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Objective. Increasing studies suggest that necroptosis is correlated with tumor progression. And aberrant microRNA (miRNA)
expression plays a vital role in various tumors. ,us, we are committed to exploring a necroptosis-associated miRNA signature to
serve as a prognostic biomarker in colon adenocarcinoma (COAD). Data Sources and Methods. In the current study, ,e Cancer
Genome Atlas (TCGA) database was used to download the miRNA and mRNA expression profiles and clinical information of
samples. All patients were stochastically assigned to TCGA-train and TCGA-test clusters. Subsequently, we established
a prognostic signature comprised of necroptosis-related miRNAs (NR-mis) via LASSO-Cox regression and then developed
a nomogram signature composed of the prognostic signature and clinical factors. Corresponding prognostic values were
evaluated. Functional analysis, tumor microenvironment (TME), and chemosensitivity of risk subgroups were also identified.
Results. ,e prognostic signature based on miR-141-3p, miR-148a-3p, miR-16-5p, and miR-200a-5p was closely associated with
overall survival (OS) of samples and tumor metastasis in COAD. ,e Area Under Curve (AUC) was 0.605, 0.721, and 0.752 in
TCGA-train cluster , 0.661, 0.613, and 0.695 in the TCGA-test cluster at 1, 3, and 5 years, respectively.,e C-index for nomogram
signature was 0.754. Functional analysis showed the remarkable enrichment of the signature-dependent miRNAs in tumor
progression and immune response. And two risk subgroups were correlated with the distinct immune infiltration and immune
checkpoints. In addition, the high-risk subgroup is more sensitive to cisplatin, doxorubicin, etoposide, and gemcitabine.
Conclusions. Necroptosis-related miRNAs play a crucial role in the prognosis, metastasis, immune status, and drug sensitivity
in COAD.

1. Introduction

As the primary cause of cancer-associated deaths globally,
colon cancer ranks fourth in incidence and fifth in mortality
among all tumors [1]. With an aging and growing pop-
ulation, economic development, and the westernization of
diet and lifestyle, colon cancer has an increasing incidence
[2, 3]. ,e majority of colon cancers are colon adenocar-
cinomas (COAD) originating from epithelial cells of the
colon mucosa [4]. Approximately 50%–60% of patients
diagnosed with colon and rectal cancer develop metastasis,
and 80%–90% of these patients have unresectable metastatic
liver disease, which is the main cause of most deaths [5].

Although extensive research and clinical trials have been
conducted on the diagnosis and treatment of colon cancer,
the therapeutic capacity of existing treatment methods is still
very low [6]. ,e OS rate for 5 years in patients with colon
cancer undergoing chemotherapy is only 10% [7]. So, it is
urgent to understand the pathogenesis of colon cancer and
identify predictive biomarkers to distinguish patients with
high metastasis and death risk, which may contribute to
future individualized treatment strategies and improve the
survival outcomes of patients.

Necrosis was initially thought to be the uncontrolled
random death of cells. Nowadays, it is reported that nec-
roptosis, termed “programmed necrosis,” can be inducible
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and proceed regularly [8]. Necroptosis is a kind of lytic,
inflammatory cell death, which is usually characterized by
morphological features of necrosis, such as plasma mem-
brane rupture, edema of cytoplasm and organelles, and
overflow of cell components in the microenvironment
[9, 10]. Necrosis can be caused by TNF receptor superfamily,
T cell receptor, interferon receptor, Toll-like receptor, cell
metabolism and genotoxic stress, or stimulation of various
anticancer drugs [11, 12]. ,e activation of receptor-
interactingserine-threonine kinase 1 (RIPK1) and
receptor-interactingserine-threonine kinase 3 (RIPK3)
phosphorylates the executioner molecule mixed lineage
kinase domain-like (MLKL) to generate cell membrane
rupture, which represents the initial stage of necroptosis
[12]. ,en necrotic cells release immunogenic cellular
content, including damage-associated molecular patterns
(DAMPs), IL-1β, and high mobility group box-1 (HMGB1),
to trigger extreme proinflammatory processes [10, 13].,ere
are plenty of negative regulatory factors for necroptosis,
including caspase-8 and Fas-associated protein with death
domain (FADD) [12]. Inactive caspase-8 or FADD and
aberrant RIPK3 activation in intestinal epithelial cells could
cause intestinal inflammatory disease [14, 15].

Recent studies show that necroptosis is related to tumor
progression, metastasis, and immune monitoring [16].
However, the relationships between necroptosis and cancer
prognosis are not particularly clear. For that necroptosis has
both antitumorigenic and protumorigenic roles [17].
Downregulation of expression of several key necroptosis
mediators in cancer has been reported, such as CYLD,
MLKL, and RIPK3. Low expression of MLKL protein was
found to be associated with reduced overall survival in
patients with colon, stomach, and pancreatic cancers [18].
Reactivation of these down-regulated necroptosis factors
may be a potential anticancer therapy [19]. Necroptosis was
an essential mechanism to restrict tumormetastasis [11]. For
example, shikonin has been found to significantly reduce
lung metastasis of osteosarcoma by inducing RIP1- and
RIP3-mediated necroptosis [11]. Resibufogenin was found
to inhibit the growth and metastasis of colorectal cancer by
RIP3-dependent necroptosis [20]. However, studies have
also shown that necroptosis can promote cancer. For ex-
ample, necroptosis was found to promote pancreatic cancer
cell metastasis by inducing macrophage-induced adaptive
immune suppression [21]. And the necroptosis of cancer
cells in the primary tumor can drive the metastasis and
survival of adjacent cancer cells by inducing an in-
flammatory environment, attracting immune cells, or re-
leasing cytokines [18]. For example, human and mouse
melanoma cells induce endothelial cell necroptosis, pro-
moting tumor exudation and metastasis through amyloid
precursor protein (APP) and its receptor DR6.

