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WHY WHAT IS OUT THERE MAKES US SICK?

Immune and inflammatory diseases arise from a complex combination of genetic and
environmental factors (David et al., 2018; Surace and Hedrich, 2019). MicroRNA are a class
of non-coding single-stranded RNA molecules of 19–23 nucleotides in length. In response to
environmental triggers, microRNA mediate epigenetic cell fate decisions critical in immune
homeostasis by driving cellular activation, polarization, and immunological memory cell
development (Mehta and Baltimore, 2016; Curtale et al., 2019). Pattern recognition receptors
(PRR) recognize conserved molecular components of pathogens and respond by secreting reactive
oxygen species and cytokines that alert the immune system about infection (Medzhitov et al., 1997).
They can also interact with various endogenous ligands i.e., lipids, glycans, proteins, and nucleic
acids, when released under sterile conditions of cellular stress, tissue injury, and transplantation.
As activators of PRR-signaling, endogenous ligands initiate immune cell recruitment and tissue
repair. However, sustained PRR-signaling may result in an exacerbated inflammatory response,
which can have lethal effects or lead to autoimmunity (reviewed in Yu et al., 2010). In
addition to their well-documented canonical function regulating gene expression through RNA
interference in the cytoplasm (Bartel, 2004), specific GU-rich microRNA sequences can activate
pro-inflammatory signaling pathways by direct interaction with the ribonucleic-acid binding
Toll-like receptor 7/8 (TLR-7/8) of innate immunity located in cellular endosomes (Heil et al.,
2004). Extracellular vesicles are a heterogeneous population of membrane vesicles naturally
secreted by living cells that facilitate intercellular exchanges (Valadi et al., 2007; Raposo and
Stoorvogel, 2013). Exported inside extracellular vesicles, Toll-like receptor-binding microRNA
released by cells from injured or stressed tissues can reach the endosomal compartment and
propagate inflammatory signals in distant recipient cells (Figure 1). The contributions of a
dozen of TLR-7/8-binding microRNA (let-7b/c, miR-7a, miR-21, miR-29a/b, miR-34a, miR-122,
miR-133a, miR-142, miR-145, miR-146a, miR-208a, and miR-210) to inflammation have been
described to date in settings of cancer, sepsis, neurological, autoimmune, and graft-vs.-host
diseases (Fabbri et al., 2012; Lehmann et al., 2012; He et al., 2014; Park et al., 2014; Salama
et al., 2014; Liu et al., 2015; Yelamanchili et al., 2015; Kim et al., 2016; Coleman et al.,
2017; Feng et al., 2017; Ranganathan et al., 2017; Young et al., 2017; Salvi et al., 2018; Xu
et al., 2018; Wang et al., 2019). Using confocal microscopy co-localization, co-precipitation,
and TLR inhibitors, these studies demonstrate direct binding of these microRNA to TLR-7
in mouse and TLR-8 in human, independently of RNA interference. Furthermore, transgenic
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TLR-7−/− mice are protected against the degenerative and
inflammation-related effects of TLR-binding microRNA (Fabbri
et al., 2012; Lehmann et al., 2012; Yelamanchili et al., 2015;
Liang et al., 2019). Since their discovery in 2012, the significance
of microRNA as endogenous ligands of innate immunity in
health and disease is still a matter of debate (Chen et al.,
2013; Fabbri et al., 2013; He, X. et al., 2014; Bayraktar et al.,
2019). As part of the dynamic continuum of the endocytic
intercellular communication pathway, TLR-binding microRNA
transported via extracellular vesicles likely serve both adaptive
and maladaptive stress responses in cells expressing TLR-7/8.

MICRORNA TLR-BINDING ACTIVITY: AN
EXTRACELLULAR VESICLE
PHENOMENON?

So far, unconventional TLR-binding activity has been observed
solely for extracellular microRNA and, out of 14 studies,
11 ascertain transfer in association with extracellular vesicles.
The effects of danger-associated molecular patterns depend
on their detection, a truism applicable to TLR-7-binding
microRNA: they can act as such if and only if they reach
the endosomal compartment. Encapsulation within extracellular
vesicles constitutes a means for microRNA to enter the endocytic
pathway where they may directly engage TLR-7/8 signaling
(Mulcahy et al., 2014). In contrast, for RNA-interference activity,
internalized microRNA have to escape from the endosome
(Montecalvo et al., 2012), a rate-limiting step identified in the
delivery of therapeutic short interference RNA (Johannes and
Lucchino, 2018) and viral infection (Staring et al., 2018). It
is conceivable that TLR-binding microRNA are conducive to
exerting RNA interference-mediated effects in donor cells and
TLR-binding effects or combinations of both after transfer via
extracellular vesicles in recipient immune cells, i.e., major sites
of TLR-7/8 expression (Lin et al., 2020; Sun et al., 2020).

