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A B S T R A C T

Endometriosis is a chronic, painful condition with unknown etiology. A differential expression of microRNAs in
the endometriotic tissues from women with endometriosis with pain compared to those without suggested a
plausible role for miRNA or epigenetic mechanisms in the etiology of endometriotic pain. The peritoneal milieu
is involved in maintenance of endometriotic lesion and nociception. We recently showed the mechanistic role for
oxidized-lipoproteins (ox-LDLs) present in peritoneal fluid (PF) in endometriosis and pain. We explored the
possibility of ox-LDLs modulating the expression of miRNAs in a manner similar to PF from women with
endometriosis. Expression levels of miRNAs and their predicted nociceptive and inflammatory targets were
determined in PF and ox-LDL treated human endometrial cell-lines. Samples from IRB-approved and consented
patients with and without endometriosis or pain were used. These were compared to endometrial cell-lines
treated with various forms of oxidized-lipoproteins. RNA (including miRNAs) were isolated from treated
endometrial cells and expression levels were determined using commercial miRNome arrays. Cell lysates were
used in immunoblotting for inflammatory proteins using a protein array. Twenty miRNAs including isoforms of
miR-29, miR-181 and let-7 were mutually differentially expressed in cells treated with PF from endometriosis
patients with pain and those treated with ox-LDL components. The ox-LDLs and endo-PF treatment also
produced significant overexpression of microRNA predicted target genes nerve growth factor, interleukin-6 and
prostaglandin E synthase and overexpression of their downstream protein targets Mip1α and MCP1. This study
showed similarities between miRNA regulation in PF from endometriotic women and ox-LDLs present in
abundance in the PF of these women. Key miRNAs responsible for targeting nociceptive and inflammatory
molecules were downregulated in the presence of ox-LDLs and endo-PF, thus playing a role in the etiology of
endometriotic pain. These redox-sensitive miRNAs can be of potential use as targets in the treatment of
endometriosis-associated pain.

1. Introduction

Endometriosis is a gynecological disorder that affects 5–15% of
women of childbearing age and 3–5% of post-menopausal women
worldwide [1,2]. It is defined by the presence of endometrial cells
implanted in an extra-uterine location and can be asymptomatic or
present with a wide range of symptoms, including infertility and a
number of chronic pelvic pain conditions [3,4]. Despite the intensity of
some of these symptoms, endometriosis often goes undiagnosed for
several years [5,6].

Numerous mechanisms of endometriosis-associated pain and in-
flammation have been proposed over the years [7,8]. It is also known
that endometriosis is a hormonal disorder, and heightened levels of
estrogen are associated with increased inflammation and nociception
[9,10]. Prostaglandin E2 is an example of an overexpressed inflamma-

tory nociceptive molecule involved in pain associated with endome-
triosis which can have further downstream effects [11,12]. It is also
believed that endometriotic lesions release chemotactic molecules such
as monocyte chemotactic protein-1 (MCP-1) and fractalkine (CX3CL1)
that attract immune cells into the peritoneal cavity [13,14]. These cells
trigger the secretion of more cytokines and growth factors such as IL-6,
IL-8, and TNF-α, further promoting lesion growth [15–19]. All of these
molecules accumulate in the peritoneal fluid (PF), creating a dynamic
milieu of inflammatory and nociceptive mediators which plays a role in
the etiology of endometriosis [8,20–22].

Over the years, our laboratory has provided evidence for the role of
oxidative stress in the etiology of endometriosis and its associated pain
[18,23–25]. We showed increased presence of oxidatively modified
proteins in the PF and endometrium/endometriotic tissue [26,27].
Oxidatively modified LDLs present in the PF increased the proliferation
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of endometrial cells and the expression of MCP-1 [15]. We recently
showed the nociceptive role for oxidatively modified low-density
lipoproteins (ox-LDLs) in endometriosis-associated pain [28] and the
ability of antioxidant supplementation to lower inflammation and
chronic pelvic pain in women with endometriosis [18,28,29]. Though
many nociceptive molecules including ox-LDLs have been identified,
the mechanism through which these molecules promote endometriosis-
associated pain is still unclear.