As endogenous ∼22 nt RNA, miRNAs play important
regulatory roles in gene expression by recognizing homol-
ogous sequences and interfering with transcription, trans-
lation, or epigenetic processes [22, 23]. Cellular miRNAs are
involved in many important cellular activities, such as cell
growth, differentiation, development, and apoptosis [23, 24].
Cancer especially has been the hotspot of miRNA research.

More and more studies have shown that microRNAs play an
important role in tumor biology, promoting tumor growth,
invasion, angiogenesis, and immune escape [25], indicating
their potential functions as diagnostic, prognostic, and
predictive biomarkers [26]. Moreover, increasing research
show that miRNAs participate in the necrotic pathway via
targeting key regulators such as MLKL and RIP3 in all kinds
of cancers, including colon cancer [27].

As mentioned above, we know that necroptosis is
necessary in tumor development and progression. In this
study, necroptosis-related miRNAs were employed to de-
velop a prognostic signature in COAD, whose predictive
ability was then verified. And the different performance of
tumor microenvironment (TME) and chemosensitivity
between the high-risk (HR) and low-risk (LR) subgroups
were explored.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. TCGA-COAD
dataset including miRNA sequencing profile of 450 COAD
tissues and 8 normal colon tissues and clinical information
of samples were download from ,e Cancer Genome Atlas
(TCGA). ,en miRNA expression data was integrated with
clinical information of all samples. All the normal patients
and tumor patients without overall survival time or survival
status were removed, and 433 COADpatients were obtained,
which all served as the TCGA-COAD cluster. ,en we
stochastically grouped 217 patients as a TCGA-train cluster
and 216 patients as a TCGA-test cluster with the “caret” R
package [28]. Table 1 presents the clinical characteristics of
the samples. Moreover, the mRNA sequencing profile in the
TCGA-COAD dataset was also prepared for further func-
tional analysis.

2.2. Identification of Differentially Expressed Necroptosis-
Related miRNAs (DE-NR-mis). NR-mis were obtained
from a prior review [29]. “Limma” package [30] was used to
identify the differentially expressed NR-mis (DE-NR-mis)
between tumor and normal tissue (false discovery rate
(FDR)< 0.05) and “pheatmap” package was employed to
visualize [31]. ,en correlation network of DE-NR-mis was
plotted using the R package “reshape2” [32] and “igraph”
[33]. ,e relationship between patients’ survival time and
DE-NR-mis was evaluated with Univariate and Multivariate
Cox regression analysis.

2.3. Development and Evaluation of the Prognostic Signature.
LASSO Cox regression analysis was performed on candidate
miRNAs to verify hub miRNAs and generate a prognostic
signature using “glmnet”[34] and the “survival” package
[35]. ,e formula is as shown as follows:

risk score � ΣXi∗Yi. (1)

X is the expression of miRNA and Y is the regression
coefficient. ,e patients with COAD were grouped into
high-risk (HR) and low-risk (LR) subgroups according to
the median risk score value. ,e “Rms” package was utilized
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plot a nomogram diagram. ,e distribution of risk sub-
groups was analyzed by t-SNE and PCA approaches using
the “Rtsne” [36] and “ggplot2” [37] packages. Overall sur-
vival time (OS) of samples was present on the basis of
Kaplan–Meier (KM) survival analysis with the “survival”
package. ROC curves, as well as their areas under the curve
(AUC), were employed to assess the specificity and sensi-
tivity of the prognostic signature using the “timeROC”
package [38]. Calibration curves were applied via the “rms”
package to assess the alignment between predicted survival
and actual survival. ,e risk heatmap plotted by “limma”
and the “pheatmap” packages showed the expression level of
four prognostic miRNAs and the distribution of clinical
characteristics between the subgroups. Finally, univariate
and multivariate Cox regression analyses were performed to
evaluate the correlation between patients’ survival and the
risk score as well as clinical characteristics.

2.4. Nomogram Establishment and Comparison with Other
Signatures. A nomogram signature consisting of the clinical
factors and the prognostic signature was developed to assess
patients’ outcomes. ,en we randomly selected a ferropto-
sis-related signature [39], a pyroptosis-related signature [40]
and an autophagy-related signature [41] associated with
COAD on PubMed. To evaluate the prognostic value of each
signature, Harrell’s concordance index (C-index) and the
restricted mean survival (RMS) curve analysis were

performed with the “survcomp” package [42].,eC-index is
the probability that the predicted outcomes are in accor-
dance with the actual observed outcomes of samples. RMS
was the expectation of life at 10 years of patients and was
equivalent to the area under the survival curve. ,e per-
formance of the signatures was assessed by the ratio of RMS
time between the HR and LR subgroups. A greater prog-
nostic difference can be represented by a higher RMS time
ratio [43].

