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Abstract

The Toll-like receptor (TLR)-mediated NF-kB pathway is essential for defending against viruses in insects and mammals.
Viruses also develop strategies to utilize this pathway to benefit their infection and replication in mammal hosts. In
invertebrates, the TLR-mediated NF-kB pathway has only been well-studied in insects and has been demonstrated to be
important in antiviral responses. However, there are few reports of interactions between viruses and the TLR-mediated NF-
kB pathway in invertebrate hosts. Here, we studied Litopenaeus vannamei Pelle, which is the central regulator of the Toll
pathway, and proposed that a similar TLR/MyD88/Tube/Pelle/TRAF6/NF-kB cascade may exist in shrimp for immune gene
regulation. After performing genome-wild analysis of white spot syndrome virus (WSSV) encoded proteins, we found that
WSSV449 shows 15.7-19.4% identity to Tube, which is an important component of the insect Toll pathway. We further found
that WSSV449 activated promoters of Toll pathway-controlled antimicrobial peptide genes, indicating WSSV449 has a
similar function to host Tube in activating the NF-kB pathway. We suspected that WSSV449 activated the Toll-mediated NF-
kB pathway for regulating viral gene expression. To test this hypothesis, we analyzed the promoters of viral genes and
found 40 promoters that possess NF-kB binding sites. A promoter screen showed that the promoter activities of WSSV069
(ie1), WSSV303 and WSSV371 can be highly induced by the shrimp NF-kB family protein LvDorsal. WSSV449 also induced
these three viral promoter activities by activating the NF-kB pathway. To our knowledge, this is the first report of a virus that
encodes a protein similar to the Toll pathway component Tube to upregulate gene expression in the invertebrate host.
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Introduction

In mammals, pathogen recognition by Toll-like receptors
(TLRs) is central to the activation of the innate immune response.
TLRs can interact with distinct pathogen-associated molecular
patterns (PAMPs) derived from viruses, bacteria and fungi.
Stimulated by PAMPs, all of the TLRs, except TLR3, recruit the
adaptor protein myeloid differentiation primary response protein
88 (MyD88) through the Toll-IL-1R (TIR) domain, leading to the
receptor complex formation of IL-1 receptor-associated kinase 4
(IRAK4), IRAK1 and tumor necrosis factor receptor-associated
factor 6 (TRAF6) [1,2,3]. The activation of IRAK4 and IRAK1
leads to IRAKI-TRAF6 complex dissociation from the receptor
complex to further activate downstream IxB kinase (IKK) [1,2,3].
Subsequently, IKK phosphorylates IkB, an NI-kB inhibitory
protein. Phosphorylated IxB undergoes degradation by the
ubiquitin-proteasome system, thereby freeing NF-kB to translo-
cate into the nucleus and activate expression of proin flammatory
cytokine genes [1,2,3]. In the MyD88-independent pathway, the
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detection of PAMPs, like viral dsRNA by TLR3, recruits TIR
domain-containing adaptor inducing IFN-f (TRIF), TRAF6 and
TRAF3 to activate NF-xB and interferon (IFN) regulatory factor
(IRF) 3/7 signaling for the induction of pro-inflammatory genes
and type I IFNs [3].

In Drosophila, the recognition of Gram-positive bacteria and
fungi by peptidoglycan recognition proteins (PGRPs) and Gram-
negative bacteria binding proteins (GNBPs), but not Toll itself,
triggers a proteolytic cascade to cleave the endogenous Toll ligand
spactzle for binding of the Toll receptor and induction of
dimerization [4,5]. Dimerization of the Toll receptor recruits a
pre-existing Myd88/Tube complex that ultimately recruits Pelle
and TRAFG6 to form the receptor complex[6]. MyD88-Tube-Pelle
can form a heterotrimeric complex through their death domains
downstream of the activated Toll receptor [7,8]. Pelle can
physically and functionally interact with TRAF6 and phosphor-
ylate  TRAF6 @ wvitro [9]. Activation of Pelle leads to the
degradation of Cactus (the homolog of mammalian IxB), releasing
the NI-xB family protein Dorsal into the nucleus for the
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transcriptional induction of immune-related genes, such as
antimicrobial peptides (AMPs) [4,5,6]. Although no component
of Drosophila Toll pathway has been identified as the detector of
viruses, certain viruses can also activate the Toll pathway and
induce AMP expression [10,11]. However, most of the knowledge
regarding the invertebrate TLR signaling pathway is limited to
Drosophila.

The evolution of the TLR-mediated NF-xB pathway is
conserved in insects and mammals [12], and IRAK family
proteins are central regulators of the TLR-mediated NF-xB
pathway from Drosophila Pelle to human IRAKs [12,13,14]. The
mammal IRAK family of proteins includes IRAK1, IRAK2,
IRAK3/M, and IRAK4, which all play a crucial role in the
signaling pathways initiated by the TLRs [13]. These proteins
are characterized by a C-terminal protein kinase domain and an
N-terminal death domain that mediates interactions with
MyD88-family adaptor proteins [13]. Whereas IRAKI1 and
IRAK4 have kinase activity, IRAK2 and IRAK3/M are
catalytically inactive [13]. IRAK4, a central element in the
early signal transduction of the TLR pathway upstream of
IRAKI, is the closest mammalian homolog to Drosophila Pelle
[15]. It was believed that Pelle was the only IRAK family protein
present in invertebrates. However, a recent study has proposed
that Tube arose from a gene coding a protein kinase very similar
in overall structure to Drosophila Pelle and the vertebrate IRAKSs
[14]. Drosophila Tube has an N-terminal death domain and a C-
terminal Tube repeat domain. The Tube death domain acts as a
bridge between the death domains of MyD88 and Pelle for
protein interactions [7,8,14].