The etiological role of epigenetics in health and disease is ever-
expanding. This concept of mRNA alterations without changes to the
gene sequences has become part of the paradigm in studying many
disease conditions in humans [30,31]. Often included as a regulator in
epigenetics are microRNAs (miRNAs), short RNAs (about 23 nucleo-
tides) which are capable of regulating gene expression at the transcrip-
tional, post-transcriptional, and translational levels by binding to
complementary sequences on target mRNA [32,33]. It has long been
stated that miRNA regulation occurs in one of two ways: i) the target
mRNA is degraded when a miRNA seed sequence perfectly comple-
ments with the target mRNA sequence, or ii) translation is impaired
when there is imperfect matching between the miRNA-mRNA se-
quences, leading to gene silencing [34,35]. However, recent discoveries
provide evidence that miRNAs in eukaryotes, zebrafish, and Drosophila
predominantly repress translation of new mRNA targets, succeeded by
deadenylation and degradation of the targets [36–38]. Interestingly,
gene activation by miRNAs is also plausible. This can occur directly via
targeting of the mRNA by miRNA, or indirectly by repressing nonsense-
mediated RNA decay [39].

MiRNAs have a crucial role in cellular homeostasis, which explains
why alterations in their expression or function have been associated
with diseased states including certain cancers [40–42], neurodegenera-
tive disorders [43–45], and cardiovascular and respiratory conditions
[46–48]. Fluid-based miRNA (serum, saliva, sputum, cerebrospinal
fluid, plasma, whole blood, and urine) profiling could provide invalu-
able information for studies where the disease is not derived from only
one type of cell or a specific type of cell. This possibility has opened
doors for non-invasive diagnostic techniques in various disease states
[49–53]. Hence miRNAs are considered good therapeutic targets in
cancer and cardiovascular disease [54–56].

Very few studies have explored the possible association between
miRNA-mediated regulation and reproductive diseases such as endo-
metriosis. Recent studies have speculated that endometriosis is an
epigenetic disease [57–59]. MiRNAs play a major role in the develop-
ment of endometriotic lesions by contributing to mechanisms involving
hypoxic injury, inflammation, tissue repair, cell proliferation, extra-
cellular matrix remodeling, and angiogenesis [60,61]. In endometriosis,
miRNA profiling studies have compared ectopic versus eutopic endo-
metrial tissues [60,62,63], often concluding that many miRNAs are
differentially expressed between the two groups and target genes
closely associated with endometriosis. Studies investigating miRNA
profiles in eutopic tissues from women with and without endometriosis
[64–66] showed a trend of downregulated miRNA levels in tissues from
women with endometriosis. Wang and colleagues also showed global
downregulation in the circulating levels of miRNAs in the serum of
women with endometriosis, with 91% of significantly differentiated
miRNAs showing decreased expression in endometriosis patients [67].
There are very few studies that have measured miRNAs in the
peritoneal fluid (PF), which is the most dynamic component and major
player in the etiology of endometriosis [11,68,69].

With our continued interest in understanding the etiology of the
pain associated with endometriosis, we profiled miRNAs in endome-
triotic tissues obtained from women with endometriosis and pain and
compared it to eutopic tissue from women without endometriosis. Since
we recently identified that ox-LDLs parallel nociceptive responses
similar to PF from women with endometriosis-associated pain [28],
we hypothesized that these lipoprotein components function through
modulating miRNAs that regulate inflammatory and nociceptive genes

in endometriosis. We compared the miRNA profile of PF treated
endometriotic cells to Ox-LDL treated cells. We validated miRNA
regulation by assessing the levels of their predicted target genes. Our
results identified miRNAs that play a role in endometriosis-associated
pain. Targeting these redox-sensitive miRNAs may be a novel approach
to treat endometriosis-associated pain.