2.5. Gene Set Enrichment Analysis. To further analyze the
biological functions altered by the prognostic signature in
COAD, we used “clusterProfiler” and “enrichplot” [44]
packages to perform GSEA enrichment analysis on the
mRNA expression profiles of patients in the HR and LR
subgroups, with genesets “c2.cp.kegg.v7.4.symbols.gmy” and
“c5.go.v7.4.symbols.gmt” as the reference. ,e functions
enriched by the top-ranked genes in the HR and LR sub-
groups were detected, respectively. ,e statistical threshold
was FDR <0.05.

2.6. Target Genes Prediction and Annotation. To clarify the
possible molecular functions of miRNAs that constitute the
prognostic signature, we predicted target genes on the
miRwalk website [45]. Only overlapped targets experi-
mentally validated as well as predicted by TargetScan and

Table 1: Clinical information of samples in TCGA-train and TCGA-test clusters.

Clinical
characteristics Type Total (TCGA-COAD) TCGA-train cluster TCGA-test cluster P.value

Age
0.302

≤65 180 (41.57%) 96 (44.24%) 84 (38.89%)
>65 253 (58.43%) 121 (55.76%) 132 (61.11%)

Gender
0.884

Female 209 (48.27%) 106 (48.85%) 103 (47.69%)
Male 224 (51.73%) 111 (51.15%) 113 (52.31%)

Stage

0.2381
Stage I 72 (16.63%) 30 (13.82%) 42 (19.44%)
Stage IA 1 (0.23%) 0 (0%) 1 (0.46%)
Stage II 166 (38.34%) 91 (41.94%) 75 (34.72%)
Stage III 121 (27.94%) 57 (26.27%) 64 (29.63%)
Stage IV 62 (14.32%) 34 (15.67%) 28 (12.96%)
Unknown 11 (2.54%) 5 (2.3%) 6 (2.78%)

T Stage

0.2744
T1 10 (2.31%) 5 (2.3%) 5 (2.31%)
T2 73 (16.86%) 30 (13.82%) 43 (19.91%)
T3 294 (67.9%) 157 (72.35%) 137 (63.43%)
T4 55 (12.7%) 25 (11.52%) 30 (13.89%)
Tis 1 (0.23%) 0 (0%) 1 (0.46%)

M Stage

0.5928
M0 315 (72.75%) 158 (72.81%) 157 (72.69%)
M1 62 (14.32%) 34 (15.67%) 28 (12.96%)

Unknown 56 (12.93%) 25 (11.52%) 31 (14.35%)

N stage

0.6187
N0 254 (58.66%) 128 (58.99%) 126 (58.33%)
N1 101 (23.33%) 47 (21.66%) 54 (25%)
N2 78 (18.01%) 42 (19.35%) 36 (16.67%)
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miRDB were selected. For selected targets, Kyoto Ency-
clopedia of Genes and Genomes (KEGG) and Gene On-
tology (GO) analysis were performed with the
“clusterProfiler” and visualized with the “ggplot2” package.
,e GO functional analysis included molecular function
(MF), cellular components (CC), and biological processes
(BPs). Moreover, DO analysis was also performed using the
“clusterProfiler” [46] and “DOSE” [47] packages. ,en, KM
survival analysis was performed on all target genes, and
a gene prognostic model was established based on target
genes related to OS of samples, using the same method
as above.

2.7. Tumor Microenvironment (TME) Analysis. ,e “esti-
mate” [48] package was used to calculate TME scores.
Accordingly, the relationships between the risk score and
TME scores were tested. ,en single-sample gene set en-
richment analysis (ssGSEA) was performed with the
“GSVA” [49] package to compare immune cell infiltration
and immune function in risk subgroups. Potential immune
checkpoints retrieved from previous studies were employed
to explore the connections between immune check points-
related genes and risk score [50–52]. ,en the relationship
between the risk score and several key immune regulators
was evaluated.

2.8. Effect of the Prognostic Signature on Sensitivity to
Chemotherapy. We calculated the half maximum inhibitory
concentration (IC50) of six chemotherapeutic drugs using
the “pRRophetic” package [53], including cisplatin, doxo-
rubicin, etoposide, cytarabine, mitomycin C, and gemcita-
bine. ,e IC50 of the HR and LR subgroups were compared
based on the Wilcoxon signed-rank test.

2.9. Statistical Analysis. DEGs were identified using an
empirical Bayesian approach with a threshold of FDR <0.05.
LASSO COX regression analysis was used to select variables
based on penalty method and construct a penalty function to
obtain a more refined model. ,e Cox proportional-hazards
model was applied to calculate the risk score [54]. ,e
Kaplan–Meier analysis and the two-sidedlog-rank test were
used to estimate the overall survival rate. Correlation
analysis were analyzed using the Pearson and Spearman
method.,e Kruskal–Wallis test and theWilcoxon test were
used for comparative studies. Data analysis in this study was
conducted with the corresponding package in R software.
Cytoscape was used to visualize network diagrams. P val-
ues< 0.05 were considered significant, unless otherwise
specified.

