of
greater stratification and even lead to a stage increase in MPP in
tropical oceans5,11.

In contrast to the impact of physical processes on MPP in
tropical oceans, the role of wildfires has received minimal
attention. The risk and severity of wildfires in the southern
hemisphere have greatly escalated on a global scale as a con-
sequence of rising temperatures and more frequent heat
waves13,14; for example, there was a distinct lengthening of the
fire weather season between 1980 and 2018 (Fig. 1a). The emis-
sions and ash from wildfire are rich in biogenic elements15, such
as nitrogen, phosphate, silicate, and iron, and exert a distinct
impact on atmospheric and aquatic environments16,17. For
example, particles emitted by wildfires account for approximately
62% of the global annual emissions of organic matter from bio-
mass burning16. The global flux of soluble charcoal from biomass
burning is estimated to be 40–250 million tons yr−1, and

approximately 26.5 million tons enter the ocean every year17.
Despite their importance, our understanding of the effect of
wildfires on the ocean is far less than our understanding of their
role in terrestrial ecosystems.

Northern Australia is one of the most fire-prone savanna
regions of the world (Fig. 1a). As with most of Australia, hot
weather associated with the El Niño Southern Oscillation (ENSO)
is the main driver of wildfires18; the risk and severity of wildfires
can increase when the Indian Ocean Dipole (IOD) is also in its
positive phase (pIOD). The drying effect of the easterly shift in
equatorial trade winds induced by pIOD can promote fire con-
ditions and lead to extra-strong wildfires19. For instance, during
the 2019–2020 bushfires, a globally unprecedented 21% of the
Australian temperate and broadleaf mixed forest biome
burned18,19. Hypothetical conjecture, when strong ENSO occurs
during the pIOD phase, escalating wildfires can increase the flux
of biogenic elements into the ocean via the pathways of atmo-
spheric deposition and riverine input and lead to higher MPP. To
prove their connection in the context of climate modes, it is
necessary to examine a decadal relationship between wildfire
magnitude and MPP.

Palaeocological methods can provide an effective pathway to
reconstruct the interdecadal correlations between environmental
and biological information. Total organic carbon (TOC), total
nitrogen (TN), and biogenic silicate (BSi) preserved in sediment
cores are important geochemical proxies to reconstruct MPP in
the upper ocean. TOC and TN reflect the accumulation of organic
matter in the seafloor, while BSi is a frustule component of dia-
toms and is often used as a proxy for diatom biomass in the ocean
because of its major contribution to MPP20,21. The effectiveness
of BSi as an indicator of MPP in northern Australia has been
validated using biomarkers22. Wildfire magnitude can be recon-
structed using black carbon (BC) contents preserved in the
sediments. BC is an organic, molecularly diverse product result-
ing from the incomplete combustion of biomass and fossil fuels23

and it decomposes slowly after burial in marine sediments as a
component of TOC17. Moreover, the source of BC from biomass
or fossil fuels can be distinguished via the ratios char/soot. In
high-temperature fossil fuel combustion (e.g. vehicle emissions
and industrial coal combustion) the ratio of char/soot ratio is less
than one, while for the relatively low-temperature biomass
burning (e.g. wildfire), the ratio of char/soot is much higher than
one24.

Therefore, we measured these geochemical parameters in three
sediment cores (ID: 185, 200, and KGR) collected from the

a b

Change in the length of the fire weather season from 1980 to 2018 (Days)

Kimberley

Fig. 1 Maps showing changes in the length of the fire weather season on a global scale and sampling location. a Map showing the change in the length
of the fire weather season between 1980 and 2018 (data from the ERA5 data set13,14; the green circle indicates the Kimberley coast, a fire-prone region in
northern Australia). b Sampling sites of core 185, core 200, and core KGR (red dots) in the Kimberley coast.
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Kimberley coast of northern Australia (Fig. 1b), aiming to
reconstruct a 100-year time-series relationship between wildfire
magnitude and MPP variation. Kimberley region is one of
the most fire-prone savanna regions of the world (Fig. 1a). The
Kimberley coastline and its river catchments are sparsely popu-
lated and remote, with relatively low levels of fuel consumption25.
The ratios char/soot in the three cores ranged 6.9 to 22.3 for core
185, from 9.8 to 26.2 for core 200, and from 12.3 to 31.7 for core
KGR, respectively (Supplementary Fig. 1), these numbers indicate
that the BC in marine sediments of Kimberley coast pre-
dominantly originates from wildfires. Thus, it is reasonable to
reconstruct a chronological relationship between wildfire mag-
nitude and MPP, using BC and BSi, respectively. The correlation
between BC and BSi and their characteristics over time are ana-
lysed in the context of IOD and ENSO climate modes (Fig. 2a),
referring to the fire record of the National Oceanic and Atmo-
spheric Administration (NOAA) during 1988–2018 and the
variation of satellite chlorophyll-a (Chl-a) of Kimberley coast
from 2003 to 2018. The importance of wildfire effect on phyto-
plankton production is statistically compared with that of tropical
cyclones and rainfall during pIOD and negative IOD (nIOD)
phases, respectively.

