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Introduction
Avian influenza, also known as bird flu or avian flu, has become 
a global health issue in several countries and has spread from 
Asia to Africa, Middle East, and Europe continent, with 
an estimated 622 cases that occurred within 2003–2013 
worldwide.1–3 According to the World Health Organization, 
in 2012, Indonesia had the highest mortality of avian influenza 
disease out of 15 countries, since it was first found in Banten 
in 2005, with 160 deaths out of 192 cases. It has spread out 
to 11 provinces, including West Java, Bali, North Sumatera, 
and South Sulawesi.4,5 While this disease has been a serious 
threat across the country, there are still no effective vaccines 
or antiviral drugs yet for combating this highly pathogenic 
disease.6,7 The development of new, efficient vaccines or drugs 
is urgently needed in order to decrease the mortality rate of 
avian influenza.

Avian influenza is caused by several subtypes of influ-
enza type A viruses, such as H5N1, H5N2, and H7N9, which 
belong to the Orthomyxoviridae family.8–10 The influenza 
A virus genome has eight ssRNA segments that encode 10 

proteins with two major surface glycoproteins: hemagglutinin 
and neuraminidase.11 Hemagglutinin is the essential antigen 
that neutralizes human antibody and binds to the host cell 
receptor, and it mediates the sialic acid binding receptor’s sur-
face cell that initiates the virus infection on the host cell.12,13 
Neuraminidase is a glycoprotein that is known for its role to 
catalyze the cleavage of the sialic acid bond from d-galactose 
or d-galactosamine residues by cutting off the α-keto acid 
bond between neuraminic acid and glycosyl residue of glyco-
protein, glycolipid, or colominic acid.14 The recent utilization 
of serological analysis has categorized influenza A viruses 
into 18 hemagglutinin subtypes (H1–H18) and 9 neuramini-
dase subtypes (N1–N9), which allow them to form 162 dif-
ferent kinds of influenza subtypes.15–19 Because of their vital 
role in the pathogenicity of the virus, hemagglutinin and 
neuraminidase have become primary targets in the vaccine 
design and development fields for neutralizing the avian 
influenza virus.20

Usage of vaccine is one of the most effective immunologi-
cal interventions in controlling the infection of H5N1 virus. 
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To date, several H5N1 vaccine design and development efforts 
have been conducted, yet the effective, affordable vaccine has 
to be found.21,22 Most immunization has not provided suffi-
cient protection from epitope antigens.23,24 An ideal vaccine 
should have humoral immune and cellular responses that can 
be used to trigger the B-cells and T-cells selectively. As in 
the inactivated vaccine, the vaccine provides only the humoral 
immune response and causes little or no cellular immune 
response.23 The latest influenza vaccine has been developed by 
using the epitope-based approach. The epitope is an amino acid 
that binds to the antibodies, and it is located on the surface of 
the antigen. The specific epitope identification of pathogens 
has significantly improved the epitope-based vaccine design 
and development.25

The epitope itself is related to human leukocyte antigen 
(HLA). Every individual has his or her own specific set of 
class I and class II HLA.26 The epitope that has high binding 
affinity to several HLA alleles tends to be a potential can-
didate for epitope-based vaccine design.27 The epitope-based 
vaccine has already been designed and tested in the scientific 
community.28,29 Hence, the ideal vaccine design should be able 
to cope with the challenge of antigenic drift.30 The purpose of 
this study is to design a new epitope-based H5N1 vaccine that 
can bind to the HLA by using in silico approach. Therefore, 
the epitope-based vaccines of hemagglutinin and neuramini-
dase from H5N1 of Indonesian strain virus were designed to 
elicit the immune response of class I and class II HLA.

Research Methodology
The utilized pipeline for this research was modified and 
extended from the existing ones.31–33 The established pipelines 
were also taken into account.34,35 Moreover, our research is 
based on immunoinformatics approach that was already vali-
dated in the scientific community.36–39 Thus, immunoinfor-
matics approach has been proven to be useful for examining 
the response of immune system toward pathogens.37,40–43 All 
of the experiment methods were done by using a personal com-
puter with 2.1 GHz Intel Pentium Dual Core, RAM 1 GB, 
and Windows XP Professional Edition. The experiment was 
also conducted with the Internet support and several kinds of 
online and offline softwares.