The TLR-mediated NF-xB pathway is often targeted by
viruses to benefit infection and viral replication. A46R and A52R
from vaccinia virus contain a TIR domain and interact with the
host TIR-containing adaptor protein MyD88 to block the TLR-
mediated NF-kB pathway [16,17,18]. An IxkB homolog encoded
by African swine fever virus and some pathogenic orthopox-
viruses interacts directly with NF-kB to repress the NI-xB
pathway for the downregulation of proin flammatory genes
[19,20,21,22]. In contrast, proteins encoded by xenotropic
murine leukemia virus-related virus (XMRYV), HIV-1 and
Human T-lymphotropic virus Type I (HTLV-1) activate the
NF-xkB pathway to promote viral gene transcription and
replication [23,24,25,26,27,28]. In mammals, some viruses seem
to learn how and when to switch the NF-kB pathway off and on,
which is to their benefit [25,28]. In invertebrates, there are few
reports on the manipulation of the NF-«kB pathway by viral
pathogens. To our knowledge, only the polydnaviruses have been
reported to interact with host immune signaling molecules by
encoding IkB-like proteins to inhibit NF-xB activation and
suppress the insect immune response, similar to the function of
the insect IkB homolog Cactus [29,30].

WSSV is one of the most common and most destructive
pathogens in shrimp aquaculture, and shrimp mortality can reach
100% within 3-10 days after infection [31]. WSSV hosts include
shrimp, crayfish, crabs, lobsters and copepods [31]. In addition,
WSSV can replicate its genome in insect cells [32]. The complete
WSSV genome is double-stranded circular DNA of approximately
300 kbp covering a total of 531 putative open reading frames
(ORFs) [33]. Herein, we investigated the interactions between the
shrimp TLR-mediated NF-kB pathway and WSSV infection. We
first characterized LvPelle from Litopenacus vannamer and proposed
that a TLR/MyD88/Tube/Pelle/TRAF6/NF-kB pathway may
exist in shrimp. Then, we reported that WSSV449, a viral protein
shows similarity to host Tube, can function like Tube by activating
the NT-xB pathway in Drosophila Schneider 2 (S2) cells. Lastly, we
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performed a promoter screen and identified the viral genes
regulated by WSSV449 through the activation of the NF-xB
pathway. Collectively, the results suggest that the shrimp TLR-
mediated NF-kB pathway can be activated by WSSV449 for viral
gene expression.

Materials and Methods

Microorganisms and experimental shrimp

The Gram-negative bacteria Vibrio alginolyticus was cultured in
Luria broth (LB) medium overnight at 28°C. Then, the cells were
pelleted at 5000 x g for 10 min, washed, and resuspended in 1x
PBS buffer to a density of 10”7 CFU/ml. The quantification of
bacteria was measured by counting the microbial CFU/ml on LB
agar plates following incubation at 30°C overnight. The WSSV
inoculum was prepared as previously described [34,35]. L. vannamei
(~8-10 g each) were purchased from a shrimp market in
Guangzhou, Guangdong Province, China. The shrimp were
cultured in a recirculating water tank system filled with seawater
(~2.5% salinity) at 24-26°C. The shrimp were fed with a
commercial diet at 5% of the body weight twice per day and were
cultured for at least 7 days for acclimation before experiments.

Cloning the ¢cDNA and genome of LvPelle

Shrimp total RNA (0.5 pg), isolated using an RNeasy Mini Kit
(Qiagen, Germany), was reverse transcribed to cDNA as PCR
templates using the PrimeScript™ First Strand ¢cDNA Synthesis
Kit (TaKaRa, China). Using the templates and degenerate
primers (DPPelleF and DPPelleR, Table 1), a ¢cDNA fragment
of LvPelle was obtained by PCR. Based on the cDNA fragment, the
full-length ¢cDNA of LoPelle was obtained by 5" and 3'-rapid
amplification ¢cDNA ends (RACE), as previously described
[34,35]. The genomic DNA sequences of LvPelle were obtained
by PCR using genomic DNA of shrimp with the primers listed in
Table 1. Genomic DNA sequences adjacent to the 5’ ends of
LvPelle were obtained using the Genome Walker™ Universal Kit
(Clontech, USA) as previously described [36]. All new sequences
obtained in this study have been deposited in NCBI GenBank
(http://www.ncbi.nlm.nih.gov/genbank/).

Bioinformatics analysis

Multiple sequence alignments were performed using the Clustal
X 2.0 program (http://www.ebi.ac.uk/tools/clustalw?2). The
simple modular architecture research tool (SMART, http://
smart.embl-heidelberg.de) was used to analyze the deduced amino
acid sequences of LvPelle. An neighbor-joining (NJ) phylogenic
tree was constructed using MEGA 4.0 software (http://www.
megasoftware.net/index.html) based on the deduced amino acid
sequences of IRAK family proteins in typical species. Bootstrap
sampling was reiterated 1,000 times. The death domain and
protein kinase domain of LvPelle were modeled by homology
using SWISS-MODEL workspace (http://swissmodel.expasy.org/
workspace/) with structures of Drosophila Pelle death domain (PDB
code: 1D2ZC) and human protein kinase domain (PDB code:
20icA) as templates, respectively. The 3D structures of proteins
were generated using PyMOL (http://www.pymol.org/).