3. Results

3.1. Identification of Candidate Prognostic NR-mis. A
graphical abstract for this study is demonstrated in Figure 1.
Totally, thirteen NR-mis were retrieved from prior review
[29], nine of which exist in the TCGA-COAD miRNA
expression profile (miR-331-3p, miR-148a-3p, miR-7-5p,

miR-141-3p, miR-425-5p, miR-200a-5p, miR-223-3p, miR-
16-5p, miR-500a-3p). ,e expression abundance of these
miRNAs between the tumor and normal tissues was com-
pared (Table 2), and seven DE-NR-mis were identified that
were all upregulated in tumor tissues (Figure 2(a)). ,e
correlation network showed that DE-NR-mis had a positive
correlation with each other in COAD (Figure 2(b)). ,en
seven DE-NR-mis were analyzed by univariate and multi-
variate COX regression, hsa-miR-141-3, hsa-miR-148-3p
and hsa-miR-16-3p had prognostic value as hazard factors in
univariate COX regression analysis (Figure 2(c)), while hsa-
miR-200-3p had prognostic value as a protective factor in
multivariate COX regression analysis (P< 0.05)
(Figure 2(d)). ,ese NR-mis have been found relevant to
cancer metastasis in previous studies [29]. To prevent
omissions, DE-NR-mis were all considered as candidate
prognostic miRNAs.

3.2. Development of the NR-mis Prognostic Signature in the
TCGA-Train Cluster. A LASSO Cox regression analysis was
utilized to construct the prognostic signature based on DE-
NR-mis in the TCGA-train cluster (Figures 2(e) and 2(f )).
miR-141-3p, miR-148a-3p, miR-16-5p, and miR-200a-5p
were ultimately included. ,e final formula is shown as
follows:

risk score � (Xhsa − miR − 141 − 3p × 0.1034)

+ (Xhsa − miR − 148a − 3p × 0.2562)

+ (Xhsa − miR − 16 − 5p × 0.1769)

+ (Xhsa − miR − 200a − 5p × −0.2019).

(2)

Using the same equation, the risk scores in the TCGA-
test cluster were also calculated. According to the median
risk score, the samples were divided into HR and LR sub-
groups. ,e predictive process of the signature is visualized
by a nomogram (Figure 2(g)).

3.3. Assessment of the Prognostic Signature. We plotted the
scattergram of risk score and survival status between the HR
and LR groups (Figures 3(a)–3(b)). In comparison to LR
group, the HR group had higher risk scores and
shorter survival times. t-SNE and PCA analyses showed
a clear distinction of samples in the risk subgroups
(Figures 3(c)–3(f )). KM survival analysis proved the HR
subgroup had a worse OS than the LR subgroup in the
TCGA-train (p � 0.002) and TCGA-test cluster (p � 0.017)
(Figures 3(g)–3(h)). ,e ROC-AUC at one, three, and five
years was 0.605, 0.721, and 0.752 in TCGA-train cluster
(Figure 3(i)), 0.661, 0.613, and 0.695 in the TCGA-test
cluster (Figure 3(j)). A good consistency was observed be-
tween the predicted OS of the prognostic signature and
actual OS in calibration curves (Figure 3(k)–3(l)). Sub-
sequently, we validated the prognostic signature in the
TCGA-COAD cluster. ,e heatmap indicated a visible
difference in the metastasis rate between the HR and LR
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subgroups (Figure 4(a)).,e risk score of metastatic samples
is higher than that of without metastatic. (p< 0.05)
(Figure 4(b)). Univariate and multivariate analyses indicated

that the signature was an independent risk factor
(Figure 4(c)–4(d)). Significant survival differences were also
found in subgroups stratified by clinicopathological

TCGA-COAD miRNA
data

Necroptosis-related
miRNAs Clinical data

LASSO-COX regression

Necroptosis-related miRNA signature
TCGA-COAD patients

High-risk

Construction and validation of the
nomogram signature

Low-risk

Validation of the prognostic signature

Functional analysis
Tumor immune

microenvironment Chemosensitivity

Figure 1: ,e graphical abstract of the current study.
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Table 2: ,e expression level of necroptosis-related miRNAs between normal colon tissues and COAD tumor tissues.

Necroptosis-related miRNA Normal tissues Tumor tissues logFC FDR
miR-141-3p 4.86 11.35 1.22 3.27E-06
miR-148a-3p 12.22 17.33 0.5 3.27E-06
miR-16-5p 5.2 10.7 1.04 3.27E-06
miR-200a-5p 10.05 12.22 0.28 2.30E-05
miR-223-3p 5.67 9.53 0.75 5.07E-06
miR-331-3p 6.02 5.69 -0.08 0.269169
miR-425-5p 7.61 9.75 0.36 7.17E-05
miR-500a-3p 9.06 9.68 0.1 0.077986
miR-7-5p 1 4.95 2.31 3.27E-06

Type Type
N
T

20

15

10

5
hsa-miR-7-5p

hsa-miR-148a-3p

hsa-miR-223-3p

hsa-miR-425-5p

hsa-miR-200a-5p

hsa-miR-141-3p

hsa-miR-16-5p

(a)

1 0.5 0 -0.5 -1

(b)

hsa–miR–141–3p 0.0035

P Hazard ratio

1.3057 (1.0918-1.5615)

1.3362 (1.0891-1.6393)