Sequence of hemagglutinin and neuraminidase H5N1 
virus. The sequences of hemagglutinin and neuraminidase of 
H5N1 Indonesian strain were retrieved from Influenza Virus 
Resource of National Center Biotechnology Information 
website (http://www.ncbi.nlm.nih.gov/genomes/FLU/FLU.
html/).44

Prediction B-cell and T-cell epitope hemagglutinin 
and neuraminidase H5N1 virus. Following Velkov et al, the 
mapping of our epitopes has taken into account their tendency 
of antigenic drifting. The prediction of proteosomal cleavage 
H5N1 virus was analyzed by using PAPROC-I tools (http://
www.paproc.de/), while the transport antigen presentation 
(TAP) binding was predicted by using TAPPRED server 

(http://www.imtech.res.in/raghava/tappred/).45,46 Propred and  
netMHCpan servers were used to identify the bond region on 
the class I HLA of the antigen.47,48

Visualization and molecular dynamics using MOE 
2008.10. The selected epitopes were further analyzed their 
conformation and stability by performing epitope visualization 
and molecular dynamics simulation, respectively. All of these 
steps were completed by using MOE 2008.10 software.49 The 
epitope visualization itself was used to determine class I and 
class II HLA of the selected epitopes. The evaluation of the 
residues was conducted by counting the free energy minimiza-
tion for the interactions between HLA and epitope. The 10 ns 
molecular dynamics simulation was executed in order to observe 
the interaction and stability between epitope and HLA.50

Confirmation of the origin of hemagglutinin epitopes. 
Following Velkov et al, the origin of Indonesian hemaggluti-
nin epitopes was confirmed by using BLASTp tools (http://
blast.ncbi.nlm.nih.gov/).

Results and Discussion
Hemagglutinin and neuraminidase H5N1 sequence. 

In this study, the sequences of Indonesian H5N1 virus, includ-
ing both hemagglutinin and neuraminidase, were collected 
from National Center Biotechnology Information (GenBank 
Nos BAL61222.1 for hemagglutinin and BAL61230.1 for 
neuraminidase). The result of Basic Local Alignment Search 
Tool indicated that all of the Indonesian H5N1 virus sequences 
showed a high similarity, from 97% to 100%. Group A viruses 
have the highest percentage of homology with chicken virus 
isolated in Indonesia in 2010.51

B-cell epitope prediction. An antibody would bind to 
a specific epitope on the surface of the virus. When a virus 
is destroyed by macrophage, it would facilitate epitope bind-
ing.52 In this study, the epitope prediction of H5N1 hemag-
glutinin and neuraminidase of the B-cells was done through 
BCPREDS 1.0 at the following website address: http://ailab.
cs.iastate.edu/bcpreds/. The peptide sequence is the required 
input, and the output will provide information about the 
position of the peptide sequences along with scores based 
on its accessibility. The analysis was performed every nine 
amino acids (nonamer) on a series of peptide sequences with 
a specificity of 80%. Accessibility is very important because 
if the score is increasing, the epitope peptide will be having a 
great accessibility to be recognized by B-cells or bind to the  
antibody. Table 1 is the predicted epitope of H5N1 hemag-
glutinin that has accessibility scores against B-cell epitope 
prediction from the server BCPREDS. It predicts 15 hemag-
glutinin epitope candidates. They will be expressed in the 
CD4+ T-cells and bind to class II HLA on the IGTSTLNQR 
and MVSLVKSDQ.

Table  2  shows H5N1 neuraminidase epitope that has 
an accessibility score against B-cells. A total of 17 candi-
dates of neuraminidase epitope derived from the B-cell 
epitope prediction. Epitopes will be expressed with the 
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introduction of the CD4+ T-cells and bind to class II HLA 
on the YNGIITDTI.