Real-Time quantitative PCR analysis

For the immune challenge experiments, healthy L. vanname:
were injected intramuscularly at the third abdominal segment with
2.4x10° V. alginolyticus, which can cause ~90% mortality within
30 h, or with 100 ul of WSSV inoculum. Shrimp tissues were
collected as previously described [34,35]. The total RNA isolated
from the collected tissues was treated with RNase-free DNase I
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Table 1. PCR primers used in this study.

Primers Primer sequences (5’-3)

cDNA cloning

DPPelleF* TGTAATGGIIGTTTGTSTGG

DPPelleR* TCYRTRWAKCCAAATCCT

5" RACE1 TTTGGATTACGAGCAACATCAG

5" RACE 2 AGGGCCAGTCAAGAAAGTCAT

3" RACE 1 GCATTCAAGCGTCCTGATGT

3" RACE 2 TCATGGAATGCAAAGTGAGAATG

Genomic DNA

sequences

GPelleF1 TGCAACTTGGAAAAGCTGACAG

GPelleR1 TGAAGACCCTCTGGGATTGG

GPelleF2 GATGGTAATGGAAACAATGCTGC

GPelleR2 TAGACCACTCCAAATGCTCCTTC

GPelleF3 CAAGTGAATGAGGAGCCAACC

GPelleR3 CGAGCACCTGAACCATTGTAG

Promoter region

GSP1 CATCCAATGTCAAAGCTCGT

GSP2 TCACTCACCCACTGGAATCTG

qPCR analysis

LvPelle-F TGGGTCCGTGTCCAGTGAT

LvPelle-R ACAAACAACCACACACAAGCAG

LVEF-10-F GAAGTAGCCGCCCTGGTTG

LVEF-10-R CGGTTAGCCTTGGGGTTGAG

Protein expression

pAcLvPelleF GGGGTACCATGGAGAGTGTCGAAGA-
GTCCATTAC

pAcLvPelleR GCTCTAGACACACAGCTTTGCTTCTCTATATG

PACWSSV449 GGGGTACCATGTGCACATTAAAAACATA-
CAAAATG

PACWSSV449 GCTCTAGATACTCCACGCTGCTTGGAGAAG

pAcLvDorsal CGGGGTACCCGCCACCATGGTTGTTGCCCA-
GCGTACTTCC

pAcLvDorsal AAGGAAAAAAGCGGCCGCCACATATCAG-
AAAATATCCAAAACTTACC

*I=Inosine; S=Cor G;Y=CorT,R=Aor G W=AorT, K=GorT.

doi:10.1371/journal.pone.0024773.t001

(Qiagen, Germany) to remove contaminated genomic DNA and
then reverse transcribed to cDNA for use as PCR templates. One
microliter of cDNA was used to detect the expression of LoPelle in
healthy and immune-challenged shrimp using Master SYBR
Green I system and a LightCycler (Roche) as previously described
[34,36]. qPCR was conducted in three replicates per sample, and
at least three shrimp were analyzed for each sample. The standard
curves for LvPelle and LvEF-l1o. were generated by running
triplicate reactions of 10-fold serial dilutions (10 different cDNA
concentrations). The efficiencies for LvPelle and LvEF-Ioa were
2.009 and 2.023, respectively. The relative standard curve method
was used for the calculation of fold changes in gene expression as
previously described [34,36].

Plasmid construction
For protein expression in S2 cells, pAc5.1/V5-His A (Invitro-
gen, USA) and PCR products amplified with pAcLvPellel" and
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pAcLvPelleR were double digested, purified, ligated, and trans-
formed into DH5a competent cells to select positive clones for
sequencing. Using the same method, pAc5.1-WSSV499, pAc5.1-
LvDorsal, pAc5.1-N-GFP or pAc5.1-LvPelle-GFP was successfully
constructed with primers in Table 1 and Table S1 as previously
described [34,35]. In previous studies, we constructed luciferase
reporter vectors using the following sequences: the promoter
sequences of Drosophila AMPs, Drosomycin (Drs) and Attacin A (AttA);
the P. monodon AMP, Penaeidin (containing two types of promoters,
PEN453 and PEN309); and the L. wvannamei AMP, Penaeiding
(PEN4) [34,35]. Luciferase reporter genes including pGL3-
PEN453, pGL3-PEN309, pGL3-PEN4, pGL3-Drs and pGL3-
AttA were constructed successfully and demonstrated to be
predominantly regulated through NF-xB activation
[34,35,37,38,39,40]. Using the same method, the luciferase
reporter vectors of the 40 WSSV genes that have putative NF-
KB binding sites in their promoters were successfully constructed
with primers in Table S2 as previously described [35,36].

Dual luciferase reporter assays

Because no permanent shrimp cell line is available, Drosophila
Schneider 2 (S2) cells, a hemocyte-derived cell line, were used to
perform the functional and localization analysis of LvPelle
[4,5,34,35]. The use of S2 cells for studying the regulation of
immune-related genes including AMPs through NF-kB pathway
in other arthropods, especially shrimp and horseshoe crab, has
been documented by numerous studies [34,35,37,38,39,41,42,43].
S2 cells were maintained at 28°C in standard Drosophila medium
(Serum-Free Medium; Invitrogen, USA), supplemented with 10%
fetal bovine serum (FBS) and 1% Penicillin-Streptomycin solution
(Beyotime, China). In the luciferase reporter assays, the expression
plasmid (pAcb.1-Basic, pAc5.1-LvPelle, pAc5.1-WSSV499 or
pAcS.1-LvDorsal), reporter gene plasmid (pGL3-Basic, pGL3-
PEN453, pGL3-PEN309, pGL3-PEN4, pGL3-Drs, pGL3-AttA,
pGL3-WSSV069, pGL3-WSSV303 or pGL3-WSSV371), and
mnternal standard pRL-TK Renilla luciferase plasmid were co-
transfected into S2 cells that were seeded into 96-well plates 24 h
before transfection. S2 cells were transfected with Effectene
Transfection Reagent (Qiagen, Germany). After 36 h, cells were
harvested and lysed for examination of protein expression and
luciferase activities using the dual luciferase reporter assay system
(Promega, USA).

