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Abstract

The molecular mechanisms that produce the full array of neuronal subtypes in the verte-

brate nervous system are incompletely understood. Here, we provide evidence of a global

temporal patterning program comprising sets of transcription factors that stratifies neurons

based on the developmental time at which they are generated. This transcriptional code

acts throughout the central nervous system, in parallel to spatial patterning, thereby increas-

ing the diversity of neurons generated along the neuraxis. We further demonstrate that this

temporal program operates in stem cell−derived neurons and is under the control of the

TGFβ signaling pathway. Targeted perturbation of components of the temporal program,

Nfia and Nfib, reveals their functional requirement for the generation of late-born neuronal

subtypes. Together, our results provide evidence for the existence of a previously unappre-

ciated global temporal transcriptional program of neuronal subtype identity and suggest that

the integration of spatial and temporal patterning mechanisms diversifies and organizes

neuronal subtypes in the vertebrate nervous system.

Introduction

In mammals, the function of the nervous system depends on hundreds of molecularly and

functionally distinct cell types [1]. This diversity requires the generation of different neuronal

subtypes at the right place, time, and quantity during development. In turn, this guides the wir-

ing of functioning neural circuits. The molecular mechanisms that direct the specification of

distinct neuronal classes at characteristic positions, by subdividing the developing nervous sys-

tem into topographical territories, have received considerable attention [2,3]. However, spatial

patterning programs are not sufficient to account for the diversity of neuronal subtypes

observed in the nervous system. Even within the same region of the nervous system, most neu-

ronal classes can be further partitioned into distinct subtypes based on molecular and func-

tional properties [4–9].
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Temporal mechanisms—the sequential production of different cell types at the same loca-

tion—have been proposed to contribute to the generation of cell type diversity [10,11]. In the

Drosophila nervous system, individual neuroblasts produce a characteristic temporal series of

distinct neuronal subtypes [12–15]. Similar mechanisms have been documented in various

regions of the vertebrate nervous system [11,16,17]. In the cortex, distinct subtypes of glutama-

tergic neurons are sequentially generated [18–20], in the hindbrain, first motor neurons

(MNs) and later serotonergic neurons are generated from the same set of progenitors [21],

while in the midbrain, the production of ocular MNs is followed by red nucleus neurons [22].

Moreover, progenitors throughout the nervous system typically produce neurons first and

later generate glial cells such as astrocytes and oligodendrocytes [23,24]. However, whether

temporal programs are a universal feature of neuronal subtype specification in the vertebrate

nervous system and whether these are implemented by common or location specific gene

expression programs is unclear.

The vertebrate spinal cord is an experimentally tractable system to address the basis of neu-

ronal diversity. In this region of the nervous system, neurons process sensory inputs from the

periphery relaying the information to the brain or to motor circuits that control and coordi-

nate muscle activity. The temporally stratified generation of some of these neuronal subtypes

has been documented, including inhibitory and excitatory neurons located in the dorsal horn

as well as ventral motor and interneurons [25–32]. Nevertheless, a comprehensive picture is

lacking, and the genetic programs that orchestrate the temporal patterning of the spinal cord

are largely unclear. To this end, we recently characterized the emergence of neuronal diversity

in the embryonic spinal cord [33]. This revealed sets of transcription factors (TFs), expressed

at characteristic time points during the neurogenic period of spinal cord development, which

further partition all major neuronal subtypes (Fig 1A). In all domains, the earliest neurons

express Onecut family TFs, intermediate neurons express Pou2f2 and Zfhx2-4, while at late

stages, subsets of neurons start to express Nfia/b/x, Neurod2/6, and Tcf4 [33–35]. This sug-

gested the existence of a previously unappreciated temporal dimension to neuronal subtype

generation in the spinal cord.

Although the role of these TFs had not been conceptualized as part of a globally coordinated

temporal code, some have been implicated in the specification of neuronal subtypes. Onecut

TFs, for example, are required in early-born V1 and MNs for the specification of Renshaw

cells and medial lateral motor column (LMCm) neurons, respectively [31,36]. Onecut TFs and

Pou2f2 also control the distribution of neurons from multiple dorsal–ventral domains [37–

39]. Neurod2/6 control neuropeptide expression in inhibitory neurons in the dorsal horns of

the spinal cord [40], and characterization of V2a neuron heterogeneity revealed that Zfhx3

and Neurod2/Nfib divide this neuronal class into a lateral and medial population [29]. Recent

evidence further suggests that Zfhx3 and Nfib/Neurod2 partition neurons in the spinal cord

into long-range projection and local interneurons [41]. Similar to the spinal cord, Onecut,

Pou2f2, and Nfi-TFs label early and late-born neuronal subtypes in the retina and are required

for their generation [42–44]. Zfhx3 and Nfi TFs also define distinct subpopulations of neurons

generated by the midbrain floor plate, including dopaminergic neurons [45], and in the cere-

bral cortex [46]. Furthermore, Nfi TFs have also previously been identified as core components

of a neurogenic transcriptional network in adult neural stem cells [47]. These observations

raise the possibility that this temporal TF code is conserved in large parts of the central nervous

system.

TGFβ signaling has been implicated in the timing of developmental temporal switches in

the nervous system [48,49]. The transition from MN to serotonergic neurons and from ocular

MNs to red nucleus neurons is accelerated by TGFβ signaling [48]. TGFβ signaling also pro-

motes the expression of the late progenitor marker Nfia in neurogenic neural stem cells [50].
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Fig 1. Distinct birthdates of neurons expressing different temporal TFs (see also S1 and S2 Figs). (A) Distinct

cohorts of TFs are induced at different developmental stages in neurons from all dorsal–ventral domains in the spinal

cord. (B) Scheme depicting EdU birthdating of neurons. (C) Dams were injected with EdU at e9.5, e10.5, e11.5, or
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Furthermore, Growth differentiation factor 11 (Gdf11), a ligand of the TGFβ family that sig-

nals via Activin receptors [51,52], has been implicated in the timing of MN subtype generation

and onset of gliogenesis in the spinal cord [53]. TGFβ signaling is also important for control-

ling the timing of fate switches in the Drosophila nervous system [49], raising the possibility

that it may serve as a general timer for the sequential generation of cellular subtypes.

Here, we demonstrate by EdU birthdating that a set of TFs comprise a temporal TF code

that identifies neurons based on their time point of birth. We find that the same sequence of

TF expression applies throughout the brain, including the forebrain, midbrain, hindbrain, and

retina, and for stem cell–derived in vitro generated neurons with defined dorsal–ventral and

axial identities. We also document a temporal patterning code for progenitors throughout the

nervous system and provide evidence that TGFβ signaling controls the pace of the temporal

program. Finally, to characterize the genetic programs that control the temporal specification

of neurons, we perturb the function of the TFs Nfia and Nfib and show that their activity is

required for the generation of late neuronal subtypes. Taken together, our data reveal con-

served temporal patterning of neurons and progenitors in large parts of the nervous system

that is under the control of the TGFβ signaling pathway and suggest a close link between the

developmental programs that control the switch from neuro- to gliogenesis and the specifica-

tion of neuronal diversity.

Results

EdU birthdating reveals a temporal TF code in spinal cord neurons

We previously identified sets of TFs that are expressed in multiple subsets of neurons in the

spinal cord. As the onset of expression of these TFs occurred at different times during develop-

ment, we speculated that they subdivide neurons in the spinal cord based on their time point

of birth [33] (Fig 1A). We and others have demonstrated before that Onecut TFs are expressed

in early-born neurons and that their expression is rapidly extinguished as neurons mature

[27,31,33,36,37]. We therefore focused on the TFs Zfhx3, Nfib, and Neurod2, which start to be

expressed in neurons at intermediate or late stages during the neurogenic period, respectively,

and analyzed the birthdate of neurons expressing these TFs by EdU incorporation (Fig 1B).

Pregnant dams were injected with EdU at embryonic day (e)9.5, e10.5, e11.5, or e12.5 (Fig

1C). Embryos were collected at e13.5 and forelimb-level spinal cord cryosections assayed for

colocalization between EdU and Zfhx3, Nfib, and Neurod2 in neurons (Figs 1D–1F and S1).

Consistent with the hypothesis of a temporal TF code, a high proportion of EdU-labeled

neurons expressed Zfhx3, when EdU was administered at e9.5 and e10.5, while there was little,

if any, colocalization between EdU and Zfhx3 when EdU was given at later time points (Figs

1G and S1A). By contrast, few EdU-positive neurons expressed Nfib when EdU was adminis-

tered before e11.5, but more than 80% of EdU-positive neurons were positive for Nfib when it

was given at e12.5 (Figs 1G and S1B). Neurod2 followed a similar trend to Nfib until e11.5

(Figs 1G and S1C), consistent with the high degree of coexpression between these genes [33].

However, the proportion of Neurod2-positive neurons decreased when EdU was given at

e12.5 (Figs 1G and S1C). This may be due to the relatively late onset of Neurod2 expression

e12.5 and embryos collected at e13.5. Colocalization between EdU and temporal TFs was then assessed in spinal cord

cryosections. (D) Zfhx3-positive neurons are labeled by EdU, when EdU is administered at e9.5, but not at e12.5. (E)

EdU labels Nfib-positive neurons when administered at e12.5, but not at e9.5. (F) Neurod2-postive neurons are labeled

when EdU is administered at e11.5, but not when EdU is administered at e9.5. (G) Percentage of EdU-positive neurons

labeled by Zfhx3, Nfib, and Neurod2 in the spinal cord. Underlying data are provided in S1 Data. Scale bars in D, E,

and F = 200 μm. TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3001450.g001
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after neuronal differentiation. Furthermore, Neurod2 is not expressed in late-born dorsal

excitatory neurons [40], which are generated at high frequency during late neurogenic stages

in the spinal cord [54].

The mutually exclusive birthdates of Zfhx3 and Nfib/Neurod2-positive neurons indicate

that these TFs label largely nonoverlapping subsets of neurons. To test this prediction directly,

we stained e13.5 spinal cord sections for either Zfhx3 and Nfib or Zfhx3 and Neurod2 (S2A

and S2B Fig). Although each of these markers labeled a large number of neurons, the expres-

sion of Zfhx3 and Nfib or Zfhx3 and Neurod2 was mutually exclusive. These results are consis-

tent with a model in which Zfhx3 is specifically expressed and maintained in neurons born

before e11.5 but not in later-born neurons, which instead express Neurod2/6 and Nfi-family

TFs. Together, the data argue against sequential expression of these TFs during neuronal mat-

uration because, in such a model, TFs with an early onset of expression would be specific for

early maturation stages and would thus, contrary to our observations, expected to be labeled

by EdU given at late developmental time points. Consistent with this interpretation, a recent

study found similar birthdates for Zfhx3- and Neurod2-positive neurons in the perinatal spinal

cord [41]. We therefore conclude that these TFs comprise a temporal code and label distinct

subsets of neurons based on their time point of birth in the spinal cord.