Humoral immune systems have an important role in 
relieving the infection of H5N1 avian influenza virus. Dur-
ing the process of infection, antibodies are produced for all 
the major glycoproteins (hemagglutinin and neuraminidase) 
on the surface of the H5N1 virus. Specific antibodies to 
hemagglutinin are very important for virus neutralization at 
the mucosal surface by blocking the entry of the virus into 
the cell. Specific antibodies for neuraminidase are effective in 

reducing the release of virus from infected cells. Antibodies 
bind to a particular epitope on the surface of the virus and act 
as opsonins that facilitate the binding and virus destruction 
by macrophages.

B-cell epitope candidates of hemagglutinin H5N1 
were recognized by the receptor of CD4+ T-cell and bound 
with class II HLA, which were IGTSTLNQR and MVS-
LVKSDQ. Furthermore, YNGIITDTI was an epitope can-
didate of neuraminidase for B-cell.

T-cell epitope-bound class I HLA prediction. Protea-
some is a key factor in the degradation of cytosolic proteins 
in which the C-terminal ligand of class I HLA is selected 
by proteome.45 In defining the epitope of hemagglutinin and 
neuraminidase H5N1 that can binds to class I HLA, the pro-
tein sequences were selected by using PaProC server to see the 
sequences that can be interrupted by proteome. In general, the 
effective epitope antigen should have a sequence that do not 
split the proteome and can be transported by TAP.27 In this 
study, we use TAPpred server for predicting the sequences 
of the effective epitope antigen. Data analysis results of the 
epitope of hemagglutinin and neuraminidase with TAP are 
shown in Tables 3 and 4, respectively.

The immune response is induced by T-cell epitope, which 
has an important role in vaccine designing. T-cell epitopes are 
presented on the surface of an antigen-presenting cell, which 
are bound to class I and II HLA.53 After selecting a sequence 
of hemagglutinin and neuraminidase, we proceeded with the 
determination of epitope potential vaccine candidates. In this 
study, the determination of hemagglutinin and neuraminidase 
H5N1 epitopes on class I HLA has been done and analyzed 
by using two servers’ prediction. The first prediction is net-
MHCpan server version 2.4 with 4% threshold that can be 
accessed at the website address of http://www.cbs.dtu.dk/ 
services/NetMHCpan/. This server predicts the potential 
epitope binding to class I HLA of supertypes A and B, so it 
can be recognized by the receptor CD8+ T-cells. This method 
consists of 326 HLA, divided into 43 different alleles at the 
HLA-A and HLA-B.54 In addition, class I HLA-bound 
epitopes were also predicted using the ProPred 1  server on 
the threshold of 4%, which can be accessed online at the web-
site address of http://www.imtech.res.in/raghava/propred1/. 

Table 1. Results of hemagglutinin epitope prediction against B-cells.

Position Epitope Value

98 KANPNNDLC 0.998

137 SWSDHEASS 0.997

181 NNTNQEDLL 0.996

338 QRESRRKKR 0.985

216 IGTSTLNQR 0.984

288 GNCNTKCQT 0.979

510 EEARLKREE 0.973

10 MVSLVKSDQ 0.964

557 CSNGSLQCR 0.935

25 ANNSTEQVD 0.931

447 LMENERTLD 0.918

371 HHSNEQGSG 0.909

361 QGMVDGWYG 0.893

427 NKKMEDGFL 0.892

266 PEYAYKIVK 0.856
 

Table 2. Results of neuraminidase epitope prediction against B-cells.

Position Epitope Value

342 TKSTNSRSG 0.996

174 GISGPDNEA 0.995

142 PVGEAPSPY 0.995

303 GDNPRPNDG 0.989

84 NNIRIGSKG 0.977

188 YNGIITDTI 0.975

257 EESCSCYPDA 0.972

242 KVVKSVELD 0.970

414 STIWTSGSS 0.963

3 PNQKIITIG 0.951

355 WDPNGWTGT 0.943

317 PMSPNGAYG 0.941

223 TDGPSNGQA 0.928

42 NQHQAESIS 0.895

66 AGNSSLCPI 0.883

273 RDNWHGSNR 0.868

434 SWSWPDGAE 0.841

Table 3. The analyzed results of TAP (transport antigen presentation)  
on H5N1 virus hemagglutinin by using TAPpred server.