Cellular localization

S2 cells were seeded onto cover slips treated with poly-I-lysine in
24-well plates. After 24 h, the cells were transfected with the
constructed pAc5.1-N-GFP vectors described above. At 36 h post-
transfection, the cells on the cover slips were washed twice with
PBS, fixed by Immunol Staining Fix Solution, and stained with
Hoechst 33258 Solution (Beyotime, China). The treated cells were
observed using a Leica laser scanning confocal microscope.

Co-immunoprecipitation

S2 cells in 60 mm plates were transfected with 0.5 pg pAc5.1-
Basic and 0.5 pg pAc5.1-LvTRAF6-Myc, 0.5 pg pAc).1-LvPelle-
V5 and 0.5 pg pAc5.1-LvTRAF6-Myc, 0.5 ug pAci.1-Basic and
0.5 ug pAcd.1-LvPelle-Myc, or 0.5 pg pAc.1-LvPelle-Myc and
0.5 ng pAc5.1-LvIRAF6-V5. At 48 h post-transfection, the cells
were lysed, and co-immunoprecipitation (co-IP) experiments were
performed using the ProFound™ c¢-Myc Tag IP/Co-IP Kit
(Pierce, USA) following the manufacturer’s instructions. Briefly,
cell lysates and anti-c-Myc agarose were combined and incubated
at 4°C overnight with constant inversion. On the next day, the
samples were applied to centrifuge spin columns and then washed
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three times with TBST. c-Myc-tagged proteins were cluted using
non-reducing sample buffer. The elution products were analyzed
by SDS-PAGE, followed by western blot using the diaminoben-
zidine (DAB) substrate kit (Boster, China) with anti-V5 (1:1,000)
and anti-Myc (1:1,000) mAb.

Statistical analysis

Student’s t-test was used to compare means from two samples
using Microsoft Excel wherever applicable. Multiple means
comparisons were determined by a one-way ANOVA and Tukey’s
multiple comparison tests using SPSS 13.0 where applicable. In all
cases, differences were considered to be significant at p<<0.05 and
to be highly significant at p<<0.01. All experiments were repeated
as least three times. The data are presented as the mean =*
standard error (standard error of the mean, SEM).

Results

c¢DNA cloning and bioinformatics analysis of LvPelle
LoPelle ¢<DNA is 1,706 bp with an ORF of 1,611 bp, a 5’
untranslated region of 50 bp, and a 3’ untranslated region of
45 bp (Fig. 1A and Fig. S1). The LvPelle genome is 8,031 bp
containing eight exons and nine introns (Fig. 1B). The sequence
was deposited in NCBI GenBank under accession no. JN180645.
LvPelle contains N-terminal death domains and a C-terminal
protein kinase domain, showing 24-40% identity with IRAK
family proteins from insect to human (Fig. 2A-B). Phylogenetic
trees analysis indicated that IRAK family proteins can be divided
into four groups: group 1 contains vertebrate IRAKIs, group 2
contains vertebrate IRAK3s, group 3 contains vertebrate IRAK?2s,
and group 4 includes Pelles and IRAK4s (Fig. 2B). LvPelle is in
group 4 and seems closely related to vertebrate IRAK4s. The
model structures of the LvPelle death domain and protein kinase
domain were generated using PyMOL Version 1.3 (Fig. 2C).
LvPelle death domain consists of six o helices, which is similar to
Drosophila Pelle and mouse IRAK4 (Fig. 2C) [44]. The protein
kinase domain of LvPelle consists of nine o helices and seven 3
strands, which is similar to human IRAK4 (Fig. 2C) [45].

LvPelle expression in response to pathogen infection

In healthy shrimp, LvPelle was constitutively expressed in the
intestine, epithelium, hemocyte, heart, nerve, hepatopancreas,
muscle, gill, eyestalk, stomach and pyloric caecum (Fig. 3A). In the
gill, LoPelle was upregulated to 2.5 times the control at 3 h after
WSSV infection (Fig. 3B). In the intestine, the expression levels of
LoPelle were decreased after V. alginolyticus and WSSV infection
(Fig. 3C). In the hepatopancreas, LoPelle was upregulated up to 1.4
times the control only at 12 h after V. alginolyticus infection
(Fig. 3D), but LoPelle expression levels were decreased at 9 h, 12 h
and 24 h after WSSV infection (Fig. 3D).