Conservation of the temporal TF code in the retina

Similar to the spinal cord, Pou2f2, Neurod2/6, and TFs of the Onecut and Nfi families are

required for the generation of early and late-born neurons in the retina [42–44,55,56]. We

therefore speculated that the temporal TF code is preserved in the retina. To test this hypothe-

sis, we analyzed a published single-cell RNA sequencing (scRNAseq) time course of mouse ret-

ina development [43] (S3 Fig). Performing dimensionality reduction by Uniform Manifold

Approximation and Projection (UMAP) from prenatal and perinatal stages (e14, e16, e18, P0)

resulted in clear trajectories from retinal progenitors to horizontal cells, amacrine cells, retinal

ganglion cells, and cone and rod photoreceptors (S3A and S3B Fig). Examining Onecut2,

Pou2f2, Zfhx3, and Nfib revealed different expression of these genes along these differentiation

trajectories (S3C Fig). As expected, Onecut2 was strongly enriched in horizontal cells, an early-

born cell type in the retina, although some expression was also observed in retinal ganglion

cells, amacrine cells, and cones. Nfib expression was largely restricted to late progenitors and

rods (S3C Fig). By contrast, Pou2f2 and Zfhx3 were enriched in amacrine and retinal ganglion

cells. Furthermore, both genes were expressed in subsets of retinal progenitors.

To further characterize the expression of Onecut2, Pou2f2, Zfhx3, and Nfib genes in retinal

neurons, we plotted their expression levels in the individual classes of neurons stratified by

developmental stage (S3D Fig). This analysis revealed a clear link between the expression of

these TFs and developmental stage. Onecut2 was enriched in amacrine cells, retinal ganglion

cells, and cones at e14 (S3D Fig). Zfhx3 was absent at this stage but was enriched in amacrine

and retinal ganglion cells at e18 and P0 (S3D Fig). Pou2f2 and Zfhx3 were not detected in cone

and rod photoreceptors at any stage, suggesting that not all aspects of this temporal program

apply to all neuronal subtypes (S3C and S3D Fig). These data support the hypothesis that the

temporal TFs are expressed in different retinal cell types born at distinct time points and raise

the possibility that the expression of these genes further subdivide distinct classes of retinal

neurons based on their birthdates.

Conservation of the temporal TF code along the neuraxis

Nfi TFs are expressed in neurons in the forebrain including the cortex, thalamus, and hippo-

campus [46,57,58], while Zfhx3 has been implicated in controlling circadian function of the

PLOS BIOLOGY A shared transcriptional code orchestrates temporal patterning of the central nervous system

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001450 November 12, 2021 5 / 35

https://doi.org/10.1371/journal.pbio.3001450


suprachiasmatic nucleus [59]. Moreover, Pou2f2, Zfhx3, and Nfi TFs are expressed in subpop-

ulations of neurons born from the midbrain floorplate [45]. These results raise the possibility

that the sequential expression of the temporal TFs might be broadly preserved throughout the

developing nervous system. To test this, we first turned our attention to available scRNAseq

time course data from the developing forebrain, midbrain, and hindbrain [9]. Characterization

using UMAP dimensionality reduction revealed widespread expression of the temporal TFs in

excitatory and inhibitory neurons, identified based on Slc17a6 (also known as vGlut2) and

Gad2 expression, respectively, in the different regions of the nervous system (S4A–S4H Fig).

Plotting the dynamics of Onecut1-3, Pou2f2, Zfhx3/4, Nfia/b, and Neurod2/6 in neurons

between e8.5 and e14 revealed a striking conservation of the expression dynamics of these TFs.

Expression of Onecut family TFs preceded Pou2f2 and Zfhx3/4, while Nfia/b and Neurod2/6
were only expressed at high levels at later stages (Fig 2A). Consistent with this observation,

hierarchical clustering on the expression patterns of these TFs revealed the same correlation

patterns as in the spinal cord (S4I–S4L Fig). Moreover, ranking gene expression patterns by

correlation to Nfib or Zfhx3 expression revealed that the TFs that define the same temporal

identity windows are typically among the best-correlated genes in each region (e.g., Nfia, Nfix,

Tcf4, Neurod2, and Neurod6 for Nfib or Pou2f2, Zfhx4, and Zfhx2 for Zfhx3), while the TFs

that define different temporal identity windows typically rank among the most anticorrelated

genes genome-wide (S4M Fig). Together, these data suggest that the same temporal patterning

program identified in the spinal cord applies to large regions of the developing central nervous

system.

To validate experimentally these predictions, we turned to immunofluorescent analysis of

Onecut2, Pou2f2, Zfhx3, and Nfib in hindbrain and midbrain cryosections from different

developmental stages (Fig 2B–2H). In both tissues, the majority of neurons expressed Onecut2,

but not Pou2f2, at early developmental stages (e9.5 or e10.5, respectively), and both genes were

expressed in largely nonoverlapping populations of neurons 1 day later (Fig 2B, 2E and 2F).

Furthermore, in both tissues, a large proportion of neurons expressed Zfhx3 at e11.5, while

Nfib expression was confined to neural progenitors at this stage (Fig 2C, 2G and 2H). At e13.5,

Nfib-positive cells, which had lost the expression of the progenitor marker Sox2, were detected

in the mantle layer of both tissues where postmitotic neurons reside (Figs 2C, 2G, 2H and

S5A). These cells did not express Sox9, suggesting that they were not glial progenitors (S5B

Fig). To test if these Nfib-expressing cells are neurons, we costained hindbrain sections for

Phox2b, which is expressed in different populations of hindbrain neurons [60]. This analysis

revealed colocalization between Phox2b/Zfhx3 and Phox2b/Nfib in individual nuclei (Fig 2D),

suggesting that Nfib indeed labels late-born neurons in the hindbrain. Similarly, many Nfib-

positive nuclei in the mantle layer were also positive for another neuronal marker, Lhx5, fur-

ther confirming their neuronal identity (S5C Fig). These results demonstrate that the temporal

TFs are expressed in largely nonoverlapping populations of neurons throughout the develop-

ing nervous system. Furthermore, their expression commences in the same sequence (Onecut2

-> Pou2f2/Zfhx3 -> Nfia/Nfib) as in the spinal cord [33], consistent with the idea that these

TFs are expressed in neurons generated at different time points during embryonic

development.

To further test this hypothesis, we used scRNAseq time course data to reconstruct gene

expression dynamics of neuronal differentiation at different time points of embryonic develop-

ment (S6A–S6C Fig and S1 Text). We reasoned that if neurons expressing the temporal TFs

are generated sequentially during embryonic development, they should be at different stages

of their maturation when cells were collected for scRNAseq (S6A Fig). Earlier-born neurons

should thus occupy later pseudotime bins in the neuronal differentiation trajectory than

recently generated neurons. Hence, the expression of the temporal TFs should appear as
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Fig 2. The temporal TF code is conserved at different rostral–caudal levels of the nervous system (see also S3–S9

Figs). (A) Expression of temporal TFs in scRNAseq data [9] from the developing forebrain, midbrain, and hindbrain

suggests conservation of temporal patterning in these parts of the nervous system. (B-D) Conservation of temporal

patterning in the hindbrain. (B) Onecut2, but not Pou2f2, is expressed in hindbrain neurons at e9.5, while both TFs

label distinct populations of neurons at e10.5. (C) Zfhx3, but not Nfib, labels neurons at e11.5. These TFs label distinct

populations of neurons at e13.5. (D) Zfhx3 and Nfib label distinct subsets of Phox2b-positive neurons in the hindbrain

at e13.5. (E-H) Conservation of temporal patterning in the midbrain. (F, H) show higher magnification images of the

regions outlined in (E, G), respectively. (E, F) Onecut2, but not Pou2f2, labels neurons in the midbrain at e10.5. Both
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largely nonoverlapping waves moving in pseudotime (S6B and S6C Fig). To test this approach,

we first focused on the spinal cord, where experimental evidence indicates that the temporal

TFs are expressed in neurons born at different stages (Figs 1 and S1). Reconstructing the pseu-

dotemporal dynamics of several neuronal lineages along the dorsal–ventral axis, such as dI1,

dI5, V2a, and V2b neurons revealed that the expression profiles of the temporal TFs indeed

behaved as expected (S6D Fig). Zfhx3/4 consistently appeared before Nfia/b and Neurod2/6
expression and occupied later pseudotime bins at later developmental stages (S6D Fig). These

observations are consistent with the successive generation of these neurons and argue against

sequential expression of these TFs in the same neurons.

We next focused on the hindbrain (S6E Fig), which shares many neuronal populations with

the spinal cord. Reconstructing the expression dynamics of large groups of neurons, such as

ventral Pax2-positive inhibitory interneurons, or of specific neuronal lineages, such as V1,

dB4, or Hox-negative dA1 neurons, revealed similar pseudotemporal expression dynamics of

the temporal TFs (S6E Fig). Finally, we asked whether similar expression dynamics were

observed in neuronal populations in the forebrain. Performing pseudotemporal ordering of

cortical excitatory and inhibitory neurons revealed the same sequential expression patterns of

the temporal TFs in these neuronal populations as in other regions of the neuraxis (S6F Fig).

The same signature of temporal TF expression was also recovered when pseudotemporal

expression dynamics were reconstructed for defined groups of inhibitory interneurons, such

as Lhx6-expressing neurons derived from the medial ganglionic eminence or Meis2/Isl1/Ebf1-

expressing neurons derived from the lateral ganglionic eminence (S6F Fig). These data provide

further evidence that the temporal TFs are expressed in neurons born at different time points

in a wide range of neuronal subtypes throughout the developing nervous system.

EdU birthdating confirms sequential generation of Zfhx3 and Nfib-positive

neurons

We next sought to confirm experimentally that Zfhx3 and Nfib-positive neurons are generated

at distinct time points in the midbrain and hindbrain using EdU birthdating. To this end,

we injected pregnant dams at e10.5 or e12.5 with EdU and assayed the proportion of EdU-

positive neurons expressing Zfhx3 or Nfib at e13.5 in the midbrain or hindbrain. As for the

spinal cord (Fig 1), Zfhx3-positive neurons in both tissues were labeled by EdU at e10.5 but

not at e12.5 (Figs 2I and 2J and S7A–S7D). Moreover, in the hindbrain, a high proportion of

EdU-positive neurons expressed Nfib when EdU was given at e12.5 (Figs 2I, S7E, and S7F). By

contrast, the proportion of Nfib-positive neurons in the midbrain did not increase markedly

(Fig 2J). This was because most neurons labeled by EdU at e12.5 resided in the dorsal part of

the midbrain where Nfib is not expressed in neurons at this stage (S7G and S7H Fig). These

neurons did not express Zfhx3 (S7D Fig), suggesting that the lack of Nfib-positive neurons in

this area was not due to prolonged generation of Zfhx3 neurons. Restricting the analysis to the

intermediate and ventral midbrain resulted in the expected increase of EdU-positive neurons

expressing Nfib (Fig 2K). Taken together, these observations provide further experimental evi-

dence that Zfhx3 and Nfib label sequentially generated neurons in large regions of the mid-

brain and hindbrain.