1.3962 (1.1076-1.7598)

0.9668 (0.8136-1.1488)

1.0642 (0.9681-1.2073)

1.1267 (0.9558-1.3283)

1.0619 (0.9304-1.2121

0.0055

0.0047

0.7012

0.3336

0.1552

0.3733

0.71 1.0
Hazard ratio

1.41 2.0
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hsa–miR–16–5p

hsa–miR–200a–5p

hsa–miR–223–3p

hsa–miR–425–5p

hsa–miR–7–5p

(c)

`hsa-miR-141-3p´ 0.1275

0.0601

0.4318

0.0032

0.7291

0.6231

0.5453

0.7241 (0.5841-0.8977)

1.0280 (0.8792-1.2020)

0.9376 (0.7250-1.2125)

1.0556 (0.8859-1.2577)

1.1453 (0.8166-1.6064)

1.2414 (0.9400-1.6395)

1.3360 (0.9878-1.8070)

P-value Hazard ratio

`hsa-miR-148a-3p´

`hsa-miR-16-5p´

`hsa-miR-200a-5p´

`hsa-miR-223-3p´

`hsa-miR-425-5p´

`hsa-miR-7-5p´

0.50 0.71 1.0
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1.41 2.0
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Figure 2: Continued.
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Figure 2: Identification of differentially expressed necroptosis-related miRNAs and construction of the prognostic signature. (a) Heatmap
of the differentially expressed necroptosis-relatedx miRNAs. (b),e relational network diagram of the differentially expressed necroptosis-
related miRNAs. (c, d) Significance and hazard ratio (95% CI) values of differentially expressed necroptosis-related miRNAs in univariate
Cox regression (c) and multivariate COX regression (d). (e) LASSO COX regression of the 4 differentially expressed necroptosis-related
miRNAs. (f ) Plots of the cross-validation error rates. (g) ,e nomogram for prognostic signature.
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Figure 3: ,e prognostic signature assessment in TCGA-train and TCGA-test cluster. a-b Distribution diagram of risk score and survival
status for samples in TCGA-train cluster (a) and TCGA-test cluster (b). PCA plot for TCGA-train cluster (c) and TCGA-test cluster (d). t-
SNE analysis for TCGA-train cluster (e) and TCGA-test cluster (f ). Kaplan–Meier curves of overall survival time between low-risk and high-
risk subgroups in TCGA-train cluster (g) and TCGA-test cluster (h). ROC curve for measuring the predictive value at 1, 3, and 5 years in
TCGA-train cluster (i) and TCGA-test cluster (j). Calibration curves of the prognostic signature in TCGA-train cluster (k) and TCGA-test
cluster (l).

N
M*

Stage
Gender
Age
risk

miR-141-3p

4

M*

N
N0

M0
M1
unknow

N1
N2

2

–2

–4

T
T1
T2
T3
T4
Tis

Stage
Stage I
Stage II
Stage III
Stage IV
unknow

Gender
FEMALE
MALE

<=65
Age

>65

0

miR-148a-3p

miR-16-5p

miR-200a-5p

T

(a)

6.0

5.5

M0 M1

0.0055

5.0

Ri
sk

 S
co

re

4.5

4.0

M
M

M0

M1

(b)

Figure 4: Continued.

8 Journal of Oncology



pvalue

Age

Gender

Hazard ratio

0.5 1 2 4 8

M

N

T

riskScore

<0.001

<0.001

<0.001

0.002

0.828

0.004

1.033 (1.012-1.054)

1.050 (0.676-1.631)

2.359 (1.324-4.204)

4.352 (2.734-6.928)

2.055 (1.580-2.672)

3.133 (1.785-5.498)

Hazard ratio

(c)

M

0.5 1 2

Hazard ratio

4 8

pvalue

Age

T

M

N

riskScore

0.050

<0.001 1.037 (1.016-1.0580

0.001

0.003

0.004

1.564 (1.160-2.109)

2.373 (1.316-4.279)

1.809 (0.999-3.274)

2.420 (1.413-4.144)

Hazard ratio

(d)
Patients with Stage I-II

1.00

0.75

0.50

0.25
p=0.014

Su
rv

iv
al

 p
ro

ba
bi

lit
y

0.00

0 1 2 3 4 5 6

Time (years)

7 8 9 10 11 12

Risk
high
low

(e)

Patients with Stage III-IV

p=0.015

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

Time (years)
0 1 2 3 4 5 6 7 8 9 10 11 12

Risk
high
low

(f )

p<0.001

Patients with <65

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

Time (years)

0 1 2 3 4 5 6 7 8 9 10 11 12

Risk
high
low

(g)

p=0.031

Patients with >65

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

Time (years)

0 1 2 3 4 5 6 7 8 9 10 11 12

Risk
high
low

(h)

p=0.001

Patients with FEMALE

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

Time (years)
0 1 2 3 4 5 6 7 8 9 10 11 12

Risk
high
low

(i)

p=0.032

Patients with MALE

Su
rv

iv
al

 p
ro

ba
bi

lit
y

1.00

0.75

0.50

0.25

0.00

Time (years)

0 1 2 3 4 5 6 7 8 9 10 11 12

Risk
high
low

(j)

Figure 4: ,e prognostic signature assessment in TCGA-COAD cluster. (a) Heat map of miRNA expression and clinical factors between
high-risk and low-risk subgroups (p value< 0.001, “∗∗∗”; p value< 0.01, “∗∗”; p value< 0.05,“∗”). (b) Comparison of risk scores between
metastatic and nonmetastatic patients. (c) Univariate Cox regression of the prognostic signature and clinical characteristics. (d)Multivariate
Cox regression of the prognostic signature and clinicopathological features. Kaplan–Meier curves for COAD patients of early stage
(e), advanced stage (f ), aged 65 years or younger (g), older than 65 years (h), female (i), and male (j).