LvPelle localizes in the cytoplasm of S2 cells

The fluorescent imaging of GFP-labeled partial or full-length
LvPelle (Fig. S2) analyzed under confocal microscopy indicated
that only the full length LvPelle had a correct cellular localization,
in which LvPelle appeared as point-like aggregates in the
cytoplasm (Fig. 4A). However, the GFP-labeled partial LvPelle
was ubiquitously distributed in S2 cells (Fig. 4A). The data
indicated that the LvPelle-GFP fusion protein was localized in the
cytoplasm of S2 cells, which was consistent with the putative
function of LvPelle in forming a receptor complex with MyD88
and Tube downstream of the TIR domain of TLRs.
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LvPelle activates Drosophila and shrimp AMP promoters

Here, we investigated whether LvPelle, a potential positive
regulator of the Toll pathway, could activate the promoters of NF-
kB pathway-controlled AMPs. In S2 cells, LvPelle can activate the
promoters of both shrimp and Drosophila AMP genes. Expression of
LvPelle induced P. monodon Penaeidin promoter activity by ~2.51-
fold and by ~2.49-fold for type453 and type309 (two different
promoters of P. monodon Penaeidin), respectively, and increased L.
vannamer Penaeiding promoter activity by ~2.92-fold (Fig. 4B).
LvPelle also increased the activity of Drosophila Attacin A and
Drosomycin promoters by ~2.05- and ~3.24-fold, respectively
(Fig. 4B).

LvPelle interacts with LvTRAF6

To verify whether LvPelle could associate with LvI'RAF6, co-IP
assays were conducted. The results showed that Myc-tagged
LvPelle coprecipitated with V5-tagged LvI'RAF6 and V5-tagged
LvPelle coprecipitated with Myc-tagged LvI'RAF6 that (Fig. 4C),
suggesting that LvPelle can associate with LvI'RAF6 during TLR
signal transduction.

WSSV499 shows similarity to host Tube and activates the
NF-xB pathway

Viruses often encode proteins similar to components of host
immune pathways to control immune responses. In the 531 WSSV
ORFs, we found that WSSV449 shares 15.7-19.4% identity with
mset Tube, a positive regulator of the Toll pathway (Fig. 5A). To
test whether WSSV449 can participate in the host Toll pathway
like Tube, we performed dual luciferase reporter assays in S2 cells.
We observed that WSSV449 can activate the AMP reporters of
Drosophila and  shrimp, whose induced activities are mostly
controlled through multiple NF-kB binding sites in the promoters
(Fig. 5B) [34,35]. WSSV449 activated the promoters of
PmPEN453, PmPEN309, LoPEN4, Drosomycin and Attacin A by
~3.27-, ~255-, ~3.07-, ~1.98 and 1.74-fold respectively
(Fig. 5B).

WSSV gene promoters have multiple NF-kB binding sites
and can be stimulated by NF-kB activation

Here, we found that 40 WSSV genes have multiple NF-kB
binding sites in their promoters. To explore whether these viral
genes are induced by NF-kB pathways, like certain genes of HIV,
herpesviruses, hepatitis C virus (HCV) and encephalomyocarditis
virus (EMCV), we performed a promoter screen [25,28]. We
observed that the promoter activities of WSST069 (iel), WSSV303
and WSSV371 are highly induced compared to the control group
when the shrimp NF-kB family protein LvDorsal is overexpressed
(Fig. 6A). Our previous study also reported that LvDorsal could
bind to NF-xB binding sites  vitro [39]. Stimulated by WSSV,
LvDorsal can translocate to the nucleus, suggesting a transcrip-
tional function of LvDorsal after WSSV infection (Fig. 6B).
Furthermore, we observed that overexpression of LvPelle
increased the promoter activities of WSSV069 (iel), WSSV303
and WSSV371 by ~2.56-fold, ~2.21-fold and ~1.78-fold,
respectively (Fig. 7). WSSV449 also activated the promoter
activities of WSSV069 (iel), WSSV5035, and WSSV371 by ~4.63-
fold, ~3.55-fold and ~2.89-fold, respectively (Fig. 7). Thus,
WSSV449, as well as host Pelle or Tube, can activate the NF-kB
signaling pathway to regulate gene expression [8,46,47]. These
results suggest that expression of WSSV069 (iel), WSSV303 and
WSSV371 may depend on NF-kB signal activation.
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A GATTCCCAGGTAAATTGCAACTTGGAAAAGC TGACAGATTCC AGTGCATC ATGCAGGCTGTAACAGATGGTAATGGAALMCAATGCTGCCT <o
g aAaVTDOGNGIHNDNAAL 3
TCACTATGGCTTCAGAAGTCCGCTTTCTGCCACCGTGGGCALAGTCACAGTTAGCGC ACATCTTGGAAGTCACTC ATGGCTGGCGGGAGA 180
FTNKNASEUWYREFELEPPWAEKSQLAHRTILETY¥THGUYERE
TCATGGCTCGAGTCCCAAGTATGCCATGEGTCCC TCCAGAACCAATCCCAGAGGGTCTTCATTATCC TAGALL ATACACATCTGATGATA 270
I " G R ¥YP S WP V¥ ¥PGEPIPEGLUHTYPRETYTS S SDD
TTCAACTAGTAGC TGAAGAATGTGCCCGAGATCGCCGTGAAGGTTTTGAGGTCC TIC TTGAAGAATGGGGAAC AAGTGCAAGGAAGAGAC 360
I L ¥ 4EECARDRREGEFEW¥LLEEWTGETSGERETSR
CTAC T TG AL GACC TTG TALATC TTC TOGALCAGGC AL A AC TETAC AGAGC TG TICAT TACTTAMC TGTCALGGTTTTALATGGGGAGS 450
PTLQDLVNLTLES GQALAELTYRAVDVYLTUVYET VLUETEGE 3
CCCAGAGCAGGGACCALAGTGAACGGCAGCTCTTTGATCAGC TAGACACAGC AATACAGAATGACC ARAGAGTCCACC AAGACATTGTTC 540
PQ 5 EKEKDQSEGELTFDELERUSIAQNDQQERETYTHQDTIT 15
ATGGGACCTTCTCTGTTGGGETOGTCALAGATACCCCAGACTCACTC TTGACAGAC AGLCTTAGTGAGAGATC TGCAGACGATTCTCGAL 630
HGTFSVYVGVYEDTPDSLLTDERLGSETRTSADTDSERE 1
TGCAAGTCAATGACGAGCCAACCAGAGTCATCGATC TTTCCAGGAACGTTC TAGC TGCGTC ACCAGGAAGAGAAGAAATCCAGCAMCCGE 720
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Figure 1. cDNA sequences and genomic structure of LvPelle. (A) The nucleotide (upper row) and deduced amino acid (lower row) sequences
of the ORF are shown. The death domain (amino acids 14-69), and the protein kinase domain (amino acids 421-563) are shaded. (B) The genomic
organization of LvPelle. The exons are depicted as boxes and introns as lines.