The relative proportion of free and particulate microRNA
in biofluids still raises controversy, which is in part linked to
technical pitfalls in the proper assessment of RNA concentrations
in extracellular vesicles and biofluids (Arroyo et al., 2011;
Turchinovich et al., 2011; Gallo et al., 2012; Crossland et al.,
2016; Jeppesen et al., 2019). While free soluble RNA are short-
lived due to high physiological levels of ribonuclease activity,
microRNA chaperone protein complexes, or extracellular vesicle
microRNA have sufficiently low clearance to support autocrine
and paracrine signaling loops (Mitchell et al., 2008). Interaction
of extracellular vesicles with patrolling immune cells can further
transmit local signals of inflammation to the level of the
organism. Useful on one hand for systemic coordination, this
transmission can prove detrimental in the case of self-sustaining
inflammatory responses. Indeed, let-7b for example, whose
production can be enhanced by NF-κb activation (Wang et al.,
2012) is also a potent TLR-ligand and thus may enhance its
own synthesis, a mechanism perpetuating the vicious circle of
inflammation in rheumatoid arthritis (Kim et al., 2016). We have
demonstrated previously that liposome-encapsulated miR-21 can
induce enhanced extracellular secretion in hematopoietic cells

through TLR-7/8 signaling (Chang, 2010; Yang et al., 2015; Young
et al., 2017). Similarly, the activation of the type 1 interferon/NF-
κb pathway has been shown to induce let-7e, miR-21 and miR-
146a expression by a positive amplification loop (Chang, 2010;
Yang et al., 2015).

QUANTITY MATTERS

If the body produces endogenous ligands of innate immunity,
then how does this influence immune homeostasis? Fabbri
and colleagues suggested that it is “the type and amount of
information that cells exchange that ultimately affect cancer
phenotype” (Fabbri et al., 2013). Indeed, biological active cargo
is exported within extracellular vesicles sometimes at higher
concentrations than in the donor cells and enhanced vesicle
release has been broadly associated with inflammation and
degeneration in pathological settings (Valadi et al., 2007; Zomer
et al., 2015; Robbins et al., 2016; Young et al., 2017; Giri
et al., 2020). As detoxifying “garbage bags” (Vidal, 2019), the
enhanced extracellular vesicle outflow is presumably beneficial
for the donor cell by permitting material clearance, but
might entail deleterious consequences for the organism as a
whole. The largely overlapping data reported in biomarker
studies have built consensus indicating that measurable changes
in circulating microRNA do not directly mirror changes in
the diseased tissue, but are indicative of a secondary non-
specific inflammatory response (Chen et al., 2008; Witwer,
2015). Presumably not by coincidence, TLR-binding microRNA
overexpression is recurrently observed in pathological settings
for miR-21, miR-7 and members of the let-7 and miR-29
families opening the way for subsequent polyvalent stimulation
of the immune system. Although seemingly a critical factor,
the quantitative requirements to modulate functional cellular
responses are not well-understood. The biological activity of
extracellular vesicle-encapsulated microRNA in recipient cells
was first demonstrated in microRNA overexpression reporter
experiments in vitro or after the transfer of concentrated
suspensions of purified vesicles (Kosaka et al., 2010; Montecalvo
et al., 2012). However, the number of copies measured
per vesicles of a given endogenous microRNA is very low,
even for abundant microRNA in extracellular vesicles, which
raises questions about the physiological relevance of cell-to-
cell microRNA-based communication (Williams et al., 2013;
Chevillet et al., 2014). For RNA interference–mediated effects, a
threshold of 1,000 copies of microRNA has to be reached in the
recipient cells to trigger measurable effects (Brown et al., 2007),
which represents the successful delivery of an estimated ≈105

extracellular vesicles (Igaz, 2015). While these concentrations
seem realistic for extracellular vesicles released from broadly
distributed tissues such as blood, fat, or muscle (Sender et al.,
2016), this seems unlikely for less abundant cell types. In contrast,
in the attoliter (10−18 L) volume of the endosome, a single
RNA molecule equates to a 3µM concentration, which given
the micromolar-affinity of the TLR-7 receptor for guanosine-
uracil oligomers, might more easily elicit an immune response
(Crozat and Beutler, 2004; Zhang et al., 2016). If present,

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 578335

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Bosch et al. TLR-Binding microRNA in Extracellular Vesicles

FIGURE 1 | As part of the intercellular endocytic communication pathway, TLR-binding microRNA transmitted via extracellular vesicles serve adaptive and

maladaptive stress responses. Environmental stress (1) promotes secretion of extracellular vesicles and microRNA, (self-) antigen and danger-associated molecule

release (2). After uptake by innate immune cells, specific GU-rich extracellular vesicle-encapsulated microRNA sequences can stimulate TLR-7/8 signaling in the

endosome of recipient cells. Subsequent activation of the NF-κB pathway exacerbates inflammation through cytokine secretion, expression of co-stimulatory

molecules (3) and self-induction of TLR-binding microRNA expression and extracellular vesicle secretion (4).

distinct TLR-binding microRNA sequences could synergistically
activate TLR-7/8.