Journal of Oncology 9



characteristics, including tumor stage, age, and gender
(Figure 4(e)–4(j)).

3.4. Nomogram Signature Establishment and Confirmation.
Univariate andmultivariate analysis showed that the age and
tumor TMN stage of patients were independent risk factors
in COAD (Figure 4(c)–4(d)). Hence, a prognostic nomo-
gram signature incorporated the prognostic signature, age
and tumor stage of patients was constructed (Figure 5(a)).
,e calibration curves show that the predicted OS of the
nomogram signature has good consistency with the actual
OS (Figure 5(b)). ,e ROC curves for 5-years showed that
the nomogram signature was the most accurate for pre-
dicting COAD patients’ survival rate (0.785), followed by the
NR-mis signature (0.711), tumor stage (0.678) and age
(0.635) (Figure 5(c)). ,e C-index of the ferroptosis sig-
nature, necroptosis signature, autophagy signature, pyrop-
tosis signature and nomogram signature were 0.583, 0.626,
0.629, 0.673 and 0.754, respectively (Figure 5(d)). ,e no-
mogram signature showed satisfactory predictive capacity,
suggesting that the combination of cell-death-related sig-
nature and clinicopathological characteristics can better
predict patients’ prognoses. RMS time ratios of five signa-
tures between the HR and LR subgroups ranged from 1.238
to 3.220 (necroptosis signature, autophagy signature,
pyroptosis signature, nomogram signature: p< 0.001; fer-
roptosis signature: p � 0.054) (Figure 5(e)).

3.5. GSEA Identifies Prognostic Signature-Related Biological
Functions. ,e purpose of GSEA analysis is to reveal the
signal pathway and potential biological function of the
signature in COAD. With the criterion of FDR<0.05, 15
enriched GO terms were identified in the HR subgroup, 65
enriched GO terms and 6 enriched KEGG pathways were
found in the LR subgroup (Supplementary Table 1). ,e top
enriched terms are shown in Figures 6(a)–6(c). Part of the
enriched terms were closely associated with immune re-
sponses, such as humoral immune response mediated by
circulating immunoglobulin, lymphocyte-mediated immu-
nity, antigen binding, complement activation, phagocytosis
recognition in the HR subgroup; and toll-like receptor
signaling pathway, cytokine-cytokine receptor interaction,
interferon gamma mediated signaling pathway, positive
regulation of monocyte chemotaxis, positive regulation of
cytokine production in LR subgroup. ,e results implied
that the predicting effect of the prognostic signature could be
related to the immune microenvironment.

3.6. Construction of miRNA-mRNA Network and Functional
Analysis. ,e primary function of miRNAs is to influence
gene expression mainly via recognizing the 3′untranslated
region of mRNA [24]. In order to study the regulation
mechanism of the NR-mis, their target genes were identified
and functionally annotated. A total of 22 target genes were
identified for miR-141-3p, 40 target genes for miR-148a-3p,
and 156 target genes for miR-16-5p on the miRwalk website,
while no overlapped target gene was found for miR-200a-5p

(Supplementary Table 4). A miRNA-mRNA network was
constructed by Cytoscape (Figure 6(d)). en all target genes
were annotated by GO, DO, and KEGG analysis. Do
analysis indicated that 52 disease terms were related with
prognostic miRNAs with a threshold of Q-value<0.05
(Supplementary Table 2), including 9 terms associated
with gastrointestinal tumors (Figure 6(e)). In GO
analysis, 63 enriched terms belonged to the BP
category, 14 enriched terms belonged to MF cat-
egory, while no significantly enriched term was
found in the CC category (FDR<0.05) (Supple-
mentary Table 3). KEGG analysis revealed
enriched pathways, including microRNAs in
cancer, p53 signaling, and the EGFR tyrosine
kinase inhibitor resistance (FDR<0.05) (Supple-
mentary Table 3). Top enriched terms shown in
Figure 6(f) and 6(g). KM survival analysis showed
that ten target genes were correlated with a pa-
tient’s prognosis of COAD, including ATXN7L1,
CHEK1, FKBP1A, FXR1, GALNT7, PPM1D,
PRNP, SLC35D1, USP4, and VEGFA (Supple-
mentary Figure 1). LASSO analysis confirmed that
six of the target genes were hub prognostic genes.
A gene prognostic model was constructed. The
final formula is shown as follows:

risk score � (XATXN7L1 × 0.3959)

+(XPRNP × 0.0195)

+(XGALNT7 × −0.0638)

+(XFXR1 × −0.1178)·

+(XSLC35 D1 × −0.2168).