doi:10.1371/journal.pone.0024773.g001
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Figure 2. Domain architecture, phylogenetic tree and homology model of LvPelle. (A) The schematic representation of the domain
topology of LvPelle. LvPelle contains an organization that is typical of IRAK family proteins: N-terminal death domain and C-terminal protein kinase
domain. (B) The phylogenetic tree of LvPelle with other IRAK family proteins. The numbers at the nodes indicate bootstrap values. LvPelle is boxed.
AgPelle, Anopheles gambiae Pelle (Accession no. XP_311931); AmPelle, Apis mellifera Pelle (Accession no. XP_624002); CePelle, Caenorhabditis
elegans Pelle/IL-1 receptor associated Kinase (IRAK) family member (pik-1) (Accession no. NP_502587); CqPelle, Culex quinquefasciatus Pelle
(Accession no. EDS41908); DmPelle, Drosophila melanogaster Pelle (Accession no. NP_476971); TcPelle, Tribolium castaneum Pelle (Accession
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no. XP_966383); BfIRAK4, Branchiostoma floridae IRAK4 (Accession no. XP_002601719); BtIRAK4, Bos taurus IRAK4 (Accession
no. NP_001069466); CilRAK4, Ciona intestinalis IRAK4 (Accession no. XP_002122012); DrIRAK4, Danio rerio IRAK4 (Accession no. NP_956457);
EsIRAK4, Euprymna scolopes IRAK4 (Accession no. AAY27972); GglRAK4, Gallus gallus IRAK4 (Accession no. NP_001025909); HsIRAK4, Homo
sapiens IRAK 4 (Accession no. NP_001107654); MmIRAK4, Mus musculus IRAK4 (Accession no. NP_084202); OmIRAK4, Oncorhynchus mykiss IRAK4
(Accession no. CBI63176); RnIRAK4, Rattus norvegicus IRAK4 (Accession no. XP_217026); TglRAK4, Taeniopygia guttata IRAK4 (Accession
no. XP_002194205); XtIRAK4, Xenopus tropicalis IRAK4 (Accession no. NP_001116877); BtIRAK1, B. taurus IRAK1 (Accession no. NP_001035645);
DrlRAK1, D. rerio IRAK1 (Accession no. XP_697688); HsIRAK1, H. sapiens IRAK1 (Accession no. AAH54000); MmIRAK1, M. musculus IRAK1 (Accession
no. NP_032389); TnIRAK1, Tetraodon nigroviridis IRAK1 (Accession no. CAF93411); XtIRAK1, X. tropicalis IRAK1 (Accession no. AAH75439);
BtIRAK3, B. taurus IRAK3 (Accession no. NP_001177228); DrIRAK3, D. rerio IRAK3 (Accession no. AAH98615); HsIRAK3, H. sapiens IRAK3 (Accession
no. NP_009130); MmIRAK3, M. musculus IRAK3 (Accession no. AAM83393); RnIRAK3, R. norvegicus IRAK3 (Accession no. NP_001101571);
BtIRAK2, B. taurus IRAK2 (Accession no. NP_001069164); GgIRAK2, G. gallus IRAK2 (Accession no. NP_001025776); HsIRAK2, H. sapiens IRAK2
(Accession no. NP_001561); RnIRAK2, R. norvegicus IRAK2 (Accession no. AAH98060); TgIRAK2, T. guttata IRAK2 (Accession no. XP_002187461);
XIIRAK2, Xenopus laevis IRAK2 (Accession no. NP_001079489). (C) Primary sequence alignments and homology models of the death domain and
protein kinase domain of LvPelle. The death domain of LvPelle shows 21.2% identity to both Drosophila melanogaster and Mus musculus. The protein
kinase domain of LvPelle shows 35.1% and 42.6% identity with Drosophila melanogaster and Homo sapiens, respectively. Homology models of the
LvPelle death domain (b) and kinase domain (d) show high similarities with the crystal structures of Drosophila Pelle (a) and mammalian IRAK4 (c),
respectively, providing the foundations of the evolutionarily conserved function of NF-kB signaling for LvPelle.
doi:10.1371/journal.pone.0024773.g002

Insect Pelle or its mammalian homolog IRAK4 is the central
members of the TLR-mediated NF-kB pathway because they not
only form receptor complex with MyD88 and Tube (or IRAKI)
but also participate in downstream signal transduction with NF-xB
family proteins [13]. We found that LvPelle could function as an
adapter protein in Toll signaling by activating the promoters of