Results
The positive effect of wildfire on MPP. The period between 1920
and 2017 can be divided into three climate modes, including
nIOD phase (1920–1960), a fluctuation between nIOD and pIOD
phases (1960–2005), and pIOD phase (2005–2018) (Fig. 2a). The
three sedimentary cores (185, 200, and KGR) cover the time span
from the 1920s to 2010s, representing two phases of pIOD
dominance (1991–2017) and nIOD dominance (1926–1990).
There are two common characteristics in the three cores: (1) BSi
and BC displayed a strongly positive correlation in the three cores
during the phase of pIOD dominance (Table 1). (2) The fre-
quency and magnitude of RSI increased evidently in the three
cores during the phase of pIOD dominance (Fig. 2b–g); a com-
mon increase for TOC, TN, BSi, and BC appeared after 2010s
when strong ENSO conditions coincide with pIOD phase (Fig. 2).
These positive signals indicate an important linkage between
wildfire and MPP during pIOD phase.

During the phase of nIOD dominance (1926–1990), no positive
correlation was found between TOC, TN, BSi, and BC in Core
185 and KGR, but BC displayed positive correlations with TOC
(r= 0.56, p < 0.01) and TN (r= 0.56, p < 0.05) in Core 200
(Table 1). During the phase of pIOD dominance (1991–2017),
BSi and BC displayed strongly positive correlations with TOC
and TN in Cores 200, a positive correlation between BC and TOC
(r= 0.67, p < 0.05) was found in Core KGR (Table 1). In
comparison, the positive contribution of BSi and BC to organic
matter greatly increased during the phase of pIOD dominance.
After the 1990s, the contents of BSi and BC in the three cores
changed in a V-shape (Fig. 2c, e, g). These two peaks are basically
consistent with the time when strong ENSO (2003, 2015)
overlapped with pIOD (Fig. 2a). The synchronous variations
between BSi and BC in the pIOD phase indicate the impact of
wildfires.

The contents of TOC, TN, BSi, and BC in the three cores are
different. In comparison, they were higher in Core185 than in
Core 200 and KGR (Fig. 2b–g). This might be related to the
difference of grain sizes in the three cores and the variations of
freshwater discharge from the three rivers or differences in
catchment size or characteristics such as size soil and vegetation
type (Supplementary Fig. 2), e.g. the median grain size (d50) in
Core 185 showed a distinct decrease during 1998–2018,
corresponding to relatively lower BC (Fig. 2c); in contrast, d50

in Core 200 showed a distinct increase during the 1990s,
corresponding to relatively higher BC contents. However, these
differences in concentrations did not affect the positive correla-
tion between BSi and BC during pIOD phase. These results are
consistent with the findings in northern Australia, where there
was a 1.5–3 times increase in primary production between
the 1960s and 2010s, mainly contributed by diatoms and high
primary production occurred during the ENSO years22.

Observational data to verify palaeo-reconstruction. To verify
the accuracy of palaeo-reconstruction using geochemical meth-
ods, the relationship between BC and fire data in the catchment
from 1988 to 2018 was analysed. An archive of burnt areas,
mapped using NOAA imagery26, was used to examine fire extent
between 1988 and 2018 in the catchments (Fig. 3a–c), and these
can be usefully divided into the less intense early dry season (EDS:
January–June) fires and the more intense and potentially more
destructive late dry season (LDS: July–December) fires27. EDS
fires include managed burn regimes by government and local
indigenous authorities to reduce ground fuel loads intended to
prevent more severe fires later in the year. EDS-managed burns
were implemented in 2011 and are attributed with reducing the
LDS wildfires by about half although the total area burnt on
average remained the same28. This can be reflected by the relative
changes of EDS and LDS areas before and after 2011 (Fig. 3a–c):
increased EDS fires and decreased LDS fires.