TFs label distinct subsets of neurons at e11.5. (G, H) Zfhx3 labels neurons at e11.5, while Nfib expression is restricted

to neural progenitors. At e13.5, Zfhx3 and Nfib label distinct subsets of neurons in the midbrain at e13.5. (I-K)

Percentage of EdU-positive neurons labeled by Zfhx3 and Nfib in the hindbrain (I), entire midbrain (J), and ventral

and intermediate midbrain only (K). Underlying data are provided in S2 Data. Scale bars = 100 μm (B), 200 μm (C, E,

G), or 25 μm (D, F, H). scRNAseq, single-cell RNA sequencing; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3001450.g002
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Most cortical excitatory neurons express late temporal TFs

Molecularly and functionally distinct excitatory neurons in the mammalian cortex are

arranged in distinct layers based on their time point of generation [18,20,61]. As this is one of

the best-established models for temporal neuronal subtype generation, we wondered how the

temporal patterning program we describe relates to the temporal patterning of the cortical lay-

ers. To this end, we analyzed scRNAseq of cortical excitatory neurons from e10 to e14 [9] (S8A

and S8B Fig). Consistent with the extended period of neurogenesis in the cortex compared to

other regions of the nervous system, we found that most cortical excitatory neurons express

TFs characteristic of the late temporal identity, including Nfia, Nfib, Neurod2, Neurod6, and

Tcf4 (S8B and S8C Fig). However, a small cluster (cluster 7; S8D Fig) of excitatory neurons

lacked expression of these markers. Instead, these neurons expressed Pbx3, Meis1, Meis2,

Tshz2, Barhl2, and Zfhx3 (S8C and S8E Fig). Consistent with the timing of generation of Zfhx3

neurons in the rest of the nervous system, the cortical Zfhx3-positive neurons appear to be

generated earlier during development than Nfia/b Neurod2/6-positive neurons (S8F Fig).

Taken together, these data suggest that the temporal patterning program we describe applies

to cortical neurons and that most excitatory cortical neurons express TFs characteristic of a

late temporal identity. These findings match recent observations by Moreau and colleagues,

demonstrating a subdivision of early cortical excitatory neurons into Pbx3/Zfhx3 and Nfi/

Neurod2/Neurod6-positive subtypes [46].

Conservation of temporal TF expression at later developmental stages

Zfhx3 and Neurod2/Nfib also partition spinal cord neurons in the perinatal and adult spinal

cord [41]. We therefore investigated if the subdivision into Zfhx3 and Nfib-positive neurons is

maintained in other regions of the nervous system. To address this, we analyzed scRNAseq

data from late embryonic (e16 to e18) forebrain and midbrain [9]. Characterization of the

gene expression patterns of intermediate (Pou2f2, Zfhx3, Zfhx4) and late (Nfia, Nfib, Neurod2,

Neurod6, Tcf4) TFs indicated that these TFs continue to be expressed in largely nonoverlap-

ping populations of neurons (S9A, S9B, S9F, and S9G Fig). Nfia/Nfib-positive cells expressed

the neuronal markers Elavl3 and Tubb3 but did not express the glial markers S100b and Slc1a3
(also known as Glast), confirming their neuronal identity (S9C and S9H Fig). Moreover, hier-

archical clustering of the gene expression patterns and correlation rank plots for Zfhx3 and

Nfib revealed similar coexpression patterns as at earlier developmental stages (S9D, S9E, S9I,

and S9J Fig). Collectively, these results suggest that the anticorrelated expression of intermedi-

ate and late TFs are broadly retained until late embryonic stages in the forebrain and

midbrain.

Temporal TF expression correlates with the acquisition of distinct

neuronal identities in the ventral midbrain

We next investigated whether the temporal TF code is responsible for the establishment of

neuronal populations with specific functions. To test this, we first focused on the sequential

generation of oculomotor and red nucleus neurons in the ventral midbrain. The switch from

oculomotor to red nucleus neurons occurs between e10.5 and e11.5 [22,48]. We therefore

speculated that this switch may coincide with the switch from early (Onecut2) to intermediate

(Zfhx3) TF expression. Consistent with this hypothesis, expression of the red nucleus neuron

marker Pou4f1 is mutually exclusive with the expression of Onecut2 in the ventral midbrain

(S10A Fig), while most Pou4f1 neurons express Zfhx3 (S10B Fig). These data support the

hypothesis that the temporal TFs are involved in the sequential generation of neurons with
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distinct functions. Of note, Pou4f1 and Onecut2 are coexpressed in subsets of neurons in the

dorsal midbrain, suggesting that these TFs do not always mutually cross-repress each other.

Dopaminergic neurons are a neuronal population of medical interest because their degen-

eration causes Parkinson disease. During development, these neurons are born from the mid-

brain floor plate and can be discriminated based on the expression of the TFs Lmx1a, Lmx1b,

and Pitx3 as well as the enzymes tyrosine hydroxylase (TH) and the dopamine transporter

Slc6a3 (also known as Dat). Strikingly, previous characterization of neurons generated from

the midbrain floor plate suggested that these neurons can be broadly subdivided into Nfia/b

and Zfhx3 expressing subsets. The Zfhx3-positive population expresses dopaminergic neuron

markers such as Slc6a3 and high levels of TH [45]. By contrast, the Nfi-positive population

lacked the molecular machinery for the synthesis of dopamine and expressed markers charac-

teristic for excitatory neurons such as Slc17a6 [45]. These findings, in combination with our

observation that Zfhx3 and Nfi TFs define temporal neuronal populations in the midbrain,

suggest that midbrain dopaminergic neurons may constitute a temporal neuronal subtype

born from the midbrain floor plate.

We therefore examined if Zfhx3-positive neurons are generated before Nfia/b-positive neu-

rons from the midbrain floor plate. Assays at e11.5 revealed widespread expression of Zfhx3 in

floor plate–derived Lmx1b-positive neurons (Fig 3A). At this stage, Nfib expression just com-

menced in Sox2-positive neural progenitors (Fig 3B). In contrast, at e13.5, numerous Nfib-

positive neurons expressing Lmx1b were found in the vicinity of the midbrain floor plate (Fig

3C and 3D), likely corresponding to the N-Datlow population [45]. Zfhx3-positive neurons at

this stage had migrated to a more lateral position (Fig 3C). These neurons coexpressed the

Zfhx TFs, Zfhx3, and Zfhx4 and also increased levels of TH (Fig 3E and 3F), suggesting that

these populations correspond to the AT-Dathigh, T-Dathigh, and VT-Dathigh neurons described

by Tiklová and colleagues. These conclusions are also consistent with previous birthdating

experiments that concluded that the majority of TH-positive dopaminergic neurons are born

before and around e12.5 [62,63]. Taken together, these data suggest that the sequence of tem-

poral TF expression is preserved in neurons derived from the midbrain floor plate, that the

expression of different temporal TFs correlates with the acquisition of different neuronal sub-

type identities in these neurons, and that dopaminergic neurons correspond to the Zfhx3-posi-

tive temporal neuronal population.

The temporal TF code applies to in vitro generated midbrain, hindbrain,

and spinal cord neurons

We next sought to investigate whether the temporal code was preserved in vitro during the

directed differentiation of embryonic stem (ES) cells to neurons with specific axial and dorsal–

ventral identities [64–66]. We reasoned that in vitro putative global signaling cues, originating

from distant signaling centers, should be absent.

We examined if the same sequence of temporal TF factor expression can be observed in

stem cell–derived neurons with midbrain and hindbrain and spinal cord identities. ES cells

were differentiated to appropriate identities using established protocols [64] (Fig 4A), as con-

firmed by real-time quantitative polymerase chain reaction (RT-qPCR) for Foxg1, Otx2,

Hoxa4, Hoxb9, and Hoxc8 (S11A Fig). As expected, cells differentiated to midbrain identity

induced Otx2, but not the forebrain marker Foxg1 or the hindbrain marker Hoxa4, which was

induced in hindbrain conditions. By contrast, the posterior Hox genes Hoxb9 and Hoxc8 were

only induced when cells were differentiated to a spinal cord identity. We next assayed the

expression of the temporal TFs Onecut2, Zfhx3, Nfia, and Neurod2 under these differentiation

conditions by flow cytometry from days 6 to 13 (Figs 4B and S11B). The overall expression
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dynamics of these markers observed in vivo were preserved under the different conditions.

Most neurons expressed Onecut2 at days 6 and 7, while the proportion of Zfhx3-positive neu-

rons increased between days 7 and 9, and Nfia and Neurod2-positive neurons were typically

not detected before day 11. These results closely resemble our previous observations of the

temporal patterning of neurons in the developing nervous system.

We next investigated if the progression of the temporal TF code is preserved in neurons

with different dorsal–ventral identities. We have previously demonstrated that exposure of

Fig 3. Midbrain dopaminergic neurons are a temporal population of neurons derived from the midbrain floor plate (see also S10 Fig). (A) Coexpression

of Zfhx3 and Lmx1b in neurons derived from the midbrain floor plate at e11.5. (B) Nfib is restricted to Sox2-positive neural progenitors in the ventral

midbrain at e11.5. (C) Mutually exclusive expression of Zfhx3 and Nfib in Lmx1b-positive neurons at e13.5. (D) Nfib labels Lmx1b-positive neurons directly

adjacent to Sox2-positive progenitors at e13.5. (E) Colocalization between Zfhx3 and Zfhx4 in Lmx1b-positive neurons at e13.5. (F) Zfhx4 labels Lmx1b-

positive neurons expressing high levels of TH at e13.5. Scale bars = 100 μm. TH, Tyrosine hydroxylase.

https://doi.org/10.1371/journal.pbio.3001450.g003
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spinal cord progenitors to appropriate concentrations of the Sonic Hedgehog (Shh) pathway

agonist (SAG) promotes the generation of progenitors and neurons with different dorsal–ven-

tral identities [66]. We therefore focused on the spinal cord condition and either ventralized

cells by exposing them from day 3 to day 9 to 500 nM SAG or dorsalised them in the absence

of SAG. Samples for flow cytometry were collected at days 7, 9, and 11 (Fig 4C). Consistent

with our previous observations [66], in the absence of Shh pathway activation, most

Fig 4. Conservation of the temporal TF code in stem cell–derived neurons with different axial and dorsal–ventral identities (see also S11 Fig). (A)

Schematics of the differentiation protocols for the generation of progenitors and neurons with different axial and dorsal–ventral identities. (B) Flow

cytometry analysis of temporal TF expression indicates that neurons with different axial and dorsal–ventral identities display the same temporal progression

in vitro as in vivo. (C) Flow cytometry analysis of Nkx2.2 and Pax3 expression in neural progenitors in dorsal and ventral spinal cord differentiations. (D)

Percentage of neural progenitors expressing Pax3 and Nkx2.2 in ventral and dorsal spinal cord differentiations between days 7–11. Underlying data are

provided in S3 Data. FGF, fibroblast growth factor; RA, retinoic acid; SAG, Shh pathway agonist; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3001450.g004
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progenitors expressed the dorsal progenitor marker Pax3, while prolonged high-level Shh path-

way activation leads to the majority of progenitors acquiring an Nkx2.2-positive ventral p3 iden-

tity (Fig 4C and 4D). Consistent with this, most neurons generated in the absence of Shh pathway

activation expressed the intermediate dorsal marker Lbx1, while Shh pathway activation led to the

generation of Sim1-positive V3 neurons (S11C Fig). We therefore refer to these conditions as dor-

sal and ventral, respectively. Assaying the expression of the temporal TFs in neurons in the ventral

differentiation condition revealed similar expression dynamics for these markers as previously

observed under dorsal spinal cord conditions, although notably a higher proportion of neurons

expressed Nfia and Neurod2 at later stages of the differentiations (Fig 4B).