(3)

,e corresponding relationship between prognostic
model-based target genes and NR-mis was shown in
Figure 7(a).,e results of validation analysis showed that the
prognostic model composed of the target genes of NR-mis
could effectively distinguish patients in HR and LR sub-
groups (p< 0.05, Figure 7(b)).,e AUC values of this model
in 1, 3, and 5 years were 0.629, 0.636, and 0.692, respectively
(Figure 7(c)).

3.7. Association between Immunity and Risk Score in COAD.
TME score showed that, taken the LR subgroup as a refer-
ence, the immune-score and stromal-score were both re-
duced, while tumor purity-score was increased in the HR
subgroup (Figures 8(a)–8(c)).,e ssGSEA analysis indicated
that the HR subgroup generally had lower levels of immune
cell infiltration and immune activity than the LR subgroup
(Figures 8(d)–8(e)). Moreover, immune checkpoint-related
genes were also lower in the HR subgroup (Figure 8(f )). ,e
relationship between the prognostic signature and six im-
portant immune checkpoint-related genes was explored.,e
results showed that CD274 (PD-L1), IDO1, HAVCR2 (TIM-
3), CTLA4, PDCD1LG2 (PD-L2), and TIGIT (vstm3) were
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all negatively related with the risk score (Figures 8(g)–8(m)),
suggesting that patients in LR subgroup benefitedmore from
immunotherapy.

3.8. Evaluation of Chemosensitivity in Risk Subgroups. We
calculated the IC50 value to compare the chemosensitivity in
two subgroups. ,e HR subgroup had a lower IC50 values
for cisplatin, doxorubicin, etoposide, and gemcitabine, while
no statistical difference was found for cytarabine and mi-
tomycin C (Figure 9(a)–9(f)). ,e result indicated that
samples in the HR subgroups might have higher chemo-
sensitivity for cisplatin, doxorubicin, etoposide, and
gemcitabine.

4. Discussion

Programmed Cell Death (PCD) has a significant impact on
ontogenic development and tissue homeostasis, by means of
which the organism disposes of cells that are infected,
functionally dispensable, or at risk of cancerization [55].
Dysregulation of PCD is of great significance to immuno-
logical and developmental disorders, neurodegeneration,
cancers and other kinds of human diseases [56]. Several
types of PCD pathways, including ferroptosis, pyroptosis,
and necroptosis are closely related and complementary with
each other flexibly [29, 55]. Considering the important role
of PCD in tumors, a growing number of studies have used
PCD-related genes/noncoding RNAs to predict tumor
prognosis. For example, Qi’s [39] signature based on nine
ferroptosis-related genes (C-index� 0.583), Wei’s [40] sig-
nature based on eight pyroptosis-related genes (C-index-
� 0.673), and Xu’s [41] signature based on eight autophagy-
related genes (C-index� 0.629), all of which showed
prognostic value in COAD.,ese and similar studies suggest
that PCD-related genes/noncoding RNAs have the potential

to predict tumor patients’ outcomes. In this study, we
extracted NR-mis miRNAs confirmed in previous research,
and constructed a prognostic signature including four
miRNAs and a nomogram containing the prognostic sig-
nature and clinicopathological characteristics in COAD.
Our prognostic signature showed moderate predicted
power. ,e C-index was 0.626 for the prognostic signature
and 0.754 for the nomogram signature. ,ese results con-
firmed the feasibility of necroptosis-related miRNAs to
predict the survival outcomes of COAD patients.

,e miRNAs that comprise the prognostic signature
were miR-141-3p, miR-148a-3p, miR-16-5p, as well as miR-
200a-5p, which have proved to regulate necroptosis in
metastasis [29]. As expected, the HR and LR subgroups
identified by our prognostic signature differed significantly
in tumor metastasis (P< 0.05), and metastatic patients had
a higher risk score (P< 0.05). Among them, miR-141-3p,
miR-148a-3p and miR-16-5p were positively associated with
patients’ risk scores, while miR-200a-5p had a negative
relationship. In other words, the superior of miR-141-3p,
miR-148a-3p and miR-16-5p and the inferior of miR-
200a-5p indicate a poor outcome and a high metastasis rate
for COAD patients.

In order to further understand the potential function of
NR-mis and their target genes in COAD, we performed
functional annotations of target genes and analyzed the
variable pathways between the HR and LR subgroups. Tu-
mor metastasis involves various conditions, such as an-
giogenesis, the inflammatory microenvironment, the
epithelial-to-mesenchymal transition (EMT), the degrada-
tion of the extracellular matrix (ECM), and programmed cell
death dysfunction [11]. Interestingly, the functional anno-
tation for the target genes of above miRNAs indicated that
several pathways associated with tumor metastasis, such as
TGF-β signaling pathway [57, 58], p53 signaling pathway
[59, 60], EGFR signaling pathway [61,62], and
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p53 signaling pathway
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Figure 6: Functional analysis of the prognostic signature in TCGA-COAD cluster. (a) GSEA of top 10 enriched GO terms in the high-risk
subgroup. (b) GSEA of top 10 enriched GO terms in the low-risk subgroup. (c) GSEA of 6 enriched KEGG terms in the low-risk subgroup.
(d) Correlation network of prognostic miRNAs and their target genes. (e) DO analysis of gastrointestinal diseases and target genes. (f ) ,e
top 10 enriched terms in GO analysis of target genes. (g) KEGG analysis of target gene.
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vasculogenesis. And transmembrane receptor protein ser-
ine/threonine kinase signaling pathway and SMAD are
known for involving in the activation of downstream sig-
naling pathways of TGF-β [63]. Gene expression profile
analysis showed that TGF-β signaling pathway is the most
important gene pathway in liver metastasis of colorectal
cancer [58]. TGF-β promotes cancer metastasis by stimu-
lating EMT of tumor cells and activating angiogenesis [58].
SMAD can mediate TGF-β-induced EMT by inducing ex-
pression of the transcription suppressor E-cadherin [64].
,e TP53 gene is mutated in 43% of colorectal cancers, and
p53 function is often impaired in the remainder [65]. Mutant
p53 can interact with other transcription factors, such as
NF–Y, E2F1, ETS1/2, HIF-1, MED1, SMAD, and SP1,
leading to COAD cell migration, metastasis, and