Discussion

The TLR-mediated NF-xB signaling pathway is essential in
antibacterial and antiviral defense in Drosophila and humans
[4,5,12]. This pathway also seems to be an attractive target of
bacterial and viral pathogens [25,28]. In invertebrates, however,

this pathway has only been well-studied in Drosophila, and there are
few reports of interactions between TLR signaling pathway of
invertebrate hosts and viral pathogens. Here, we proposed the
existence of a potential TLR/MyD88/Tube/Pelle/ TRAF6/NF-
kB pathway in shrimp and reported that WSSV449 showed
similarity to host Tube and activated this pathway to facilitate the
expression of WSSV069 (iel), WSSV303 and WSSV371.

shrimp and Drosophila AMP genes, suggesting a conserved Toll
signaling pathway in shrimp for AMP expression. Co-IP
experiments also revealed that LvPelle could associate with
LvITRAF6, a Toll pathway component downstream of LvPelle,
similar to the interaction between Drosophila Pelle and TRAFG6.
Using the NCBI EST database, we found Myd88 and Tube in
other crustaceans such as brine shrimp. In addition, several partial
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Figure 3. Expression of LvPelle in healthy and immune challenged shrimp. (A) The tissue distribution of LvPelle in healthy shrimp by qPCR
analysis. The expression of LvPelle in the pyloric caecum was set to 1.0. The temporal expression of LvPelle in the gill (B), intestine (C) and
hepatopancreas (D) after V. alginolyticus and WSSV challenge. The expression values were normalized to LvEF-1o expression values using the relative
standard curve method. qPCR was conducted in three replicates per sample. Data are expressed as the mean fold change (mean = S.E., n=3) from
the untreated group. Statistical significance was calculated by Tukey multiple comparison tests and Student’s t-test. The bars with different letters
indicate statistical differences (p<<0.05).

doi:10.1371/journal.pone.0024773.g003
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Figure 4. The functional study of LvPelle in the Toll pathway. (A) The intracellular localization of LvPelle and its truncated mutants fused with
GFP in S2 cells. P1 represented amino acids 1-69 of LvPelle, P2 represented amino acids 1-262 of LvPelle, P3 represented amino acids 1-536 of
LvPelle (the full-length protein of LvPelle) and P4 represented amino acids 129-536 of LvPelle as indicated in Fig. 2. (B) Overexpression of LvPelle
activates Drosophila and shrimp AMP promoters. Luciferase reporter genes including pGL3-PEN453, pGL3-PEN309, pGL3-PEN4, pGL3-Drs and pGL3-
AttA were constructed successfully and demonstrated to be predominantly regulated through NF-«kB activation [34,35,37,38,39,40]. In this study, we
use these luciferase reporter genes to investigate the activation of Toll-mediated NF-kB pathway. The data are representative of three independent
experiments. **p<<0.01. (C) LvPelle associates with LvTRAF6 during TLR signal transduction. Myc-tagged LvPelle co-precipitated with V5-tagged
LvTRAF6 (lane 1) and V5-tagged LvPelle coprecipitated with Myc-tagged LvTRAF6 (lane 3). pAc5.1-Basic were used as controls.
doi:10.1371/journal.pone.0024773.g004
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Figure 5. WSSV449 shows similarity to host Tube and activates the promoters of Drosophila and shrimp AMPs. (A) Multiple sequence

alignment of WSSV449 and insect Tube proteins. The conserved functional death domain

is framed with a green line. The overall protein identities are

indicated. WSSV449 shows 15.7-19.4% identity to Tube, which is a positive regulator of insect Toll pathway. CfTube, Camponotus floridanus (Accession
no. EFN72687); DmTube, Drosophila melanogaster (Accession no. AAA28994); DpTube, Drosophila persimilis (Accession no. EDW34648); HsTube,
Harpegnathos saltator (Accession no. EFN87560); WSSV449, white spot syndrome virus 449 (Accession no. AAL89317). (B) Overexpression of

WSSV449 activates Drosophila and shrimp AMP promoters. The data are representative
doi:10.1371/journal.pone.0024773.9g005
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Figure 6. A promoter screen to identify viral genes induced by NF-kB activation. (A) The determination of the promoter activities of 40
WSSV genes when the shrimp NF-«kB family protein LvDorsal is overexpressed in S2 cells. All of the 40 WSSV genes possess NF-kB binding sites in their
promoter regions. The promoter regions were inserted into pGL3-Basic to construct luciferase reporters. When transfected into S2 cells, the
promoters of WSSV069 (ie1), WSSV303 and WSSV371 are activated by LvDorsal. (B) Stimulated by WSSV, LvDorsal translocated to the nucleus. PBS
treated cells were used as a control. (C) The promoter regions containing NF-kB binding sites of WS5V069 (ie1), WSSV303 and WSSV371. The NF-xB
binding sites were in bold and underlined.

doi:10.1371/journal.pone.0024773.9g006
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**p<<0.01.
doi:10.1371/journal.pone.0024773.g007

sequences of Cactus- and Myd88-like genes have been obtained in
our lab. Adding to our previous report of shrimp Tolls and Dorsal
and their function in participating in the Toll pathway [34,39,42],
we proposed that shrimp possess a potential TLR/MyD88/Tube/
Pelle/TRAF6/NF-xB pathway similar to Drosophila for immune
gene regulation in antiviral and antibacterial responses [4,5].