Based on these oberservations, we conclude that the temporal TF code is preserved in in

vitro generated neurons with different axial (midbrain, hindbrain, and spinal cord) and dor-

sal–ventral identities. Furthermore, the time scale over which the temporal patterning unfolds

is similar in vivo and in vitro, corresponding in both cases to approximately 4 to 5 days (in

vivo approximately e9.5 to e13.5; in vitro approximately day 7 to day 11). These results argue

against a model in which global signaling cues orchestrate the temporal patterning program.

We note, however, that this analysis also uncovered reproducible differences in the propor-

tions of neurons expressing the respective markers between the different axial identities. Cells

differentiated under hindbrain conditions induced late temporal TFs at a faster pace, while

cells under midbrain conditions seemed to progress slowest to a later temporal identity. These

differences may be indicative of cell-intrinsic programs that allow progenitors and/or neurons

to progress through the temporal TF code at a speed characteristic for their axial identity.

Conserved temporal patterning of midbrain, hindbrain, and spinal cord

neural progenitors

Temporal neuronal subtype specification is arguably best understood in Drosophila. Here, aging

neuroblasts sequentially express a series of TFs that define temporal identity windows for the gen-

eration of specific neuronal progeny [12–14]. Similar processes are believed to underlie the tem-

poral patterning of tissues in the vertebrate nervous system; however, the transcriptional

programs that mediate this process are still relatively poorly understood [11,17]. We therefore

asked if similar principles apply to the spinal cord. To this end, we analyzed our in vivo scRNAseq

data [33] to identify TFs that are consistently up- or down-regulated in most progenitor domains

during the neurogenic period (see Experimental procedures). This analysis recovered in total 542

genes including 33 TFs (Fig 5A). Inspection of the expression dynamics of these TFs confirmed

their differential temporal expression in progenitors from most dorsal–ventral domains (S12A

Fig). As expected, this analysis recovered the gliogenic TF Sox9 and the Nfi TFs (Nfia/b/x) that

have previously been shown to be dynamically expressed during this time window in the develop-

ing spinal cord [67,68]. To address if these transcriptional changes are preserved in progenitors in

other regions of the nervous system, we characterized the expression dynamics of the 33 TFs in

scRNAseq from the developing forebrain, midbrain, and hindbrain [9]. This analysis revealed

largely preserved expression dynamics of the 33 TFs in these tissues (Fig 5B).

We next tested if these 33 TFs display the same expression dynamics in neural progenitors in

our in vitro differentiations. Analysis of the gene expression dynamics of the 542 genes and 33

TFs using RNAseq data from in vitro generated ventral neural progenitors from days 3 to 10 [69]

revealed that the general temporal pattern of gene expression is preserved under these culture con-

ditions (Fig 5C). To better characterize the differences in gene expression between in vivo and in

vitro, we partitioned the 542 genes into correlated (Pearson correlation between in vivo and in

vitro> 0.5), uncorrelated (correlation between −0.5 and 0.5) and anticorrelated genes (correlation

< −0.5) (see Experimental procedures and S5 Data). About 431 genes and 28 TFs showed
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Fig 5. Conserved temporal patterning of neural progenitors throughout the developing central nervous system

(see also S12 and S13 Figs). (A) Differential gene expression analysis using scRNAseq from spinal cord neural

progenitors [33] identifies 542 genes (left) including 33 TFs (right) that are differentially expressed during the

neurogenic period. Heatmap shows log-scaled and z-scored gene expression values for each gene. (B) Characterization

of the expression dynamics of the same 33 TFs in scRNAseq from the developing forebrain, midbrain, and hindbrain

[9]. (C) Expression dynamics of the 542 genes (left) and 33 TFs (right) in RNAseq data from ventral spinal cord

differentiations [69]. Heatmap shows log-scaled and z-scored gene expression values for each gene. Order of the genes

in both heatmaps is the same as in (A). (D) RT-qPCR analysis of Lin28a, Nr6a1, and Nfia from days 5–11 in in vitro

differentiations with different axial identities reveals conserved expression dynamics of these markers in the in vitro

differentiations. See S13D Fig for quantification of further markers. Underlying data are included in S4 Data. (E)

Quantification of Nfia induction in in vitro generated neural progenitors with different axial identities by flow

cytometry. For underlying data, see S3 Data. (F) Conserved temporal patterning of neural progenitors throughout the

developing nervous system. Early neural progenitors express markers such as Lin28a, Lin28b, Nr6a1, Hmga1, Hmga2,

and Dnajc2 (orange), while late progenitors are characterized by the expression of Nfia, Nfib, Npas3, Thra, Tcf4, and

Zbtb20 (light blue). HB, hindbrain; MB, midbrain; RT-qPCR, real-time quantitative polymerase chain reaction; SC,

spinal cord; scRNAseq, single-cell RNA sequencing; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3001450.g005
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correlated expression dynamics between in vivo and in vitro (S13A Fig). Of the remaining genes,

74 genes including 3 TFs (Sox11, Sox2, and Bclaf) showed an uncorrelated pattern (S13B Fig),

while the expression of 36 genes and 2 TFs (Id3 and Sub1) was anticorrelated (S13C Fig).

To test if the same dynamics are also observed in in vitro generated progenitors with mid-

brain, hindbrain, or dorsal spinal cord identities, we performed RT-qPCRs for Lin28a, Lin28b,

Nr6a1, Sox9, Npas3, Zbtb20, Nfia, Nfib, and Hopx and quantified the proportion of Nfia-posi-

tive progenitors by flow cytometry (Figs 5D, 5E, and S13D). These results confirmed shared

expression dynamics for these marker genes in in vitro differentiated neural progenitors with

different axial identities. We conclude that, similar to neurons, neural progenitors throughout

the nervous system undergo a shared temporal patterning program (Fig 5F).

TGFβ controls the pace of the temporal program

The TGFβ signaling pathway controls the timing of the switch from MN to serotonergic neuron

production in p3 progenitors in the vertebrate hindbrain and promotes Nfia expression and the

formation of glia in neural stem cells [48,50]. In the spinal cord, the signaling pathway is active in

progenitors during the neurogenic period, and several members of the TGFβ family are expressed

at early developmental stages in the adjacent notochord, floor plate, and mesoderm and at later

developmental stages by different populations of neurons [53,70,71]. We therefore asked if the

pathway is active in progenitors in our in vitro differentiations. To do so, we exposed dorsal neural

progenitors from day 5 to the TGFβ signaling inhibitor SB431542 [72] and assayed the expression

of the target gene Smad7 48 and 96 hours later [73,74]. As expected, pathway inhibition resulted

in a significant reduction of Smad7 expression at day 7, although expression partially recovered by

day 9 (Fig 6B). These results confirm that the TGFβ pathway is active in neural progenitors in

vitro and suggest that TGFβ signaling is a good candidate to control the maturation of progenitors

and the timing of temporal TF expression in in vitro generated spinal cord neurons.

To test this hypothesis, we exposed progenitors under dorsal and ventral spinal cord condi-

tions to SB431542 from day 5 onwards (Fig 6A). This treatment did not result in a change in

the proportion of progenitors expressing Pax3 or Nkx2.2, suggesting that it does not strongly

affect the dorsal–ventral identity of neural progenitors (Fig 6C) but caused a significant delay

in the induction of the late marker Nfia in neural progenitors and the expression of the inter-

mediate and late-born markers Zfhx3, Nfia, and Neurod2 in neurons under dorsal and ventral

conditions (Fig 6D and Fig 6E).

To investigate further the consequences of TGFβ pathway inhibition on the temporal pat-

terning of neural progenitors, we additionally assayed the consequences of ectopic TGFβ path-

way activation and inhibition on the expression of the early genes Lin28a, Lin28b and the late

genes Sox9, Nfia, Nfib, and Nfix by RT-qPCR (Fig 6F). This analysis revealed a faster down-

regulation of early progenitor and earlier induction of late progenitor markers upon exposure

to 2 ng/ml TGFβ2 ligand (Fig 6G), while the opposite was true when the TGFβ pathway was

inhibited using 10 μM SB431542 (Fig 6H). Together, these experiments demonstrate that

TGFβ signaling controls the speed of progenitor maturation and the timing of temporal TF

expression in in vitro generated spinal cord neurons.

Nfia and Nfib are required for the efficient generation of late-born spinal

cord neurons

Nfi TFs are best known for promoting the switch from neurogenic to gliogenic progenitors

[50,68,75,76]. However, the expression of Nfia and Nfib in progenitors in the mouse spinal

cord commences between e10.5 and e11.5, approximately 2 days before neurogenesis ceases

and gliogenesis starts. Furthermore, these TFs are expressed in different types of neurons
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Fig 6. TGFβ signaling influences the timing of temporal TF expression in neurons and progenitors. (A) Schematics of

the differentiation protocols for TGFβ pathway inhibition in dorsal and ventral spinal cord conditions. (B) Inhibition of

TGFβ signaling in dorsal spinal cord conditions causes down-regulation of the TGFβ pathway target gene Smad7. (C) TGFβ
pathway inhibition does not alter the proportion of progenitors expressing Pax3 in dorsal (left) or Nkx2.2 in ventral (right)

conditions. (D) Inhibition of TGFβ signaling delays the induction of Nfia in dorsal and ventral spinal cord neural

progenitors. (E) Percentage of neurons expressing the different temporal TFs in the presence and absence of TGFβ pathway

inhibition. TGFβ pathway inhibition causes a delay in the induction of the late neuronal markers Zfhx3, Nfia, and Neurod2

in neurons. (F) Scheme outlining the differentiation protocol to assess the role of TGFβ pathway activation and inhibition

on the temporal patterning of neural progenitors. (G) TGFβ pathway activation causes an earlier induction of the late

markers Sox9, Nfia, Nfib, and Nfix and earlier down-regulation of Lin28a and Lin28b by RT-qPCR. (H) TGFβ pathway

inhibition has the opposite effect on the expression of these markers. Underlying flow cytometry data are provided in S3

Data, qPCR data in S4 Data. FGF, fibroblast growth factor; RA, retinoic acid; RT-qPCR, real-time quantitative polymerase

chain reaction; SAG, Shh pathway agonist; TF, transcription factor.

https://doi.org/10.1371/journal.pbio.3001450.g006
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throughout the developing nervous system [33,45,57] (S4E–S4H Fig). In the retina, Nfi TFs are

required for the specification of Müller glia and, importantly, bipolar cells, a late-born neuro-

nal subtype [43]. These findings raise the possibility that Nfi TFs are also required for the spec-

ification of late-born neuronal subtypes in other parts of the central nervous system. To test

this possibility, we generated an Nfia; Nfib double-mutant ES cell line by CRISPR/Cas9-in-

duced nonhomologous end joining. Because Nfia and Nfib act redundantly during the induc-

tion of gliogenesis in the spinal cord and the formation of bipolar cells and Müller glia in the

retina [43,68], we decided to focus on analyzing the double mutant to rule out any potential

redundancy between both genes. Electroporations of guide RNAs targeting the second coding

exons of both genes resulted in double-heterozygous frameshift deletions of 20 and 11 base

pairs in Nfia and 10 and 8 base pairs in Nfib (S14A and S14B Fig). Immunofluorescence assays

of dorsal differentiations at day 10 of differentiation, a time point when both proteins are nor-

mally detected at high levels in progenitor nuclei in control differentiations, confirmed the

absence of both proteins (S14C and S14D Fig).