angiogenesis [65]. Furthermore, there were also enriched
pathways associated with tumor metastasis in GSEA anal-
ysis, including regulation of cell adhesion [66] and ECM
receptor interaction.,e results further prove that these NR-
mis play a crucial part in tumor metastasis.

,e effect of necroptosis on tumor progression, espe-
cially metastasis, is complex. ,e main regulatory factors of
necroptosis have been proven to stimulate themetastasis and
progression of cancer. Meanwhile, when apoptosis is
damaged, necroptosis shows inhabitation of tumor devel-
opment and metastasis [29]. According to a recent review,
therapy-induced necroptosis is related to tumor suppres-
sion, while chronic necroptosis is relevant to metastasis [17].
Due to the insufficient blood supply, malignant tumors
growing fast usually suffer from a lack of oxygen and
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Figure 7: Prognostic value of target genes of necroptosis-related miRNAs. (a) Network diagram of prognostic target genes and necroptosis-
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nutrients. Necroptosis cells release cellular contents, such as
HMGB1, which recruit immune inflammatory cells to lib-
erate growth factors and prosurvival factors, prosurvival
factors and proangiogenic factors to promote tumor

invasion and metastasis, as well as resistance to hormonal
and chemotherapy [19, 67, 68]. Chronic inflammation
provoked by necroptosis can cause mutation of tumor
suppressors and proto-oncogenes, thereby progressing to
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cancer [67]. For instance, western diet and Tsc1 ablation
active aberrant necroptosis in intestinal epithelial cell, then
lead to intestinal inflammation and subsequent cancer [12].
Moreover, tumor cells induce necroptosis of endothelial cells
by activating death receptor 6, thus promoting extravasation
and distant colonization of tumor cells [69]. On the contrary,
it has been found that necroptosis has negative regulations
on tumor progression. Shikonin, the first naturally occurring
compound that was found to induce necroptosis, can not
only highly inhibit tumor but also prevent drug resistance
[70, 71]. Surviving in the circulation or a novel colonized site
without interacting with the ECM, metastatic cells face
numerous disadvantages, such as hypoxia, imbalance of
nutrients and energy, and a lack of growth factor. In this
circumstance, the activation of necroptosis triggers an ROS
burst to eliminate metastatic cancer cells [11]. Overall, the
effect of necroptosis on tumors is complex and varies in
different circumstances. In order to better target necroptosis
as tumor therapy, it is necessary to further study and clarify
the different mechanisms of necroptosis on tumors.

In TME analysis, almost all immune cells, immune
activities, and checkpoints were suppressed in the HR
subgroup, suggesting a vital part of immunity in the anti-
cancer process. In recent years, cancer immunotherapies
that induce cell death instead of apoptosis have gradually
emerged because quite a lot of tumors are resistant to ap-
optosis. Drug-induced necroptosis could inhibit tumor
suppression through inducing antitumor immunogenicity
[72]. In a recent study, researchers designed a nano-size
“artificial necroptotic cancer cell” vaccine and vaccinated
mice, causing multi-epitope-T cell responses to confront
tumor cells [73]. What’s more, necroptosis could cooperate
with immune checkpoint blockade to suppress tumor [73].
,ough relevant research is still in the initial stages, im-
munotherapy targeting necroptosis shows great promise.

Nevertheless, our research has some deficiencies. Firstly,
miRNAs that have been identified to regulate necroptosis are
relatively few so far. We are not yet able to select miRNAs of
sufficient prognostic significance and in sufficient numbers
to compose amore accurate prognostic signature. Hopefully,
a more satisfactory prognostic signature will be established
with more necroptosis-associated genes/noncoding RNAs
being identified. Secondly, our conclusion was based on data
mining.,e function andmechanism of these miRNAs need
further experimental study. And in future work, we should
extend our findings to clinical cohorts.

5. Conclusions

Based on four necroptosis-related miRNAs, we developed
a prognostic signature for COAD patients. ,e signature
possessed a moderate predictive value of patients’ outcomes.
And obvious differences in metastasis rate, immune micro-
environment, and chemotherapy sensitivity between the HR
and LR subgroups were observed. With the further devel-
opment of experimental research and the promotion of
clinical trials, it is believed that necroptosis-related pathways
will be of great importance in tumor diagnosis, prognosis, and
treatment.
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