ARE ALL EXTRACELLULAR VESICLES
EQUAL TLR-7/8 STIMULATORS?

The absolute quantity and diversity of microRNA exported is
highest in large apoptotic bodies and shedding microvesicles.
Yet, the majority of evidence on TLR-binding microRNA
activity has focused on small∼100 nm vesicles. Similarly, among

extracellular vesicles released by serum-starved endothelial
cells, only small exosome-like vesicles display immunogenic
properties involving the activation of innate PRR by a specific
repertoire of non-coding self-RNA (Hardy et al., 2019). In
addition to being a consequence of exosome-focused research
predominating the field in the past decade, this phenomenon
may be explained by evidence of preferential sorting of GU-
rich RNA and TLR-binding microRNA into small vesicles
in situations of stress (Kouwaki et al., 2016; Fleshner and
Crane, 2017; Hardy et al., 2019; Giri et al., 2020; Mensà et al.,
2020). Differences in the mechanism and cellular targeting
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of extracellular vesicle uptake could further influence the
impact of TLR-ligand microRNA on recipient cells. Studies
on synthetic RNA-containing particles provide evidence that
nanometric particles are selectively internalized by plasmacytoid
dendritic cells leading to the production of large amounts of
interferon-α whereas micrometric particles preferentially induce
tumor necrosis factor-α secretion from monocytes (Rettig et al.,
2010). The authors infer that, in addition to surface protein
expression, nano- or micro-particle size discrimination per se
allows the immune defense to adapt to viral or bacterial/fungal
infection, respectively. In line with this hypothesis, small
extracellular vesicles from systemic lupus erythematosus patients
and apoptotic lymphoblasts readily stimulate interferon release
form plasmacytoid dendritic cells via TLR-signaling (Schiller
et al., 2012; Salvi et al., 2018).

In contrast, extracellular vesicles derived from healthy
tissue are essentially immune-silent (reviewed in Fleshner and
Crane, 2017). For apoptotic bodies, the intrinsic tolerogenic
properties rely on the expression of “find” and “eat-me” signals
like phosphatidyl-serine that promote the production of anti-
inflammatory mediators like the cytokine transforming growth
factor-β and the prostaglandin E2 (Fadok et al., 1998; Pujol-
Autonell et al., 2013). Equivalent signals may be absent, weak, or
masked in microvesicles and exosomes in pathological settings.
Indeed, encapsulated inside extracellular vesicles, microRNA
are delivered as a bundle, along with many other immune
active molecules i.e., lipids (Sagini et al., 2018), cytokines
(Fitzgerald et al., 2018), prostaglandins (Lacy et al., 2019),
auto-antigens, ATP or danger-associated molecules (Chalmin
et al., 2010; Fleshner and Crane, 2017), which have been
shown to concentrate in small extracellular vesicles in acute
stress responses (Beninson et al., 2014). Evidence from kidney
transplant recipients suggests that small exosome-like vesicles
released from stressed or injured tissues create a permissive
environment promoting the production of autoantibodies

against formerly cryptic antigens (Dieudé et al., 2015; Cardinal
et al., 2017). In concert with extracellular vesicle-independent
co-stimulants, these factors may further shape the outcome
of immune responses that rely on the combination of several
activation signals.

CONCLUSIONS

As part of the oldest arm of the immune system, TLR developed
1,350 million years ago to adapt to environmental changes
by controlling the activation and differentiation of immune
cells by epigenetic mechanisms (Nie et al., 2018). Recent
drastic alterations in our environment have been linked to an
imbalance in immunity and the spread of inflammatory diseases.
As catalyst of inflammation, the physiological significance of
extracellular vesicle-encapsulated microRNA binding to TLR-7/8
has probably been over-looked. Further experimental evidence
is needed to establish the dominant endogenous activator(s) of
the inflammatory response. In particular, we lack (i) studies
correlating TLR-bindingmicroRNA expression to disease activity
(ii) side-by-side comparisons of the dichotomous function
of a given microRNA in its soluble form or encapsulated
within specific subpopulations of extracellular vesicles, and (iii)
evaluation of extracellular vesicle self-antigen modulation of
(auto-) immune responses. The use of animal models should
be valuable to further explore thresholds of physiological
consequences of TLR-7/8 microRNA activation and systemic
interactions in an integrated fashion, in vivo. Ultimately, new
medication antagonizing TLR-binding microRNA may present
an opportunity to prevent excessive inflammatory responses.
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