2. Material and methods

2.1. Human subject participants

Women ages 21–60 years undergoing tubal ligation or have non-
endometriosis disorders (controls) or patients with endometriosis- endo
(laparoscopically diagnosed or patients with symptoms followed by
pathological confirmation) were recruited from Obstetrics-Gynecology
clinic at Cabell Huntington Hospital, Joan C Edwards School of
Medicine, Marshall University, in Huntington, WV. This HIPAA com-
pliant study was approved by the Institutional Review Board of the
Marshall University School of Medicine and was carried out according
to the principles of the Declaration of Helsinki. All patients were
consented prior to the study. All women completed a gynecologic/
infertility history form, a pre-operative quality of life questionnaire and
assessment of pain using a visual analog scale for assessment of
endometriosis associated pain (dysmenorrhea, non-menstrual pelvic
pain, dyspareunia, and dyschesia) (adapted from the validated
International Pelvic Pain Society's Pelvic Assessment Form). Date of
their last menstrual period was used to assess their cycle time. The
inclusion criteria included women ages 21–60 years old, with normal
menstrual cycles and otherwise in normal health (except for pain and
endometriosis) who have not been on any hormonal medication for at
least one month before sample collection. Exclusion criteria included
subjects with current medical illnesses such as diabetes, cardiovascular
disease, hyperlipidemia, hypertension, systemic lupus erythematosis or
rheumatologic disease, positive HIV/AIDS, active infection. Subjects
were asked to stop multivitamins that contain high levels of antiox-
idants and anti-inflammatory medications one month prior to sample
collection.

2.2. Peritoneal fluid collection

Peritoneal fluid (PF) (devoid of blood contamination) was collected
on ice from all women during laparoscopic surgery. Peritoneal fluid was
spun at 2000xg to remove any cellular debris. The supernatant was used
immediately for studies or stored in a −80 °C freezer for future use.

2.3. Endometrial tissue collection and RNA isolation

Endometrial (eutopic) tissues from control patients and ectopic
endometriotic tissues from endometriosis (ovarian or peritoneal en-
dometriosis) patients were removed during laparoscopy/laparotomy by
a qualified physician. Biopsy fragments were immediately placed in
RNAlater solution (Qiagen, Gaithersburg, MD) and subsequently stored
in a freezer at −80 °C. RNA extraction from 100 mg of tissue (eutopic
and ectopic) was carried out using Qiazol Lysis Reagent (Qiagen).
Tissues were homogenized using zirconium oxide beads in a Bullet
Blender® homogenizer (Next Advance, USA) and RNA was isolated
using the Qiagen miRNeasy Mini Kit following the manufacturer's
recommendations. The quantity and quality of RNA were measured in
the NanoDrop 2000 spectrophotometer (Thermo Scientific, USA).

2.4. Endometrial cell culture and RNA and protein isolation

Ishikawa cells, a human (39-year-old woman) established endome-
trial cell line (Sigma-Aldrich, St. Louis, MO), were cultured in T75 flasks
in complete media (DMEM/F12, 10% FBS, 1% Pen/Strep, 1% L-
glutamine). These cells were used because they express characteristics
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similar to those of mature endometrial epithelial cells [70–72].
Approximately 70% confluent cells were treated with either 25 µg of
various LDL preparations (ox-LDLs, as described previously [28]) or 1%
PF from patients for 48 h in a DMEM/F12 media containing 1%
charcoal-stripped FBS. Briefly, LDL isolated from plasma (human
volunteers) was oxidized using copper sulfate. Extent of oxidation
was determined by the formation of conjugated diene at OD 234 nm.
The oxidation process was terminated at specific time points to
generate various forms of ox-LDL preparations: (a) native LDL (L0),
(b) minimally-modified LDL (L1, usually terminated at the end of the
lag time), (c) oxidized LDL (L2, after the oxidation has reached its
plateau) and (d) completely or fully oxidized LDL (L3, after 24 h of
oxidation) [28,73–75]. Patient peritoneal fluid (PF) groups were
+endo/+pain (YY), +endo/-pain (YN), and –endo/-pain (NN, “con-
trol fluid”). The concentrations chosen were selected from our previous
published studies [28]. At the end of 48 h, cells were collected using
Qiazol reagent and RNA was isolated using the Qiagen miRNeasy Mini
Kit. The quantity and quality of RNA were measured in the NanoDrop
2000 spectrophotometer. Cells were also collected in RIPA buffer
containing protease inhibitors and protein concentrations were mea-
sured using a modified Lowry protocol.