EDS lower temperature managed burning results in less
complete combustion and thus produces more BC. Burnt areas
during the EDS showed an obvious increase during 2011–2017,
corresponding to increased BC in the three cores after 2010
(Fig. 2c, d, g). Moreover, during the EDS, high rainfall during
January to March and southward, offshore winds from March to
June would readily transport the emission and ash of wildfires
from the land to the sea (Fig. 3d). In contrast, northerly, onshore
winds and dry weather dominate during the LDS, which can
facilitate fire products to remain inland and reduce their
contribution to the sea. This helps to explain the low BC
contents in the sediments at the peak of the LDS fire around 2005
(Figs. 2 and 3). These findings demonstrate the effectiveness of
BC as a proxy of wildfire frequency and/or intensity over this
period and suggest that the impact of EDS fires on the ocean may
be more important than that of LDS fires.

In order to assess the broader spatial effect of this
phenomenon, we further analysed the relationships between
satellite Chl-a concentrations from 2003 to 2017 in the Kimberley
coast (total sites: 94,190) and the contents of BC and BSi in Core
200 (2003–2017) (Fig. 4). Chl-a was positively correlated with BC
at 34.4% of the sites (Fig. 4a) and with BSi at 54.0% of the sites
(Fig. 4b). These results suggest that wildfires may have an
extensive spatial effect on MPP in the Kimberley coast.

Discussion
The effects of increasing wildfires on biogeochemical cycling and
primary production in terrestrial ecosystems have attracted great
attention29, but are barely taken into account in marine ecosys-
tems. The results from geochemical reconstruction and observa-
tional data in the Kimberley coast indicated that wildfire plays a
role in MPP enhancement during the pIOD phase. North-western
Australia is one of the world’s tropical cyclone hot spots30.
Research investigating MPP increases in northern Australia has
mainly focussed on the contribution of intensified tropical
cyclones and rainfall forced by rising temperatures during ENSO
years22,31,32. Modelling results have suggested that tropical
cyclone‐induced phytoplankton blooms in north-western Aus-
tralia could contribute to 20% of annual primary production11.
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The climate data from the present study indicated that an
increase in wildfire, sea surface temperature (SST), tropical
cyclone frequency, and rainfall are either synchronised or lagged
during the pIOD phase (Fig. 2 and Supplementary Fig. 3).
Therefore, it is necessary to assess their relative importance in
explaining the variance in BSi over time.

Linear Fixed Effect Models and multiple linear regression were
applied for the data of BC, SST, TCF, and rainfall in explaining
the annual variance of BSi during ETS, pIOD, and nIOD,
respectively (Table 2). Model results from cores 185 and
200 showed the positive significance of BC for BSi during ETS; in
contrast, the significance of TCF and rainfall for BSi was lower
than BC and only appear in Core 200 (Table 2). Multiple linear
regression for cores 185 and 200 further showed that BC can
explain 36.8 and 8.2% of the variance in annual BSi in the nIOD
phase, respectively, but its importance increased to 47.6 and 62%
in the pIOD phase, respectively (Table 2). In contrast, SST, tro-
pical cyclones, and rainfall can explain more about the variance in
annual BSi in the nIOD phase (Table 2). The result is consistent
with the model evaluations in the eastern Indian Ocean between
1997 and 2009, which showed that the atmospheric deposition of
nutrients from wildfire accounted for a higher proportion of MPP
increase than that of wind-driven nutrient upwelling in pIOD
phases33.