Peptide  
rank

Initial  
Position

Sequences Score Affinity  
Prediction

68 2 EKIVLLLAM 4.819 Intermediate

167 1 MEKIVLLLA 3.416 Intermediate

194 293 KCQTPMGAI 3.090 Intermediate

250 389 KAVDGVTNK 2.525 Low or  
undetectable

297 151 CPYLGSPSF 2.027 Low or  
undetectable
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ProPred 1 server is derived from TEPITOPE, namely a matrix 
program position. The server was developed for 47 class I HLA 
with an algorithm based on the linear coefficient matrix.48

Table 5 shows that there are five hemagglutinin epitope 
candidates bound by CD8+ T-cell, such as MEKIV-
LLA, EKIVLLAM, CPYLGSPSF, KCQTPMGAI, and 
KAVDGVTNK. Otherwise, there are four neuraminidase 
epitope candidates bound to class I HLA: NPNQKIITI, CYP-
DAGEIT, IRPCFWVEL, and RPCFWVELI (Table 6).

T-cell epitope-bound class II HLA prediction. Any 
peptide molecule that can bind to class II HLA will be 
presented on CD4+ T-cells, which is very important in the 
regulation of the B-cell responses and CD8+ T-cells.26 If 
the response of CD4+ does not exist, then the quality of the 
cytotoxic response to the antigen administration gradually 
declined and failed to respond effectively.55 The determination 
of hemagglutinin and neuraminidase epitopes on class II HLA 
has been done by using two prediction servers. The first one 
is netMHCIIpan version 2.1 with 4% threshold that can be 
accessed at the website address of http://www.cbs.dtu.dk/ser-
vices/NetMHCIIpan/. This server predicts epitope binding to 
class II HLA for two supertypes of DRB (antigen D Related, 
Beta chain), so it can be recognized by receptors CD4+ T-cells. 
The selection of these alleles are most often found in Asian 
populations, especially in the parts of Malay distribution.56 

NetMHCIIpan method was used to evaluate the epitope 
binding to class II HLA with a measuring accuracy of pre-
diction on the area under the receiver operating characteristic 
curve (AROC), which is the curve for evaluating the accuracy 
of diagnostic markers. AROC values that are close or equal to 
one indicate that the marker has a high diagnostic accuracy.57 
netMHCpan method has been identified as the best predictive 
value with AROC .0.9. Epitope-binding affinity to HLA-
DR alleles was analyzed by netMHCIIpan. Identification of 
potential epitope is classified as a strong binder, weak binder, 
and no binder to choose the alleles of class II HLA. Selection 
is based on the binding affinity threshold of [X] # 50 nM, 
50 nM , [X] # 500 nM, and [X] . 500 nM.58

The subsequent prediction was done using the ProPred 
server with 4% threshold that can be accessed online at the 
website address of http://www.imtech.res.in/raghava/pro-
pred/. The server was developed for 51 HLA-DR alleles by 
extracting the database matrix.48 Prediction of peptides that 
bind to class II HLA by using the ProPred server in the devel-
opment of vaccines for Leptospira interrogans serovar Lai was 
already in place.59 By using ProPred and netMHCpan II, there 
are two hemagglutinin epitope candidates bound by CD4+ 
T-cell (class II HLA), MVSLVKSDQ and IGTSTLNQR, 
and also one neuraminidase epitope candidate, YNGIITDTI 
(Tables 7 and 8).

Visualization and molecular dynamics of hemagglu-
tinin and neuraminidase epitope using MOE 2008.10. The 
visualization was useful to predict the binding free energy 
from class I and class II HLA–epitope of hemagglutinin and 
neuraminidase. Position and affinity binding from class I and 
class II HLA–epitope of hemagglutinin and neuraminidase 
are shown in Tables 9 and 10, respectively.