2.5. RT2 miRNome ARRAY

Total RNA (which includes miRNA) isolated from the tissues and
treated cells using MiRNeasy kit (Qiagen) were used. cDNA synthesis
from 2 µg of each sample was performed using miScript II RT Kit
(Qiagen). MiRNA expression was analyzed in the cDNA samples using
the commercial Human miRNome PCR Array (MIHS-3216Z; Qiagen) on
the Roche LightCycler 480 system (Roche, Indianapolis, IN). Fold
change was determined using Pfaffl equation (2-ddCt) for all groups
compared with eutopic tissue from control women (tissues) or media
control (cells) using the manufacturer's algorithm, which uses a t-test as
the default statistics to compare differences using five SNORDs and
RNU6 as housekeeping genes. A p-value less than 0.05 was used to
identify significantly differentially expressed miRNAs in treated
Ishikawa cells or in endometriotic tissues.

2.6. Real-time PCR analysis for gene expression

cDNA synthesis from 1 µg of RNA isolated from each cell treatment
was prepared using iScript cDNA Synthesis Kit (Biorad, Hercules, CA).
Expression of nerve growth factor (NGF); interleukin-6 (IL-6); cannabi-
noid receptor 1 (CNR1); Sodium Channel, Voltage Gated, Type XI Alpha
Subunit (SCN11A); and prostaglandin E synthase 3 (PTGES3) in cells
were analyzed using the Applied Biosystems OneStepPlus Real-Time
PCR system (Thermo Scientific). Primers used in the experiment are
listed in Supplementary Table 1. Fold change was determined using
Pfaffl equation (2-ddCt) for all groups compared with 1% charcoal-
stripped serum media alone. A p-value less than 0.05 was used to
identify significantly differentially expressed mRNAs in Ishikawa cells
treated with PF and ox-LDLs compared with the charcoal-stripped
media treated cells (control group).

3. Immunoblotting

Cell lysates were prepared from PF or ox-LDL-treated Ishikawa cells
using RIPA buffer containing protease inhibitors. The Human Neuro
Discovery Array C1 (RayBiotech, Inc., Norcross, GA), which includes 20
human neurologically relevant proteins belonging to immune response
and inflammation pathways was used for the detection of changes in
target proteins. This array was chosen because it includes several
proteins that play a role in neuronal and peripheral nociception and
inflammation. The manufacturer's suggested protocol for analysis was
followed. In brief, the provided membranes were blocked for 30 min
prior to sample treatment and then incubated with samples overnight at

4 °C. Following washing, the membranes were then incubated with a
biotinylated detection antibody cocktail overnight (4 °C), washed, and
incubated with horseradish peroxidase (HRP)-conjugated streptavidin.
Following additional washing steps, the membrane was incubated in
the detection buffer followed by imaging of the developed proteins
using the ChemiDoc system (Biorad). Results were analyzed using the
manufacturer's Analysis Tool Excel-based software (RayBiotech, Inc).

3.1. TargetScan and Ingenuity Pathway Analysis

TargetScan Human 7.0 online database (www.targetscan.org) was
used to identify miRNA target genes. The list of differentially expressed
miRNAs in PF and ox-LDL-treated cells was uploaded into Ingenuity
Pathway Analysis (IPA, Qiagen), along with the cytokines analyzed
using the protein array. IPA was used to identify any relationship
among the differentially expressed miRNAs and cytokines, either via
direct or indirect interactions.

3.2. Statistical analysis

Prism software (GraphPad, Inc., La Jolla, CA) was used for analysis
of non-array qPCR data in human tissue and cell culture studies. All
values were expressed as mean± standard error of the mean (SEM).
One-way ANOVA followed by Tukey's post-hoc test was used to detect
differences in relative gene expression among treatment groups. P
values less than 0.05 were considered significant.