Although the importance of wildfires to MPP in the pIOD
phase far exceeds our expectations, the phenomenon is reason-
able to some extent. Atmospheric and river transport of macro-
nutrients (e.g. nitrogen) and bio-essential metals (e.g. iron)
produced by wildfire emission have been considered important
contributors to marine primary productivity16,17. Albeit the
contribution of wildfire elements to the ocean biogeochemical
cycle remains unclear, limited observations have indicated their
significance. For example, atmospheric nitrogen deposition dur-
ing the 2006 Indonesian wildfires was three to eight times higher
than during non-fire periods and supported the observation of
continuously increasing MPP in Sumatra34. More recently,
anomalously widespread phytoplankton blooms were observed
from December 2019 to March 2020 in the Southern Ocean
downwind of Australia, attributed to aerosol transport of
2019–2020 Australia wildfires, and high iron contents were
observed in the aerosol samples35. Iron is an important trace
element stimulating phytoplankton growth in oligotrophic
oceans36. Wildfire is also a major source of soluble iron into the
ocean via atmospheric aerosols and river input37. In this study,
iron and potassium (a typical element in ash) contents in core 200
were measured and they showed distinct increases during pIOD
phase (Supplementary Fig. 5). Although the bioavailability of iron
and potassium can reduce their significance correlated with BC in
the ocean, their synchronous increase in the pIOD phase and
positive correlation (Iron: r= 0.55, p < 0.01; potassium: r= 0.72,
p < 0.01) with BC (Supplementary Fig. 5) indicates a connection
with wildfire occurrences.

The results highlight the need, when strong ENSO conditions
coincide with pIOD phase, to consider the contribution of wild-
fire to the functioning of oligotrophic tropical oceans, not just the
role of physical mixing mechanisms (e.g. upwelling, tropical
cyclones). It should be noted that the drying effect of the easterly
shift in equatorial trade winds induced by pIOD can promote fire
conditions during EDS (January–June) and have an important
impact on the ocean. The estimation of atmospheric iron
deposition shows that the contribution of iron from wildfire is
much higher than that of dust iron, particularly in the equatorial
Pacific, which has a significant impact on MPP37. Thus, it is
necessary to strengthen observations of atmospheric deposition
and riverine input for estimating the flux of wildfire elements
transported to the ocean. Such understanding will provide furtherT
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knowledge on the asymmetry of phytoplankton community
responses to climate change in the northern and southern
hemispheres.

Methods
Core collection and chronological analyses. The three sediment cores (cores 185,
200, and KGR) used in this study were collected from the northern Kimberley coast
(14°02′ S, 126°35′ E; 13°53′ S, 126°45′ E; 13°55′ S, 127°19′ E) (Fig. 1b), using a
vibrating head corer (Specialty Devices, Texas, US). Core 185 (=1.31 m long) was
extracted near to the King Edward River mouth in 20 m water depth, core 200
(=1.35 m long) was sampled near the Drysdale River mouth in 14 m water depth,
and core KGR was sampled near the King George River mouth in 11.8 m water
depth (Fig. 1b). The cores were sliced every 0.5 cm along the upper 10 cm, and the
rest of the cores were sectioned at 1 cm-thick intervals. All samples were stored in a
freezer at −20 °C before dating and chemical analyses.

Chronological analysis. The concentration profiles of 210Pb in the cores were
determined by measuring its granddaughter 210Po radioactive equilibrium using
alpha spectrometry38 at Edith Cowan University, Australia. The concentration of

excess 210Pb used to obtain the age models was determined as the difference
between the total 210Pb and 226Ra (210Pbsupported). The concentrations of 226Ra
were determined for selected samples along the cores through gamma spectro-
metry: calibrated geometries in HPGe detectors (CANBERRA, Mod. SAGe Well)
were used to measure the decay product of 226Ra, 214Pb, at 295 and 352 keV. These
concentrations agreed with the total 210Pb concentrations at depths below the
excess 210Pb horizons (Supplementary Fig. 4). For Core 185 and 200, the Constant
Flux: Constant Sedimentation (CF:CS) model39 was applied below the mixed layer
for the 14 to 28 cm sediment core sections, obtaining an average sedimentation rate
of 0.247 ± 0.018 g cm−2 yr−1 for core 185, and 0.338 ± 0.017 g cm−2 yr−1 for core
200. For Core KGR, the Constant Rate of Supply (CRS) model40 was applied,
obtaining sedimentation rates varying from 0.03 to 0.20 g cm−2 yr−1.

Geochemical analysis. Grain sizes were measured to understand their impact on
organic matter preservation, using a Malvern Mastersizer 2000F Laser Particle
Sizer. Samples were pre-treated using 10% H2O2 and 10% HCl to remove organic
matter and carbonate, respectively. Then, samples were dispersed in a 0.05%
(NaPO3)6 solution to separate particles for measurement.