For hemagglutinin epitope-bound class I HLA, the weak 
binder is EKIVLLLAM, which has ∆G of −22.4538  kcal/
mol, and KCQTPMGAI is one of the strong binder can-
didates, which has ∆G of −33.6109  kcal/mol (Fig.  1, the 
description of legend could be observed in the Supplementary 
material here: http://staff.ui.ac.id/system/files/users/aditya.
parikesit/material/supplementary_material_feimmy.pdf). The 

Table 4. The analyzed results of TAP (transport antigen presentation) 
on H5N1 virus neuraminidase by using TAPpred server.

Peptide  
rank

Initial  
Position

Sequences Score Affinity  
Prediction

140 398 IRPCFWVEL 2.929 Low or  
undetectable

196 2 NPNQKIITI 2.102 Low or  
undetectable

220 399 RPCFWVELI 1.818 Low or  
undetectable

406 261 CYPDAGEIT -1.441 Low or  
undetectable

 

Table 5. The prediction results of hemagglutinin epitopes toward class I HLA.

Position Epitope Allele Prediction Value

1 MEKIVLLLA {HLA-I,B61(4)} Propred I 3.41

2 EKIVLLLAM {HLA-I,B14(4)}
{HLA-I,B*3902(2)}
{HLA-I,B*3501}

Propred I, netMHCpan
Propred I, netMHCpan
netMHCpan

4.81;WB
4.81;WB
WB

151 CPYLGSPSF {HLA-I,B*0702}
{HLA-I,B*1402}
{HLA-I,B*3501}
{HLA-I,B*3902}

netMHCpan
netMHCpan
Propred I, netMHCpan
netMHCpan

SB
SB
2.02;SB
WB

293 KCQTPMGAI {HLA-I,B*0702(4)} Propred I 3.08

389 KAVDGVTNK {HLA-I,A*1101(3)} Propred I, netMHCpan 2.52;WB

Abbreviations: SB, strong binder; WB, weak binder.
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Table 6. The prediction result of neuraminidase epitopes toward class I HLA.

Position Epitope Allele Prediction Value

2 NPNQKIITI {HLA-I,B*0702}
{HLA-I,B*0801}
{HLA-I,B*5101}
{HLA-I,B*5102}
{HLA-I,B*5103}

Propred I, netMHCpan
Propred I, netMHCpan
Propred I, netMHCpan
Propred I, netMHCpan
Propred I, netMHCpan

2.10;WB
2.10;WB
2.10;SB
2.10;WB
2.10;SB

261 CYPDAGEIT {HLA-I,A24(4)} Propred I −1.44

398 IRPCFWVEL {HLA-I,B14(2)}
{HLA-I,B*2705(2)}
{HLA-I,B*3901(2)}
{HLA-I,B*2702(3)}

Propred I
Propred I
Propred I
Propred I, netMHCpan

2.92
2.92
2.92
2.92;WB

399 RPCFWVELI {HLA-I,B*5101(4)}
{HLA-I,B*5102(4)}
{HLA-I,B*5103}
{HLA-I,B*0702(2)}

Propred I, netMHCpan
Propred I, netMHCpan
netMHCpan
Propred I

1.81;WB
1.81;WB
WB
1.81

Abbreviations: SB, strong binder; WB, weak binder.

Table 7. The prediction results of hemagglutinin epitopes toward class II HLA

Position Epitope Allele Prediction Value

10 MVSLVKSDQ {HLA-II,DRB1*0301}
{HLA-II,DRB1*0405}
{HLA-II,DRB1*1202}
{HLA-II,DRB1*1302}

Propred
Propred
netMHCIIpan
Propred 

3.47
1.70
WB
1.90

216 IGTSTLNQR {HLA-II,DRB1*0301} Propred 1.81

Abbreviation: WB, weak binder.