Throughout the developing nervous system, the expression of Neurod2 is among the most

correlated with Nfia and Nfib expression in neurons (S4I–S4M Fig). Furthermore, both in vivo

and in vitro Neurod2-positive neurons are born after Nfia and Nfib expression commenced in

progenitors [33] (compare Figs 4B and 5E). Moreover, analysis of Nfia and Nfib ChIP-seq data

from the postnatal murine cerebellum [77] confirmed binding of these TFs to sites in the vicin-

ity of the Neurod2 gene (Fig 7A). To address if the Nfi TFs bind the same sites in the develop-

ing central nervous system, we asked if these sites are marked by Histone-3-Lysine-

27-acetylation (H3K27ac), which labels active enhancers, using e11.5 and e13.5 H3K27ac

ChIP-seq data from the forebrain, midbrain, hindbrain, and spinal cord from the ENCODE

project [78]. In each region, H3K27ac accumulated around Nfi-bound sites between e11.5 and

e13.5 (Fig 7B), thus temporally coinciding with the induction of Nfia and Nfib throughout the

nervous system (Figs 2A and 5A and 5B). These data support the hypothesis that the Nfi TFs

bind the same sites in the vicinity of the Neurod2 gene as in the cerebellum and directly regu-

late its expression in large regions of the developing nervous system.

We thus focused on assaying Neurod2 expression to determine the importance of Nfia and

Nfib for the generation of late-born neurons in our in vitro cultures. As our previous characteri-

zations revealed the highest proportion of Neurod2-positive neurons are generated in ventral

differentiations (Fig 4B), we focused on this condition. Characterizing the proportion of neu-

rons expressing Neurod2 by flow cytometry and immunofluorescence revealed a marked reduc-

tion in the percentage of Neurod2-positive neurons in Nfia; Nfib double mutants (Figs 7C, 7D,

S14E and S14F). These observations led us to ask if the loss of Nfia and Nfib causes prolonged

generation of Zfhx3-positive intermediate neurons. Quantification of Zfhx3-positive neurons

by flow cytometry did not reveal an increase in the proportion of Zfhx3-positive neurons (Fig

7C and 7D). Taken together, these data suggest that Nfia and Nfib are required the expression

of Neurod2 in late-born neurons but that their activity is not necessary to terminate the phase

during which Zfhx3-positive neurons are generated. These data support a model in which the

specification of late-born neuronal subtypes is tightly coupled to the signals and transcriptional

programs that mediate the switch from neuro- to gliogenesis throughout the nervous system.

Discussion

Neuronal diversity from the superposition of spatial and temporal

patterning programs

Here, we provide evidence of a global temporal patterning program that operates throughout

the vertebrate nervous system to allocate neuronal identity. This functions in parallel to spatial
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Fig 7. Nfia and Nfib are required for the efficient generation of late-born Neurod2 neurons (see also S14 Fig). (A)

Analysis of Nfia and Nfib ChIP-Seq data from the mouse cerebellum [77] confirms binding of Nfia and Nfib to

genomic regions in the vicinity of the Neurod2 gene. (B) Analysis of ChIP-seq data from the ENCODE project [78]

reveals accumulation of H3K27ac at the same sites between e11.5 and e13.5 in the different regions of the nervous

system. (C) Neurod2 (top) and Zfhx3 (bottom) intensity histograms in control (left) and Nfia; Nfib double mutant

(right) neurons (red) and progenitors (blue) at D11 in ventral conditions. Shading indicates the applied thresholds

above which cells were counted as Neurod2 or Zfhx3-positive. (D) Percentage of Neurod2 (top) and Zfhx3-positive

neurons (bottom) at D11 in control and Nfia; Nfib double mutants differentiated in ventral conditions (n = 6 for

control and n = 3 for Nfia; Nfib double mutants). Significance was assessed by unpaired t-test with Welch’s correction.

Underlying flow cytometry data are provided in S3 Data. H3K27ac, Histone-3-Lysine-27-acetylation.

https://doi.org/10.1371/journal.pbio.3001450.g007
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transcriptional programs that pattern the dorsal–ventral and rostral–caudal axes [2,79,80]. The

intersection of multiple patterning systems that act along orthogonal axes enables the combi-

natorial specification and organization of cell types. This suggests how the complexity and

diversity of cell types arises from relatively simple patterning schemes [81,82].

The superposition of temporal and spatial patterning programs enables the generation of a

combinatorially increasing number of neuronal subsets from a limited number of TFs. Spatial

and temporal factors may also directly cross-regulate each other. For example Nfia expression

in MNs is directly induced by the binding of the somatic MN determinants Lhx3 and Isl1 to

the e96 distal Nfia enhancer [83], explaining why Nfia, generally restricted to late-born neu-

rons, is widely expressed in early-born somatic MNs. Such cross-regulation between spatial

and temporal gene regulatory networks provides additional flexibility to tailor temporal TF

expression to the specific requirements within a neuronal lineage.

The temporal TF code could further diversify the number of neurons generated in each

domain based on the combinatorial coexpression of distinct pairs of temporal TFs. For exam-

ple, the temporal patterning of Drosophila medulla neuroblasts is defined by the sequential

expression of 5 TFs; however, the expression of these temporal TFs in aging neuroblasts is not

mutually exclusive—instead, there are periods of coexpression of sequentially expressed TFs

[15]. Similar observations have been made in the neuroblast lineages in the Drosophila embryo

and mushroom body [84,85]. Such coexpression of temporal TFs has been proposed to desig-

nate additional temporal windows during which further neuronal subtypes are generated

[15,84]. Of note, in vertebrates, the respective temporal identities are defined by coexpression

of multiple orthologous TFs, which further expands the potential gene regulatory circuitry for

the generation of specific neuronal subtypes. Consistent with this idea, characterization of spi-

nal V1 interneuron diversity has revealed differential expression of Onecut1 and Onecut2 in

some V1 subtypes, some of which also expressed Zfhx4 [5].

Temporal factors and the control of neuronal identity

In Drosophila, the expression of many temporal TFs is maintained in mature neurons [12]. Simi-

larly, the mutually exclusive expression of Zfhx3 and Nfib/Neurod2 is maintained into the adult

nervous system [41]. In other instances, however, the expression of temporal TFs is only transient.

The number of neurons expressing Onecut TFs, for example, decreases in many dorsal neuronal

populations in the embryonic spinal cord throughout development [37], and the expression of

several early TFs, such as Onecut2 and Pou2f2, is not maintained in retinal ganglion cells (S3D

Fig). Similarly, many of the TFs in the spatial program are only transiently expressed but have

important functions that define the entire subsequent development of a neuronal lineage [86].

Furthermore, at least in some cases, maintaining the expression of temporal TFs in Drosophila is

not necessary for the maintenance of neuronal identity and function [87]. Genetic tools to perma-

nently label neurons expressing specific temporal TFs during development and to perturb tempo-

ral TF function in specific neuronal lineages will be required to carefully map how temporal

patterning during development contributes to the generation of neuronal diversity.

Our data provide evidence for the existence of a temporal TF code that applies to large

regions of the developing nervous system. These observations contrast with temporal pattern-

ing in Drosophila, where neuroblasts, and the subsequent neurons they generate, in different

parts of the animal, such as embryonic and optic lobe neuroblasts, are patterned by different

sets of TFs [11,12]. However, while we focus here on the broad conservation of this temporal

program, there is also evidence for additional, tissue-specific temporal patterning mechanisms

in mammals. Temporal patterning in the retina, for example, depends on the TFs Ikzf1 and

Casz1, which specify early and late identities respectively in this system [88,89]. How the
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activities of these TFs are connected to the global temporal patterning program is unclear.

Another example is the sequential generation of cortical excitatory neurons. Most cortical

excitatory neurons express Nfia/b/x, Neurod2/6, and Tcf4 (S8 Fig), synonymous with a late

temporal identity. This is consistent with the late onset of neurogenesis in the cortex compared

to other regions of the nervous system and suggests that temporal patterning, at least in this

case, does not scale with respect to the neurogenic period. Moreover, cortical neurons are par-

titioned further into distinct molecular and functional identities by additional temporal tran-

scriptional programs that define cortical layer identity [18,20,61]. Thus, there seems to be an

additional temporal patterning program that further partitions late cortical neuronal identity

into molecularly and functionally distinct subsets of neurons. Such a mechanism would resem-

ble subtemporal patterning programs identified in Drosophila neuroblast lineages [12,90], and

it will be interesting to see whether similar subtemporal patterning programs exist in other

regions of the vertebrate nervous system.

The temporal TFs may also contribute to the generation of neuronal diversity by subse-

quently restricting the expression of specific members of early, intermediate, and late TFs to

specific neuronal subsets at later developmental stages. Such a mode of action is supported by

recent observations in retinal amacrine cells. Late-born glycinergic and non-glycinergic, non-

GABAergic amacrine cells express the late temporal TF Tcf4 [55,91], while the expression of

other late temporal TFs, such as Neurod2, Neurod6, Nfib, and Nfix, is restricted to specific

subsets of the late-born amacrine cells [55]. A similar segregation in expression has been

recently demonstrated for Zfhx3 and Zfhx4 in ON and OFF starburst amacrine cells [92].

A temporal program in progenitors presages the neuronal program

Concomitantly with neurons, neural progenitors throughout the vertebrate nervous system

undergo a temporal patterning program (Fig 5A and 5B). Components of this program, including

Sox9 and Nfia/b, have previously been implicated in the transition from neurogenesis to gliogen-

esis [67,68,75,93,94]. However, the expression of these factors precedes the onset of gliogenesis.