The TOC and TN contents in the sediment core were measured using an
elemental analyser (FlashSmart NC Soil, Thermo Scientific). Freeze-dried sediment

Fig. 3 Burnt areas of early dry season (EDS: January–June) and late dry season (LDS: July–December) in the catchment of King Edward, Drysdale, and
King George Rivers from 1988 to 2017 and seasonal patterns of wind and rainfall in the catchment. a EDS and LDS fires in the catchment of King
Edward River. b EDS and LDS fires in the catchment of Drysdale River. c EDS and LDS fires in the catchment of King George River. d Climatological monthly
wind vector and rainfall during EDS and LDS periods.
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samples were homogenised by grinding and then acidified with 2M HCl to remove
inorganic carbonate. The acidified samples were then dried in an oven at 60 °C for
1 day, and then washed using Milli-Q water before measurement. Aliquots of
approximately 50 mg of the pre-treated samples were used for analysis, and the
absolute error for the measurements was <0.3%.

BSi measurements were performed using an INESA-L8 ultraviolet-visible
spectrophotometer, according to the Silicon-Molybdenum Blue method41,42.
Solutions of 10% H2O2 and 10% HCl were added to freeze-dried and well-milled
sediment samples (0.1 g) to remove any organic matter and carbonate. The washed
and dried samples were digested with 40 ml 2M Na2CO3 at 85 °C for 5 h. At each
hour, 0.1 ml of the solution was extracted for absorbance measurements. The
volume of each sample was determined to be 10 ml with Milli-Q water, and then
add 0.2 ml of HCl, 0.4 ml of ammonium molybdate solution (10.0 g/100 ml), 0.4 ml
of ethanedioic acid solution (7.5 g/100 ml), and 0.4 ml of L-Ascorbic acid solution
(5.0 g/100 ml) to make the reaction of silicon-molybdenum blue. The absorbance of

molybdenum blue was measured at 660 nm with pure water as a reference, and
linear regression was performed for each sample through five absorbance values to
estimate the absorbance at t= 0 h. The standard curve was drawn according to the
known silicon concentration in the solution and the corresponding absorbance
value42. The concentration of BSi in the sediment was calculated from the
concentration of silicon in the solution and the pre-weighted mass of the sediment
sample.

Sedimentary BC was quantified using the wet-chemical pre-treatment
integrated with the thermal optical reflectance (TOR) method43, and the TOR
method has been proven to effectively discriminate between char and soot44,45, the
two subtypes of BC with different formation mechanisms and physicochemical
properties. Prior to the wet-chemical pre-treatment, the sediment samples were
firstly thawed, freeze-dried, and homogenised. Approximately 0.20 g of each
sample was then digested with HCl/HF to eliminate the inorganic carbonates,
metals and metal oxides, and silicates. The remaining residue was filtered through

a b

Pearson correlation coefficient
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Fig. 4 Spatial distribution of Pearson correlation coefficients between Chl-a, BC, and BSi during 2003–2017. a Chl-a and BC. b Chl-a and BSi. (two-sided
analysis, n= 17; Inverted black triangles on the colour bar showing significance (p < 0.05) when the correlation coefficients were below −0.456 and over
0.456).

Table 2 Relative importance in predicting marine phytoplankton production (MPP).

Estimate Std. error t value p value Relative importance (%)

Cores 185/200 Cores 185/200 Cores 185/200 Cores 185/200 Cores 185/200

ETS (1926–2017)
Core 185: r2= 0.217; p= 0.012;
F4,52= 3.594
Delta_AICc= 14.24
AICcWt= 0.00
Core 200: r2= 0.489; p < 0.001;
F4,49= 11.71
Delta_AICc= 0.00
AICcWt= 1.00