Table 8. The prediction results of neuraminidase epitopes toward class II HLA.

Position Epitope Allele Prediction Value

188 YNGIITDTI {HLA-II,DRB1*0101} netMHCIIpan WB

{HLA-II,DRB1*0402} netMHCIIpan WB

{HLA-II,DRB1*0403} netMHCIIpan WB

{HLA-II,DRB1*0405} Propred, netMHCIIpan 2.70;WB

{HLA-II,DRB1*0406} netMHCIIpan WB

{HLA-II,DRB1*0701} Propred, netMHCIIpan 4.12;WB

{HLA-II,DRB1*0803} NetMHCIIpan WB

{HLA-II,DRB1*1001} netMHCIIpan WB

{HLA-II,DRB1*1302} Propred 0.30

{HLA-II,DRB1*1502} Propred 1.56

Abbreviation: WB, weak binder.

Table 9. The position and affinity of hemagglutinin epitope H5N1-bound class I and class II HLA.

Position Epitope Allele Hydrogen bonding ∆Gbinding  
(kcal/mol)

1 MEKIVLLLA HLA A61 Glu 76, Arg 97, Tyr 136, and Lys 146 −40.0148

2 EKIVLLLAM HLA B*3501 Arg 97, Arg 151, Gln 155, and Leu 156 −22.4538

10 MVSLVKSDQ HLA DRB1*0301 Glu 9, Glu 11, Ser 11, Tyr 30, Phe 31, Trp 61, Asp 66, Asn 69, and Arg 76 −11.7756

151 CPYLGSPSF HLA B*0702 Tyr 7, Tyr 99, Glu 152, Gln 155, and Tyr 171 −28.0471

216 IGTSTLNQR HLA DRB1*0301 Glu 11, Glu 55, Asn 62, Asp 66, Lys 71, Arg 74, and Asn 82 −56.9580

293 KCQTPMGAI HLA B*0702 Tyr 7, Glu 152, Tyr 159, and Tyr 171 −33.6109

389 KAVDGVTNK HLA A*1101 Glu 63, Asp 77, Thr 80, Arg 114, Asp 116, Lys 146, Gln 155, Arg 163 and Trp 167 −48.9974
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Table 10. The position and affinity of neuraminidase epitope H5N1-bound class I and class II HLA.

Position Epitope Allele Hydrogen bonding ∆Gbinding (kcal/mol)

2 NPNQKIITI HLA B*0702 Asp 114, Arg 156, Tyr 159, Glu 163, Val 165, Arg 169, Arg 170 −23.8779

188 YNGIITDTI HLA DRB1-0101 Glu 28, Arg 71, Arg 72, Val 75, Thr 77, Cys 79, dan Asn 82 −17.8049

261 CYPDAGEIT HLA A*24 Lys 12, Asp 74, Tyr 85, Tyr 123, Asp 137, Met 138, dan Ala 139 −33.0200

398 IRPCFWVEL HLA B*2705 Asp 77, Tyr 84, His 93, Thr 94, Gln 96, Asp 119, dan Thr 143 −33.6376

399 RPCFWVELI HLA B*0702 Tyr 7, Tyr 159, Tyr 9, Tyr 99, Arg 62, Glu 152, dan Gln 155 −24.8928
 

interaction between class II HLA and hemagglutinin epitope 
has the weak binder candidate (MVSLVKSDQ ) with ∆G of 
−11.7756  kcal/mol and the strong binder candidate (IGT-
STLNQR) with ∆G of −56.9580 kcal/mol (Fig. 2).

For neuraminidase, there are two epitope candidates, 
which have strong interactions, such as CYPDAGEIT and 
NPNQKIITI. The strongest interaction between epitope 
and class I HLA is NPNQKIITI (∆G −43.5280  kcal/mol) 
(Fig. 3). The KCQTPMGAI epitope was visualized because 
of its role as strong binder candidate for class I HLA, while 
NPNQKIITI was visualized as having the strongest interac-
tion with class I HLA.