The WSSV genome encodes a total of 531 putative ORFs. After
a homology search using NCBI BLAST, we found that several
proteins show similarities with host proteins. Further sequence
analysis indicated that WSSV449 shares 15.7-19.4% identity with
Tube, which is a positive regulator of the insect Toll pathway
[5,8,14,47]. When overexpressed in S2 cells, WSSV449 highly
activated the Toll pathway by inducing the promoter activities of
shrimp and Drosophila AMPs. This result reveals that WSSV449
can activate the Toll-mediated NF-kB pathway. WSSV449 shares
low identity (15.7-19.4%) with Tubes, at the same time, insect
Tubes also show low identity with each other, e.g. CfTube and
HsTube share only 19.5% and 21.5% identity with DmTube,
respectively (Fig. 5A). So it’s stll possible that WSSV449, like
Tube, could acts as a bridge between the death domains of shrimp
MyD88 and Pelle for NF-xB activation [7,8,14]. An alternate
possibility is that WSSV449 might interact with the death domain
of shrimp MyD88, Tube or Pelle and influence the stability of
shrimp MyD88-Tube-Pelle heterotrimeric complex in NF-xB
activation [7,8,14]. To investigate the molecular mechanism of
NF-kB activation by WSSV449, we are trying to obtain the full-
length ¢cDNA of shrimp MyD88 and Tube, and investigate
whether WSSV449 can function as a viral Tube homolog by
acting as a bridge between the death domain of MyD88 and Pelle
for protein interaction.

The activation of the NF-kB pathway is a hallmark of most viral
infections [25,28]. Apart from the non-specific recognition of
PAMPs by TLR, many viruses have evolved distinct strategies to
control activities of the NF-kB pathway. HIV-1 proteins such as
Tat, Vrp and Nef, participate in the regulation of NF-kB activity
[48]. The Tax transactivator oncoprotein of HTLV-1 directly
activates IKK, leading to NF-kB activation, and results in
upregulation of cellular genes that promote cell proliferation and
survival [24,28,48]. The HBx protein of hepatitis B virus (HBV) is
also a potent inducer of NF-kB [25]. Some viruses, such as herpes
simplex virus 1 (HSV-1), appear to activate NF-xB in a biphasic
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way [25]. It has been report that WSSV449 (orf390 or AAP-1) is
an anti-apoptotic protein that interacts with and affects shrimp
caspase [49]. Here, we found that WSSV449 also activates the
NF-xB pathway. It is well known that activation of NF-kB can
induce an anti-apoptotic response [50], and this raises the question
of whether WSSV449-induced NF-kB activation also contributes
to inhibition of cellular apoptosis.

Viruses activate the NF-kB pathway not only for blocking
apoptosis and promoting cell proliferation and survival but also for
stimulating viral gene expression [25,28]. There are NF-kB binding
sites in the promoters of many different classes of viruses such as
HIV-1, XMRYV, cytomegalovirus, herpesvirus, HBV and Epstein—
Barr virus (EBV) [28]. In HIV-1-infected cells, activation of NF-xB
signaling promotes long terminal repeat (LTR)-driven viral
transcription. The absolute requirement for these NF-kB binding
sites during the HIV-1 life cycle are required for HIV transcription
in some cell types [28] NF-kB activation can also markedly increase
XMRYV replication through the NF-kB binding sites in the XMRV
LTR. The existence of a potential TLR/MyD88/Tube/Pelle/
TRAF6/NF-kB pathway in shrimp and NI-kB activation by
WSSV449 make us question whether similar mechanisms are used
by WSSV. After bioinformatics analysis of the promoters of the 531
putative ORFs of WSSV, we found 40 WSSV genes that have
putative NF-xB binding sites in their promoters. Thus, we decided
to perform a screen to identify which viral genes can be activated by
NF-kB signaling. Our experiments revealed that the promoters of
WSSV069 (1), WSSV303 and WSSV371 can be stimulated by NF-
kB activation (Fig. 6A). The shrimp NF-kB family protein LvDorsal
can bind with NF-xB binding sites # vitro [39]. Further results
confirmed that overexpression of WSSV449 can also induce the
promoter activities of WSSV069 (ie1), WSSV305 and WSSV371 by
activating the NF-kB pathway in S2 cells. Therefore, it is possible
that WSSV encodes proteins to activate the NF-xB pathway to
facilitate viral or host gene expression, which could contribute to
virus production. The roles of WSSV069 (iel), WSSV303 and
WSSV371 during WSSV infection are also of great interests.
WSSV069 (iel) is an immediate-early gene that has been reported
to be a transcriptional regulator and exhibit transactivation and
DNA binding activity, but its exact role in viral infection is still
elusive [51,52]. And the functions of WSSV303 and WSSV 371 in
viral infection are still unknown.
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In summary, we report the cloning and functional study of
LoPelle, demonstrating that an evolutionarily conserved TLR/
MyD88/Tube/Pelle/NF-xB signaling pathway may exist in
shrimp. We found that WSSV449 shows similarity to host Tube
and activates the NF-kB signaling pathway by increasing the
promoter activities of Drosophila and shrimp AMPs. In addition, the
activation of the NF-kB signaling pathway by WSSV449 also
stimulates the expression of WSSV069 (iel), WSSV303 and
WSSV371, suggesting that WSSV may use mechanisms similar
to HIV-1 to activate the NF-kB signaling pathway to regulate its
own gene expression [25,28,48]. How and why WSSV449
stimulates NF-kB activity has not been clearly elucidated. Further
investigations are underway in our lab to identify the targets of
WSSV449, such as shrimp MyD88 or Tube, to elucidate the
molecular mechanism and function of WSSV449-induced NF-xB
activation.

Supporting Information

Figure S1 The putative promoter region and genome sequence
of LvPelle. Using the genome walker, we amplified the genomic
regions upstream the 5’ end of LvPelle (indicated by lowercase
letters). In the putative promoter region, the NF-kB, AP-1 and
GATA motifs involved in the transcriptional regulation of immune
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