Intercept 3.790/0.908 4.333/1.313 0.875/0.691 0.386/0.493 —
BC 0.495/0.164 0.169/0.033 2.924/4.994 0.005/<0.001 90.03/87.72
SST −0.105/0.007 0.144/0.047 −0.730/0.140 0.468/0.889 4.76/2.61
TCF 0.026/−0.024 0.026/0.011 0.990/−2.298 0.327/0.026 4.45/6.07
Rainfall −0.0002/0.0001 0.0001/0.00004 −1.640/2.688 0.107/0.010 0.76/3.60

pIOD (1991–2017)
Core 185: r2= 0.289; p= 0.129;
F4,20= 2.031
Delta_AICc= 0.00
AICcWt= 0.98
Core 200: r2= 0.543; p < 0.001;
F4,23= 6.821
Delta_AICc= 41.83
AICcWt= 0.00

Intercept 5.264/3.308 6.648/2.734 0.792/1.210 0.438/0.239 —
BC 0.280/0.201 0.207/0.048 1.351/4.155 0.192/<0.001 47.62/61.98
SST −0.137/−0.082 0.220/0.097 −0.624/−0.841 0.539/0.409 4.90/1.94
TCF 0.066/0.005 0.038/0.018 1.769/0.288 0.092/0.776 45.48/1.07
Rainfall −8.30 × 10−5/8.06 × 10−5 1.22 × 10−4/5.52 × 10−5 −0.682/1.461 0.503/0.158 1.99/35.01

nIOD (1926–1990)
Core 185: r2= 0.038; p= 0.890;
F4,28= 0.277
Delta_AICc= 11.02
AICcWt= 0.00
Core 200: r2= 0.298; p= 0.087
F4,22= 2.338
Delta_AICc= 40.67
AICcWt= 0.00

Intercept −2.142/3.527 5.855/2.061 −0.366/1.711 0.717/0.101 —
BC 0.159/−0.016 0.298/0.108 0.532/−0.152 0.599/0.881 36.78/8.24
SST 0.153/−0.072 0.205/0.069 0.749/−1.040 0.460/0.310 46.10/7.54
TCF −0.002/−0.027 0.035/0.017 −0.065/−1.576 0.949/0.129 10.62/61.69
Rainfall −3.26 × 10−5/1.51 × 10−4 1.64 × 10−4/7.65 × 10−5 −0.199/1.974 0.844/0.061 6.49/22.54

Linear Fixed Effect Models and multiple linear regression, with black carbon (BC), sea surface temperature (SST), tropical cyclones frequency (TCF), and rainfall in explaining the annual variance of
biosilicate (BSi) during the entire time series (ETS: 1926–2017), the phases of positive Indian Ocean Dipole (pIOD) dominance (1991–2017) and negative Indian Ocean Dipole (nIOD) dominance
(1926–1990), respectively, for Core 185 and Core 200. AIC (Akaike information criterion) model outputs Delta-AICc (difference in AIC score between the best model and the model being compared) and
AICcWt (proportion of the total amount of predictive power provided) were used to identify the best model for each core and period (bold numbers indicate the variables contribute greatly to BSi or are
significant in Linear Fixed Effect Models).
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pre-fired (at 450 °C for 4 h) 47 mm-diameter quartz fibre filters (Whatman) and
dried in a constant temperature and humidity chamber following standard
methods45. BC was separated and quantified on a thermal optical carbon analyser
manufactured by Desert Research Institute, Chinese Academy of Sciences. During
the analysis, a 0.5 cm2 circular filter punch was placed in an oven. First, the oven
was heated in 100% He environment for pyrolysis of organic carbon (defined as
OCPyro) and it can be monitored by the 635 nm diode laser. Then the analytical
atmosphere was shifted to a mixture of 2% O2 and 98% He, three BC sub-fractions
(defined as BC1, BC2, and BC3) will be generated respectively in three temperature
stages (580, 740, and 840 °C). All released carbon fractions were oxidised to CO2

with MnO2 as the catalyst and estimated using a non-dispersive infrared detector
(NDIR). BC was calculated as the sum of three BC sub-fractions minus the OCPyro

(i.e. BC= BC1+ BC2+ BC3−OCPyro). For quality assurance and control (QA/
QC), a random selection and analysis of 10% of the total filters showed that the
relative standard deviation (RSD, %) of the measured BC concentration from
different positions within a similar filter was less than 10%, demonstrating the even
distribution of the residues onto the filters. In addition, blanks and replicate
samples were analysed simultaneously at a frequency of one per ten samples. The
blank samples yielded non-detectable BC, and the RSD of replicate analysis
averaged 5%.