The expression of Sox9 in neural progenitors coincides with the switch from early Onecut2-posi-

tive to intermediate Pou2f2 and Zfhx3-positive neurons, and the induction of Nfia/b correlates

with the later transition. Moreover, the loss of generation of late neuronal subtypes in neural pro-

genitors lacking Nfia/b is consistent with the involvement of these TFs in the neuronal temporal

program as well as the gliogenic switch (Fig 7). This raises the possibility that the transition of neu-

ral progenitors from exclusively neurogenesis to subsequent gliogenesis is part of the same tempo-

ral patterning program operating in the nervous system. This would be analogous to the temporal

program in Drosophila neuroblasts, which also controls the identity of neurons and glia cells.

TGFβ signaling regulates temporal patterning in the nervous system

Our results indicate that the TGFβ pathway is an important regulator of the pace of progenitor

maturation and the timing of temporal TF expression in neurons. This agrees with previous

findings. In the hindbrain, TGFβ2 signaling controls the timing of the switch from MNs to

serotonergic neurons by repressing the TF Phox2b in neural progenitors [48]. In addition,

another TGFβ family member, Gdf11, controls the timing of retinal ganglion cell specification

in the vertebrate retina, the timing of MN subtype specification, and the switch from dI5 to

late-born dILB neurons in the spinal cord [53,95]. The connection between these roles of

TGFβ signaling and its role in directing the temporal patterning programs of progenitors and

neurons is currently unclear, but, taken together, the results implicate multiple ligands of the

TGFβ family in controlling the temporal patterning of the mammalian nervous system. Nota-

bly, Activin signaling is involved in controlling the timing of fate switches in the Drosophila
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mushroom body, and, similar to observations in vertebrates, inhibition of Activin signaling

results in a delay of temporal fate progression in this system [49]. These findings suggest a

deep evolutionary origin for the role of the TGFβ pathway in controlling temporal patterning

and the diversification of cell types in the developing nervous system of bilaterians.

The timing of switches in temporal TF expression take place at approximately similar times

throughout the developing nervous system and during the in vitro differentiation of neurons

with different axial and dorsal–ventral identities. This raises the question how signals, from

locally secreted sources, achieve an apparently globally synchronized effect and what the

source of TGFβ might be in the in vitro differentiations. A solution to this puzzle could be that

Gdf11 and related ligands are expressed in new-born neurons [53]. Such a model, in which the

temporal progression of progenitors is coupled to neurons secreting a ligand that signals back

to progenitors, has the advantage that it provides a means to ensure that the correct proportion

of neurons with a specific temporal identity are produced before progenitors switch to the

next phase. A prediction of such a model is that local increases in neurogenesis would lead to a

local acceleration of temporal patterning in progenitors. Indeed, several genes involved in the

onset of gliogenesis, such as Sox9, Nfia, and Fgfr3, are first expressed in the ventral spinal cord

[67,68,75], where MNs differentiate at higher rate at early developmental stages [96,97]. Fur-

ther experiments that explore the connection between Gdf11, neurogenesis rate, and temporal

patterning are required to test this hypothesis.

The data show that the temporal pattern of both neurons and progenitors continues to

advance in the absence of TGFβ pathway activity. This is consistent with observations from

the ventral hindbrain, where ablation of Tgfbr1 delays but does not abrogate the switch from

MNs to serotonergic neurons [48,98], and in Gdf11 mutants in the spinal cord, where the

onset of oligodendrocyte formation is delayed but not prevented [53]. Together, this suggests

that other extrinsic signals, or cell-intrinsic timers, must exist that promote temporal progres-

sion. A potential candidate signal that may oppose the activity of TGFβ is retinoic acid (RA),

which has been shown to drive the generation of Onecut-positive Renshaw cells in an in vitro

model of V1 subtype diversity [99]. Furthermore, the rate-limiting enzyme for RA synthesis is

down-regulated in somites, adjacent to the neural tube, between e9.5 and e10.5 [100], coincid-

ing with the switch from Onecut to Zfhx3-positive neurons. In addition, several pathways,

such as Neuregulins, Notch, FGF, and JAK/STAT, have been shown to promote gliogenesis

[23,94,101]. Given the pivotal role of Nfi TFs in this process, one or more of these signals may

promote the acquisition of a late Nfi-positive progenitor identity. The genetic and experimen-

tal accessibility of in vitro models will allow these possibilities to be tested.

Temporal patterning of in vitro generated neurons

In vitro generated neurons are widely used for disease modeling and have the potential to offer

novel therapeutic avenues to tackle nervous system injuries and neurodegenerative diseases

[102–104]. A better understanding of the molecular mechanisms responsible for neuronal

diversity contributes to the rational design of in vitro differentiation protocols to generate cell

types best suited for such applications. Our work demonstrates that the temporal patterning of

neurons and progenitors is conserved in vitro, providing a new dimension for assessing the

identity of progenitors and neurons obtained in culture. Furthermore, the observation that

manipulating TGFβ signaling can accelerate or slow down the progression of temporal pat-

terning opens up the possibility to use such perturbations to increase the yield of progenitors

and neurons with desired spatial and temporal identities.

Many applications of in vitro generated neurons and progenitors require large numbers of

cells with defined identities. These are often generated by expanding progenitors using
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treatments with signals such as EGF and/or FGF before exposing the resulting progenitor pop-

ulations to differentiation stimuli. Such prolonged expansion phases might result in the prefer-

ential generation of neurons with late temporal identities. This might be at least partially

counteracted by the incorporation of TGFβ pathway inhibitors. Indeed, treatment with

SB431542 in combination with other small molecules has been demonstrated to enable long-

term self-renewal of neural stem cells [105]. Another promising approach to generate neurons

with defined identities is reprogramming of pluripotent cells or somatic cells, such as fibro-

blasts or astrocytes, using specific cell fate–converting cocktails of transcription regulators.

Notably, the reprogramming of ES cells to different types of neurons results in expression of

Onecut TFs [106–109], suggesting that such approaches might preferentially generate the earli-

est temporal identities. The addition of temporal TFs that define later stages of the differentia-

tion program to these reprogramming cocktails might expand the toolbox for the efficient

generation of a wider range of neuronal subtypes with desired temporal identities for in vitro

disease modeling and future clinical applications.

Experimental procedures

Animal welfare

Animal experiments were performed under UK Home Office project licenses (PD415DD17)

within the conditions of the Animal (Scientific Procedures) Act 1986. All experiments were

conducted using outbred UKCrl:CD1 (ICR) (Charles River) mice.

Immunofluorescent staining and microscopy

Embryos were fixed at the indicated stages in 4% PFA (Thermo Fisher Scientific) in PBS on

ice, cryoprotected and dissected in 15% ice-cold sucrose in 0.12 M PB buffer, embedded in gel-

atine and 14 μm sections taken. In vitro generated cells were fixed for 15 minutes in 4% PFA

in PBS at 4 degrees. Approximately 30 minutes blocking and primary antibody incubation

over night at 4 degrees was performed using PBS + 0.1% Triton (PBS-T) + 1% BSA. A com-

plete list of antibodies is available in S1 Table. The next day, samples were washed 3× 30 min-

utes in PBS-T and incubated with secondary antibodies in PBS-T + 1% BSA for 1 hour at

room temperature. Secondary antibodies used throughout the study were raised in donkey

(Life Technologies, Jackson Immunoresearch). Alexa488- and Alexa568-conjugated secondary

antibodies were used at 1:1,000, Alexa647-conjugated antibodies at 1:500. Samples were

washed 3 more times in PBS-T and then mounted in Prolong Antifade (Molecular Probes).

For EdU labeling, mice were intraperitonially injected with 3 μl/gramm body weight EdU

diluted in PBS at the indicated stages. EdU was detected using Alexa647 Click-iT EdU Imaging

Kit (Invitrogen C10340) according to the manufacturer’s specifications. At least 3 sections

from different animals were analyzed for each time point.

Stainings of in vitro differentiations were acquired on a Zeiss Imager.Z2 microscope

equipped with an Apotome.2 structured illumination module and a 20× air objective

(NA = 0.75). Cryosections were imaged using a Leica SP8 equipped with a 40× oil PL APO

CS2 objective (NA = 1.30) or a Zeiss LSM880 equipped with a Fluar 40× oil M27 objective

(NA = 1.30). Tissue sections were tiled using 5% or 10% overlap between adjacent tiles and

merged using LAS X or ZEN Black software.

Image analysis

Image analysis was performed in Fiji (http://fiji.sc/Fiji) and Python3.7 (http://www.python.

org). e13.5 mouse neural tube transverse sections were manually cropped using Fiji and then
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processed using a custom Python pipeline. Cell nuclei were segmented using an adaptive

threshold and watershed algorithm on the DAPI channel. Parameters for proper segmentation

and filtering were manually optimized for each set of images. Segmented objects were further

filtered based on area to fit the expected nuclei dimensions. Neuronal nuclei were distin-

guished from those of progenitors either by presence of the neuronal marker HuC or absence

of Sox2 staining. For each neuronal nucleus, the mean intensity of the temporal TFs and EdU

was then calculated (S1 and S2 Data).

Data analysis and plotting were performed in R (https://www.r-project.org). For each sec-

tion, intensities in nuclei were first normalized between 0 and 1. To remove outliers, 0.3% of

the brightest and dimmest objects were discarded. Objects were counted as positive for EdU or

expression of temporal TFs if their normalized intensity was greater than 0.25. Percentage of

EdU-positive nuclei expressing temporal TFs was then plotted using ggplot2 [110] (S1 and

S2 Data).

ES cell culture and differentiation

HM1 mouse ES cells (Thermo Fisher Scientific) were maintained and differentiated as

described previously [64–66]. In brief, ES cells were maintained on a layer of mitotically inacti-

vated mouse embryonic fibroblast (feeders) in ES cell medium + 1,000 U/ml LIF. For differen-

tiation, ES cells were dissociated using 0.05% Trypsin (Gibco). Feeder cells were removed by

replating cells for 25 minutes on a tissue culture plate. About 60 to 80,000 cells were plated

onto 0.1% Gelatin (Sigma) coated 35 mm CellBIND dishes (Corning) into N2B27 medium

+ 10 ng/ml bFGF. Differentiation protocols for progenitors and neurons with different axial

and dorsal–ventral identities are shown in Fig 4A. Differentiation protocols for activation and

inhibition of the TGFß pathway using TGFß2 (R&D Systems) or 10 μM SB431542 (Tocris),

respectively, are shown in Fig 6A and 6F. For midbrain differentiation, cells were kept in

N2B27 medium with addition of 10 ng/ml bFGF until day 3. To generate hindbrain identity,

100 nM RA (Sigma) and 500 nM SAG (Calbiochem) were supplemented together at days 3

and 4. For spinal cord differentiations, cells were exposed to 5 μM CHIR99021 (Axon) between

days 2 and 3 and then supplemented with 100 nM RA (Sigma) until day 5. For ventral differen-

tiations, cells were additionally exposed to 500 nM SAG (Calbiochem) from days 3 to 9.