Figure  4  shows epitope–HLA interaction in the ini-
tialization process of 0–100 ps that fluctuates and stabilizes 
in more than 100 ps. It tends to be in a linear form graphi-
cally. The variation of the curve form is determined for three 
epitopes of hemagglutinin (MEKIVLLLA, CPYLGSPSF, 
and IGTSTLNQR) and one epitope of neuraminidase (CYP-
DAGEIT) with high fluctuation. It is indicated that epitope–
HLA structure conformity changes during the time of forming. 
The curve becomes linear on more than 100 ps, confirming 
that the epitope–HLA structure conformity has not changed 
significantly. The IGTSTLNQR epitope was included both 
in molecular dynamics and in visualization due its tendency 
as having the most spontaneous ∆Gbinding of all epitopes and 
acting as both T-cell and B-cell epitopes. The CYPDAGEIT 
epitope was included in the molecular dynamics simula-
tion because of its role as the strongest binding neuramini-
dase-based epitope. Concerning the molecular dynamics of  

hemagglutinin epitopes, out from the data range, MEKIVLLA 
was taken as the mean value, CPYLGSPSF was the minimum 
value, and IGTSTLNQR was the maximum value.

In order to confirm the homology of our epitopes with the 
marketed vaccine, CLUSTAL was applied to seek homology 
with hemagglutinin and neuraminidase of H5N1 NIBRG-14 
strain.60 Based on the CLUSTAL results, the hemagglutinin 
epitopes of MEKIVLLLA, CPYLGSPSF, and IGTSTL-
NQR were confirmed to be highly conserved with hemaggluti-
nin of H5N1 NIBRG-14 strain that commonly used in the wet 
experimentation of vaccine development. Thus, the neuramini-
dase epitope of CYPDAGEIT was confirmed to be highly con-
served with neuraminidase of H5N1 NIBRG-14 strain also.

Confirmation of the origin of hemagglutinin 
epitopes. Following Velkov et al and Basic Local Alignment 
Search Tool computation, the epitope of CPYLGSPSF was  
derived from hemagglutinin of influenza A virus (A/Indonesia/ 
TLL014/2006(H5N1)), the epitope of KCQTPMGAI was  
derived from borne transmissible avian influenza H5 hem
agglutinin mutant from the influenza A virus (A/Indonesia/ 
5/2005(H5N1)), and the epitope of IGTSTLNQR was derived  
from hemagglutinin influenza A virus (A/Indonesia/TLL014/ 
2006(H5N1)). Thus, the other hemagglutinin epitopes were 
not detected as part of H5N1 of Indonesian strain as men-
tioned earlier.61).

Conclusion
There were four epitopes of hemagglutinin and two epitopes 
of neuraminidase, based on visualization and dynamics 
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Figure 3. The visualization of NPNQKIITI with HLA B*5101 PDB: 1E27 (MOE 2008.10).64

molecular simulation that have high binding affinity to several 
human HLA. The epitopes were MEKIVLLLA (∆Gbinding 
−40.0148  kcal/mol), CPYLGSPSF (∆Gbinding −28.0471  kcal/
mol), KCQTPMGAI (∆Gbinding −33.6109  kcal/mol), IGT-
STLNQR (∆Gbinding −56.9580 kcal/mol), NPNQKIITI 
(∆Gbinding −23.8779  kcal/mol), and CYPDAGEIT (∆Gbinding 
−33.0200 kcal/mol). Most of the hemagglutinin epitopes were 
derived from H5N1 of Indonesian strain. Both hemagglutinin 

and neuraminidase epitopes were confirmed to have a high degree 
of homology with the H5N1 NIBRG-14 strain that is commonly 
used in vaccine development.

The evaluation of epitopes based on dynamics molecu-
lar simulation on normal human body temperature confirms 
that the epitope–HLA structure conformity has not changed 
significantly. Therefore, it is concluded that the epitopes can be 
improved as H5N1 vaccine candidate. We also suggest testing 
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this potential epitopes through in vitro and in vivo studies to 
validate the result of this study.
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