4. Results

4.1. miRNome analysis in endometrial tissues

A human miRNome qPCR array consisting of primers for over 750
identified human miRNAs were used to detect changes in global miRNA
expression in eutopic endometrial tissue from control women (control,
n=5) and ectopic endometriotic tissues from endo women with pain
(endo, n=4). Statistical analysis was performed using the online
software portal available at the manufacturer's website (SA
Biosciences, Valencia CA). Student's t-test (the default statistical test
used by the manufacturer) showed that thirty-seven miRNAs were
significantly differentially expressed (p<0.05) between control and
endo tissues (Fig. 1A and B). As shown in Fig. 1C, twenty-nine of these
miRNAs were upregulated in endometriotic tissues compared to con-
trols (shown in red) while eight were downregulated (shown in green).
The potential mRNA targets of the 37 significantly altered miRNAs was
determined using the TargetScan Human 7.0 online database (www.
targetscan.org) and Ingenuity Pathway Analysis (IPA, www.ingenuity.
com), with emphasis on target genes that played a functional role in: (i)
Endometriosis – Do these miRNAs target any genes that are already
associated with the disease state? (ii) Pain and inflammation –Do these
miRNAs target any neuropathic or inflammatory mediators or regula-
tors? (iii) Epigenetic mechanisms – Do these miRNAs target any genes
associated with epigenetic markers?

TargetScan and IPA analysis narrowed the list to the following
miRNAs that were closely associated with the afore-mentioned path-
ways: hsa-miR-29a, hsa-miR-148a, hsa-miR-100, hsa-miR-548l, and
hsa-let-7g (Table 1). Human miR-29a, miR-148a, miR-100, and let-7g
were upregulated in endometriotic tissues compared to control tissues,
while the expression of miR-548l was significantly lower in endome-
triotic tissues than in control tissues. Each of these miRNAs has been
shown to target key genes that play a role in endometriosis, pain, and/
or epigenetics.

The mRNA expression of few of the miRNA target genes—B-cell
lymphoma 2 (BCL2), DNA methyltransferase 3B (DNMT3B), and the
mu-opioid receptor (OPRM1)—was measured using RT-qPCR.
Compared to control tissues, the expression of BCL2 (fold
change=0.75), DNMT3B (fold change=0.57), and OPRM1 (fold
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change=0.51) were all lower in tissues from endometriosis patients.

4.2. miRNome analysis of endometrial cells treated with Peritoneal fluid

Since we and others have shown a prominent role for PF in pain
associated with endometriosis [8,13,20,21,28], we next determined the
changes in the miRNA profile in endometrial cells treated with PF from
patients with and without endometriosis and/or pain. MiRNome array
showed 89 miRNAs to be differentially expressed between cells treated
with PF from patients with no endometriosis (control, NN-PF) com-
pared to PF from patients with endometriosis, with (YY-PF) and without
(YN-PF) pain (Supplementary Table 2). It is interesting to note that
there was upregulation of only two of the 89 differentially expressed
miRNAs in cells treated with YY-PF. The majority (98% of YY-PF, 62%
of YN-PF) of the miRNAs were downregulated when the patient had
endometriosis.

4.3. miRNome analysis in endometrial cells treated with oxidatively-
modified lipoproteins

We had recently shown that oxidatively modified LDLs (ox-LDLs)
are powerful nociceptive mediators and are present in abundance in the
PF of women with endometriosis [28]. We thus determined the ability
of native LDL (L1) and various forms of ox-LDL preparations (minimally
modified LDL-L2, oxidized LDL-L3 and fully oxidized LDL-L4) to alter
the miRNA profile in endometrial cells and compared it to that seen in
PF treated cells. Fig. 2 is a Venn diagram that represents the distribution
of significantly differentially expressed miRNAs in ox-LDL- and PF-
treated cells.

4.4. miRNA target genes in PF or ox-LDL treated cells

To assess the potential functional relevance of the differentially
expressed miRNAs in ox-LDL or PF treated cells, RT-qPCR was
performed to determine the levels of target genes of select miRNAs
involved in nociceptive/inflammation pathways. Fig. 3 shows the
expression of nociceptive genes, nerve growth factor (NGF), cannabi-

Fig. 1. Differentially expressed miRNAs in endometrial tissues: Significant differentially expressed miRNAs in ectopic endometriotic tissues (endo, n=4) compared to eutopic control
endometrium (control, n=5) based on the Qiagen MiRNome qPCR array. Fold change determined by SA Biosciences software. A) Volcano plot comparing the fold change (difference) in
miRNA expression between control and endo tissues, as well as the corresponding p-values. Dots above the blue horizontal line indicate p> 0.05. Pink vertical lines indicate 2-fold
decrease and increase in expression. B) Scatter plot comparing control and endo tissues. The black line indicates fold changes (2-ΔCt) of 1. The red lines indicate the fold-change in gene
expression threshold, defined as 4. C) List of the 37 differentially expressed miRNAs. Red cells indicate upregulation of miRNA expression in endo tissues while green cells indicate
downregulation of expression in endo tissues compared to control tissues. Significance determined by a p-value<0.05. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.).