Generation of Nfia; Nfib double-mutant ESCs

For generation of Nfia; Nfib double-mutant ES cells, CRISPR guide RNAs were cloned into

pX459 plasmid obtained from Addgene (# 62988), according to [111]. ES cells were electropo-

rated using Nucleofector II (Amaxa) and mouse ESC Nucleofector kit (Lonza). Afterwards,

cells were replated onto 10-cm CellBind plates (Corning) and maintained in 2i medium + LIF.

For selection, cells were first treated with 1.5 μg/ml Puromycin (Sigma) for 2 days and after-

wards maintained in 2i medium + LIF until colonies were clearly visible. Individual colonies

were picked using a 2-μl pipette, dissociated in 0.25% Trypsin (Gibco), and replated onto

feeder cells in ES medium + 1,000 U/ml LIF in a 96-well plate. Mutations in Nfia and Nfib
were analyzed by PCR over the targeted regions and verified by Sanger sequencing. Overlap-

ping peaks arising from heterozygous indels were deconvolved using CRISP-ID [112] (S14A

and S14B Fig). Loss of Nfia and Nfib protein was further confirmed by immunofluorescent

staining at day 10 of the differentiation (S14C and S14D Fig).

Flow cytometry

In vitro differentiations were dissociated at the indicated time points using 0.05% Trypsin

(Gibco). Live/Dead cell staining was performed using LIVE/DEAD Fixable Near-IR Dead Cell
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Stain Kit (Invitrogen) for 30 minutes on ice. Immediately, afterwards, cells were spun down

for 2 minutes at 1,000×g and fixed in 4% PFA for 12 minutes on ice. Fixed cells were spun

down, resuspended in 500 μl PBS, and stored at 4 degrees for up to 2 weeks.

For staining, 1.5 to 2 million cells were used. Cells were spun down and incubated with

antibodies in PBS-T + 1% BSA. If primary and secondary antibodies were used, cells were

incubated in primary antibody solution over night. Directly conjugated antibodies or second-

ary antibodies were applied for 1 hour at room temperature. A complete list of antibodies used

for flow cytometry is supplied in S2 Table. Flow cytometry analysis was performed using BD

LSR Fortessa analyzers (BD Biosciences). Data analysis was performed using FlowJo (v10.4.1)

and plotted using Graphpad Prism 7. The general gating strategy is outlined in S11B Fig. Pro-

genitor and neuronal cell populations were discriminated based on Sox2 and Tubb3 antibody

staining (S11B Fig). Percentages of Onecut2, Neurod2, and Zfhx3-positive neurons were calcu-

lated by applying a threshold at which 1% to 2% of Sox2-positive progenitors in the same sam-

ple were counted as positive. Percentage of Nfia-positive neurons and progenitors was

determined using a global threshold for all datasets. Data were plotted and statistical analysis

performed in GraphPad Prism 8. Graphs throughout the manuscript show means ± standard

deviation of all conducted replicates. Statistical significance was assessed using unpaired t
tests. A summary of the percentage of positive cells, replicate number, and p-values is provided

in S3 Data. Significance values throughout the manuscript are indicated by p< 0.001 = ���,

p< 0.01 = ��, p< 0.05 = �.

RT-qPCR

Total RNA was isolated from cells at the indicated time points using Qiagen RNeasy kit

according to the manufacturer’s instructions. Genomic DNA was removed by digestion with

DNase I (Qiagen). cDNA synthesis was performed using SuperScript III (Invitrogen) and ran-

dom hexamers. qPCR was performed using PowerUp SYBR Green Master Mix (Thermo

Fisher Scientific) using 7900HT Fast Real time PCR (Applied Biosystems), QuantStudio 5 or

QuantStudio 12K Flex Real-Time PCR Systems (Thermo Fisher Scientific). qPCR primers

were designed using NCBI tool Primer BLAST and are listed in S3 Table. All experiments were

conducted at least in biological triplicates for each time point analyzed. Expression values were

normalized to ß-actin. Data were plotted and statistical analysis performed in GraphPad Prism

8. Graphs throughout the manuscript show means ± standard deviation of all replicates. A

summary of all qPCR data is provided in S4 Data.

scRNAseq data analysis

scRNAseq analysis was performed in R-Studio using R v3.5.2 and later. Scripts describing the

scRNAseq analysis performed in this paper are available at https://github.com/andreassagner/

tTF_paper_2020.

Differential gene expression analysis in spinal cord neural progenitors. scRNAseq

data from e9.5 to e13.5 spinal cord neural progenitors including subtype annotations were

obtained from Delile and colleagues. dp6 progenitors were excluded from this analysis due to

low numbers in the dataset. For each progenitor domain, differential gene expression between

progenitors from different embyronic days was performed using Seurat [113] using the “Fin-

dAllMarkers” function with settings min.pct = 0.25 and logfc.threshold = 0.25. Only genes

detected in more than 7 progenitor domains were retained. TFs were identified based on a list

of TFs encoded in the mouse genome obtained from AnimalTFDB3.0 [114]. Heatmaps in Fig

5A show log-scaled and z-scored gene expression.
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Analysis of temporal TFs in the mouse retina. scRNAseq of the developing retina [43]

was downloaded from https://github.com/gofflab/developing_mouse_retina_scRNASeq and

imported into Seurat v3.1.4 [113]. Cells were filtered based on age (e14, e16, e18, and P0), cell

type (RPCs, Neurogenic Cells, Photoreceptor Precursors, Cones, Rods, Retinal Ganglion Cells,

Amacrine Cells, Horizontal Cells), number of reads in each cell (nFeature > 800 and

nFeature < 6,000), and percentage of reads in mitochondrial genes (percent.mt < 6). Only

cells annotated as Horizontal Cells, Amacrine Cells, Retinal Ganglion Cells, Rods, and Cones

were used for the time-stratified heatmap of temporal TF expression.

Expression dynamics of temporal TFs in the forebrain, midbrain, and hindbrain.

Annotated scRNAseq data from the developing forebrain, midbrain, and hindbrain were down-

loaded from mousebrain.org [9]. Cells were assigned forebrain, midbrain, and hindbrain iden-

tity based on the “Tissue” column of the provided loom file. To account for the different

sequencing depths between cells, readcounts were normalized by multiplying the counts in each

cell with 10,000 divided by the total number of UMIs in this cell. Mean expression and ratio of

expressing cells for the indicated temporal TFs and regions were calculated in R. Data were plot-

ted using ggplot2 [110]. Heatmaps in Fig 5B show log-scaled and z-scored gene expression.

Pseudotemporal ordering of gene expression dynamics. A detailed description how the

pseudotemporal ordering was performed is provided as S1 Text. Cell annotations from Delile

and colleagues were used for spinal cord scRNAseq data. For identification of neuronal line-

ages in the hindbrain and forebrain, scRNAseq data from La Manno and colleagues were ana-

lyzed by UMAP dimensionality reduction. Cell neighborhoods and clustering were

determined using the standard Seurat workflow using the FindNeighbors and FindClusters

functions [113]. Pseudotemporal ordering on neuronal lineages was performed using the

Slingshot R package [115] using UMAP dimensionality reduction performed in Seurat. Start

clusters for pseudotime reconstruction were chosen based on high expression of proneural

bHLH TFs. Clusters most distant on the UMAP from the respective start clusters were chosen

as end clusters for the Slingshot algorithm. In a few cases, curves predicted by the Slingshot

algorithm for pseudotime reconstruction were excluded, e.g., if they curved back on them-

selves or crossed other Slingshot curves (see S1 Text). For each developmental stage, gene

expression along pseudotime, defined by the remaining pseudotime curves, was fitted using

LOESS regression implemented in the ggplot2 R package [110]. Pseudotime was then subdi-

vided into 30 pseudotime bins, and gene expression along the trajectory was normalized for

each gene across all time points.

Comparison with in vitro RNAseq data. RNAseq data from D3 to D10 ventral spinal

cord differentiations [69] (GSE140748) were used. Gene expression per time point was aver-

aged over all 3 provided replicates. Only data from full days of differentiation (D3, D4, D5, D6,

D7, D8, D9, D10; D0 to D7 in the provided data files) were used for further analysis. Heatmaps

in Fig 5C show log-scaled and z-scored gene expression. To identify correlated, uncorrelated,

and anticorrelated genes in S13A–S13C Fig, log-scaled, z-scored gene expression data of the

542 genes identified in Fig 5 were compared between e9.5 and e13.5 in vivo neural progenitors

[33] and days 5 to 9 from the in vitro differentiations (D2 to D6 in the provided data files) by

Pearson correlation (S5 Data).

Nfia/b/x and H3K27ac ChIP-seq data

Nfia/b/x ChIP-seq data from Fraser and colleagues were downloaded from the GEO database

(GSE146793) and aligned to mm10 using the nf-core ChIP-seq pipeline v1.1.0 [116]. H3K27ac

ChIP-seq tracks were obtained via the UCSC genome browser and ENCODE DNA trackhub.

H3K27ac tracks show signal fold change over control.
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Supporting information

S1 Fig. Related to Fig 1: Complete time course of colocalization between temporal TFs and

EdU administered at different time points. (A-C). Colocalization between Zfhx3 (A), Nfib

(B), Neurod2 (C), and EdU administered at e9.5, e10.5, e11.5, or e12.5 (from left to right) in

e13.5 spinal cord sections. Scale bars in overview pictures = 200 μm, insets = 50 μm. TF, tran-

scription factor.

(PNG)

S2 Fig. Related to Fig 1: Nonoverlapping expression of temporal TFs in spinal cord neu-

rons at e13.5. (A, B) Zfhx3 and Nfib (A) or Zfhx3 and Neurod2 (B) are expressed in mutually

exclusive populations of neurons in the spinal cord. Scale bars in overview pictures = 200 μm,

insets = 20 μm. TF, transcription factor.

(PNG)

S3 Fig. Related to Fig 2: Characterization of temporal TF expression in the developing ret-

ina. (A) UMAP representation of scRNAseq data from the developing mouse retina [43] color

coded by developmental stage. (B) Same UMAP representation as (A) color coded for cell

identity. (C) Expression levels of Onecut2, Pou2f2, Zfhx3, and Nfib in individual cells. (D)

Heatmap indicating expression levels of the temporal TFs (Onecut2, Pou2f2, Zfhx3, and Nfib)

and known marker genes (Lhx1, Pax6, Pou4f2, Thrb, and Nrl) in different types of retinal neu-

rons stratified by developmental age. AC, amacrine cell; HC, horizontal cell; RGC, retinal gan-

glion cell; RPC, retinal progenitor cell; NCs, neurogenic cell; PP, photoreceptor precursor;

scRNAseq, single-cell RNA sequencing; TF, transcription factor; UMAP, Uniform Manifold

Approximation and Projection.

(PNG)

S4 Fig. Related to Fig 2: Characterization of temporal TF expression in the developing cen-

tral nervous system. (A-D). UMAP representation of scRNAseq data from (A) forebrain, (B)

midbrain, (C) hindbrain [9], and (D) spinal cord [33] color coded by developmental stage.