The thermograms of a series of char and soot reference materials show that char
evolves almost exclusively in the element carbon one (EC1) stage and soot in the
EC2 and EC3 stages46,47. Char content is thus calculated as EC1 minus OCPyro and
soot content as EC2 plus EC3. The high-temperature fossil fuel combustion, such
as motor vehicle emissions and industrial coal combustion, show a char/soot ratio
of typically less than 1.0, while the relatively low-temperature biomass burning
yielded a char/soot ratio significantly higher than 1.0, ranging from 1.2 to ~68
(depending on the fuel type, combustion temperature, air/fuel ratio, and so forth)
(Han et al., 2010). The ratios char/soot in the three cores ranges from 6.9 to 22.3 for
core 185, from 9.8 to 26.2 for core 200, and from 12.3 to 31.7 for core KGR, with
averages of 13.4 ± 3.3, 15.5 ± 3.5, and 21.0 ± 4.4 respectively (Supplementary Fig. 1).
Given the Kimberley characteristics, where there is sparse population, low human
activity, and massive distance to major cities, together with the relatively higher
char/soot ratios, BC in the three cores is dominantly from biomass burning.

Potassium and iron were measured following EPA method 305248. For each
sample, 0.25 g dried and homogenised bulk soil was digested at 240 °C using a
mixture of concentrated HNO3, HF, and HCl. After total digestion, the samples
were diluted with 1% HCl prior to injection into the ICP-MS. Reagent blanks and
standard reference materials NIST 2702 (Inorganics in Marine Sediment) and
MESS-3 (National Research Council of Canada) were run in parallel to the
samples.

Climate data and satellite Chl-a. The dipole mode index is used to indicate the
IOD phase, which was calculated by the anomalous SST gradient between the
western equatorial Indian Ocean (50°E–70°E and 10°S–10°N) and the south-
eastern equatorial Indian Ocean (90°E–110°E and 10°S–0°N), based on the ERSST
V5 dataset (https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html). The Niño
3.4 SST index indicates ENSO, which was calculated by the average SST over the
area 5°S–5°N and 170°E–120°W. SST and tropical cyclones from 1920 to 2017 on
the Kimberley coast were obtained from the HadISST1 dataset (https://
www.metoffice.gov.uk/hadobs/hadisst/) and Australian Tropical Cyclone Database
(http://www.bom.gov.au/), respectively. Rainfall data were obtained from two
weather stations in Kalumburu (14.30°S, 126.65°E; http://www.bom.gov.au/). The
monthly mean wind vector was obtained from NCEP Reanalysis data (https://
psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). Fire records with a resolution
of 1.1 km pixels were obtained from NOAA Monthly Fire Burnt Areas 1988–2018.
Satellite Chl-a data from 2003 to 2017 on the Kimberley coast were MODIS Aqua
4 km Chlorophyll-a level3 products derived from the Asia-Pacific Data Research
Center public dataset (http://apdrc.soest.hawaii.edu/data/data.php).

Statistical analysis. The correlations between each pair of variables in Table 1
were detected by Pearson correlation analysis, with r representing the correlation
coefficient and p representing the level of significance (significant: p < 0.05; highly
significant: p < 0.01; not significant: p > 0.05). Linear Fixed Effect Models, using
Ime4 script in R49 and multiple regression analysis, were used to quantify the
relative importance of each variable in predicting BSi in Table 2. AIC (Akaike
information criterion) model selection was used to distinguish among a set of
possible models describing the relationships among the variables studied using
AICcmodavg script in R50. Normality and homoscedasticity of model residuals
were estimated visually.

The sequential t test analysis of regime shifts (STARS)51 was used to examine
the shifting time and magnitude of geochemical parameters in Fig. 2. The STARS
algorithm converted to VBA for Excel is available from
www.BeringClimate.noaa.gov. Briefly, the method uses a t test to determine if
sequential records in a time series depart significantly (p < 0.05) from mean values
in the preceding period (cut-off length set to 10 years). The regime shift index (RSI)
represents a cumulative sum of the normalised anomalies, indicating the
magnitude of the shift. The spatial distribution of the Pearson correlation
coefficients in Fig. 3 was determined based on the annual Chl-a in each grid

(0.01° × 0.01°) between 2003 and 2017, corresponding to the annual contents of BC
and BSi in the sediment core.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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