(E-H) Expression levels of Slc17a6, Gad2, Onecut2, Pou2f2, Zfhx3, Nfia, Nfib, and Neurod2 in

individual cells. (I-L) Heatmaps indicating Spearman correlation between temporal TF expres-

sion in the different regions of the nervous system. (M) Spearman correlation rank plots for

Nfib (top row) and Zfhx3 (bottom row) in the scRNAseq data from forebrain, midbrain, hind-

brain, and spinal cord (left to right). Data points corresponding to temporal TFs are

highlighted in red. scRNAseq, single-cell RNA sequencing; TF, transcription factor; UMAP,

Uniform Manifold Approximation and Projection.

(PNG)

S5 Fig. Related to Fig 2: Nfib-positive cells in the hindbrain mantle layer are neurons.

(A-C) e13.5 hindbrain sections stained for Nfib and the progenitor marker Sox2 (A), the glial

progenitor marker Sox9 (B), and the neuronal marker Lhx5 (C). Scale bars in overview

pictures = 200 μm, insets = 25 μm.

(PNG)

S6 Fig. Related to Fig 2: Pseudotemporal ordering confirms sequential generation of tem-

poral TF expressing neurons. (A) Sequential generation of neurons expressing temporal TFs

should result in the capture of neurons at different stages of their differentiation trajectory in

scRNAseq time course data. (B) Pseudotime reconstruction of gene expression dynamics

along a neuronal differentiation trajectory. Dark blue corresponds to early cells, yellow to late

cells along the differentiation trajectory. Arrows indicate predicted pseudotime trajectories.

(C) Temporal TFs should be sequentially expressed in pseudotime. (D) Pseudotime
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reconstruction of gene expression for different neuronal lineages along the dorsal–ventral axis

of the spinal cord reveals sequential expression of temporal TFs. (E, F) Similar gene expression

dynamics are observed when pseudotemporal gene expression is reconstructed for neuronal

lineages in the hindbrain (E) and forebrain (F). LGE, lateral ganglionic eminence; MGE,

medial ganglionic eminence; scRNAseq, single-cell RNA sequencing; TF, transcription factor.

(PNG)

S7 Fig. Related to Fig 2: EdU birthdating confirms sequential generation of Zfhx3 and

Nfib-positive neurons in the midbrain and hindbrain. (A-D) e13.5 hindbrain (A, B) and

midbrain (C, D) sections stained for Zfhx3 (green), EdU (red), and Sox2 (blue). EdU was

administered at e10.5 (A, C) or e12.5 (B, D). (E-H) e13.5 hindbrain (E, F) and midbrain (G, H)

sections stained for Nfib (green), EdU (red), and Sox2 (blue). EdU was administered at e10.5

(E, G) or e12.5 (F, H). Scale bars in overview pictures = 100 μm, insets = 25 μm.

(PNG)

S8 Fig. Related to Fig 2: Widespread expression of late temporal TFs in cortical glutama-

tergic neurons. (A) UMAP plots of all e10–e13.5 forebrain neurons in the dataset from La

Manno and colleagues. Cortical excitatory neurons are colored in red. (B) UMAP plots indi-

cating the expression of marker genes characteristic for cortical excitatory neurons. (C)

UMAP plots showing widespread expression of late temporal TFs in forebrain excitatory neu-

rons (top row) and expression of marker genes for cluster 7 neurons (see D) (bottom row). (D)

Identification of different clusters of cortical excitatory neurons. Cluster 7 corresponds to the

Zfhx3-positive population of neurons (see also C). (E) Differential gene expression analysis

comparing cluster 7 cells to the rest of the identified cortical excitatory neurons. The top 6 TFs

up-regulated in this cluster are indicated by the red box, the top 6 down-regulated TFs by the

blue box. (F) UMAP plot of cortical excitatory neurons (red cells in A) color coded for the

developmental stage from which these cells were obtained. TF, transcription factor; UMAP,

Uniform Manifold Approximation and Projection.

(PNG)

S9 Fig. Related to Fig 2: Differential expression of intermediate and late temporal TFs in

scRNAseq data from the late forebrain and midbrain. (A, F) UMAP plots from late mid-

brain (A) and forebrain (F) neurons (e16–e18) color coded for the developmental stage from

which these cells were obtained. (B, G) UMAP plots from late midbrain (B) and forebrain (G)

neurons showing expression of the indicated markers. Expression of intermediate and late

temporal markers (especially Zfhx3/4 and Nfia/b) stay highly anticorrelated in neurons. (C, H)

Nfia and Nfib-positive cells express the neuronal markers Tubb3 and Elavl3 but not the glial

markers S100b and Slc1a3. (D, I) Heatmaps indicating Spearman correlation between interme-

diate and late temporal TFs in the late embryonic midbrain (D) and forebrain (I). (E, J) Corre-

lation rank plots for Zfhx3 and Nfib indicate that these markers stay highly anticorrelated in

the late embryonic midbrain (E) and forebrain (J). scRNAseq, single-cell RNA sequencing; TF,

transcription factor; UMAP, Uniform Manifold Approximation and Projection.

(PNG)

S10 Fig. Related to Fig 3: Midbrain red nucleus neurons express Zfhx3 but not Onecut2.

(A, B) e11.5 midbrain cryosection stained for (A) Onecut2 (red) and Pou4f1 (green) or (B)

Zfhx3 (red) and Pou4f1 (green). Note the Onecut2 expression is mutually exclusive with

Pou4f1 expression (A) while most Pou4f1 neurons express Zfhx3 (B). Scale bars in overview

pictures = 200 μm, insets = 25 μm.

(PNG)
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S11 Fig. Related to Fig 4: Further characterization of the in vitro differentiations. (A) RT-

qPCR analysis of Foxg1, Otx2, Hoxa4, Hoxb9, and Hoxc8 reveals the generation of neurons

and progenitors with different axial identities in the in vitro differentiations. For underlying

data, see S4 Data. (B) Gating strategy for the quantification of the expression of different mark-

ers in neurons and progenitors by flow cytometry. Living cells were identified based on Infra-

red Life/Dead stain. Gating on single cells was achieved using forward and side scatter as

indicated. Progenitors and neurons were discriminated based on the progenitor marker Sox2

and neuronal beta-tubulin (Tubb3). To quantify the proportion of neurons expressing One-

cut2, Zfhx3, and Neurod2, an intensity threshold was applied to each sample that was exceeded

by 1%–2% of progenitors. The same threshold was then applied to neurons in the same sample,

and the percentage of neurons exceeding this threshold was counted as positive. As Nfia is

expressed in neurons and progenitors, a global threshold was applied to quantify the propor-

tion of neurons and progenitors expressing Nfia. (C) Characterization of dorsal and ventral

spinal cord differentiations by immunostaining. Under dorsal conditions, most neurons

express the TF Lbx1, which is expressed in dI4-dI6 neurons generated in the intermediate dor-

sal part of the spinal cord. Under ventral conditions, neurons express the V3 interneuron

marker Sim1. Scale bars in C = 25 μm. MN, motor neuron; RT-qPCR, real-time quantitative

polymerase chain reaction; SAG, Shh pathway agonist; TF, transcription factor.

(PNG)

S12 Fig. Related to Fig 5: Temporal patterning of neurons and progenitors. (A) Spatial and

temporal expression of the 33 differentially expressed TFs during the neurogenic period in spi-

nal cord neural progenitors. DV, dorsal–ventral; TF, transcription factor.

(PNG)

S13 Fig. Related to Fig 5: Comparison of gene expression dynamics between in vivo and in

vitro. (A-C) Expression dynamics of correlated (A), uncorrelated (B), and anticorrelated (C)

genes (left) and TFs (right) in embryonic progenitors (left plots) and RNAseq data from the in

vitro differentiations (right plots). Heatmap shows log-scaled and z-scored gene expression

values. Pearson correlation values are provided in S5 Data. (D) RT-qPCR analysis for Lin28b,

Sox9, Npas3, Zbtb20, Nfib, and Hopx from days 5–11 in in vitro generated differentiations with

different axial identities reveals that temporal patterning is conserved in vitro. Underlying data

are included in S4 Data. RT-qPCR, real-time quantitative polymerase chain reaction; TF, tran-

scription factor.

(PNG)

S14 Fig. Related to Fig 7: Characterization of the Nfia; Nfib double-mutant ES cell line. (A,

B) Engineering of a Nfia; Nfib double-mutant ES cell line by CRISPR/Cas9-mediated mutagen-

esis. Introduction of double heterozygous frameshift mutations in both genes was validated by

Sanger sequencing. (C, D) Loss of Nfia (C) and Nfib (D) immunostaining in neural progeni-

tors generated from Nfia; Nfib double-mutant ES cells in dorsal differentiations at D10. (E, F)

Reduced number of Neurod2-positive neurons in ventral differentiations of Nfia; Nfib double

mutants compared to controls at D11 (E) and D13 (F) revealed by immunostaining. Scale bars

in C-F = 20 μm. ES, embryonic stem.

(PNG)

S1 Table. Related to Experimental procedures: Antibodies for immunofluorescence.

(XLSX)

S2 Table. Related to Experimental procedures: List of antibodies for flow cytometry.

(XLSX)
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S3 Table. Related to Experimental procedures: List of primers for RT-qPCR analysis.

(XLSX)

S1 Data. Related to Fig 1H: Percentage of EdU-positive neurons expressing the respective

temporal TFs in the spinal cord. Data file also includes intensity measurements of the indi-

vidual channels from all replicates. TF, transcription factor.

(XLSX)

S2 Data. Related to Fig 2I–2K: Percentage of EdU-positive neurons expressing the respec-

tive temporal TFs in the hindbrain, midbrain, and ventral midbrain. Data file also includes

the intensity measurements of the individual channels from all replicates. TF, transcription

factor.

(XLSX)

S3 Data. Related to Figs 4, 5, 6, and 7: Summary of flow cytometry results.

(XLSX)

S4 Data. Related to Figs 5D, 6B, 6G, 6H, S11A, and S13D: Summary of qPCR data.

(XLSX)

S5 Data. Related to S13A–S13C Fig: Comparison of gene expression dynamics between

embryonic neural progenitors and the in vitro differentiations.

(XLSX)

S1 Text. Related to S6 Fig: Reconstruction of pseudotemporal gene expression dynamics

for different neuronal populations in the spinal cord, hindbrain, and forebrain.

(PDF)
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52. Andersson O, Reissmann E, Ibáñez CF. Growth differentiation factor 11 signals through the transform-

ing growth factor-β receptor ALK5 to regionalize the anterior-posterior axis. EMBO Rep. 2006; 7:831–

7. https://doi.org/10.1038/sj.embor.7400752 PMID: 16845371

53. Shi Y, Liu J-P. Gdf11 facilitates temporal progression of neurogenesis in the developing spinal cord. J

Neurosci. 2011; 31:883–93. https://doi.org/10.1523/JNEUROSCI.2394-10.2011 PMID: 21248112
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