Table 1
List of miRNAs with functional role in endometriosis and/or nociception. TargetScan and IPA software analysis were used to identify target genes with functional role in
inflammatory/nociceptive, epigenetic and endometriosis. Bolded genes were further investigated in this study. Fold change values were based on the Qiagen MiRNome qPCR array and
associated SA Biosciences software. RT-qPCR analysis showed that compared to control tissues, the mRNA expression of BCL2 (fold change=0.75), DNMT3B (fold change=0.57), and
OPRM1 (fold change=0.51) were lower in endometriotic tissues, as indicated by ↓. For all tissue miRNome array data, p<0.05.

miRNA Fold change (Tissues, array) GENE (pain/inflamm) GENE (epigenetic) GENE (endometriosis)

hsa-miR-29a 6.46 CNR1, CX3CL1 KDM5A/5 C/6B/4B, PHF21A, DNMT3A, DNMT3B ↓↓ BCL2 ↓
hsa-miR-148a 4.41 PTGES3 SIRT1, COX1, KDM6B DNMT1, DNMT3B ↓↓
hsa-miR-100 4.10 mTOR mTOR, IG1R
hsa-miR-548l 0.09 OPRM1 ↓↓
hsa-let-7g 3.45 NGF, OPRM1 ↓↓, SCN11A, IL6
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Fig. 2. Comparison of differentially expressed miRNAs in PF and Ox-LDL treated endometrial cells: Venn diagrams indicate the numbers of miRNAs that are significantly
differentially expressed in treated cells compared to media control (p<0.05). A) Distribution of miRNAs that were significantly differentially expressed PF-treated cells. The largest
commonality (n=24) was between endo PF groups (YY-PF and YN-PF). B) Distribution of miRNAs that were significantly differentially expressed in ox-LDL-treated cells. C) Distribution
of significant miRNAs in endo PF-treated and ox-LDL treated cells. Twenty-two miRNAs (listed) were significantly expressed in all treatment groups except NN-PF. Eleven miRNAs (listed)
were only significant in YY-PF and L1 treated cells.

Fig. 3. mRNA expression of predicted miRNA targeted genes: mRNA expression of neuropathic and inflammatory target genes in endometrial cells treated with PF and oxidatively-
modified LDLs as determined by RT-qPCR. A) Expression of CNR1 (targeted by miR-29a), SCN11A (targeted by let-7g), OPRM1 (targeted by let-7 and miR-548l), and CX3CL1 (targeted by
miR-29a). No significant differences in expression were observed with these genes. B) NGF (targeted by let-7g) was significantly differentially expressed among treatment groups (one-
way ANOVA p<0.001). Expression in cells treated with L1 and L2 was significantly higher than expression in other treatment groups. Expression of PTGES3 (targeted by miR-148a)
across sample groups was also significant (p=0.0113). Treatment with L2 resulted in overexpression of PTGES3. C) Expression of IL6 (targeted by let-7g) across sample groups
(p<0.0001). Treatment with L3 resulted in IL6 expression that was significantly higher than the NN-PF and YY-PF treatment groups, while treatment with L2 resulted in significantly
higher expression than all treatment groups other than L3.
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noid receptor 1 (CNR1), and sodium voltage-gated channel alpha
subunit 11 (SCN11A), as well as inflammatory genes interleukin 6
(IL6) and prostaglandin E synthase 3 (PTGES3) in cells treated with ox-
LDLs and PF. In general, the presence of the ox-LDLs resulted in an
increase in gene expression, with the ox-LDL (L2) treatment group
having significantly higher expression of NGF (p< 0.001), PTGES
(p=0.0113), and IL6 (p< 0.001). No significant difference in the
expression of these target genes were seen in cells treated with NN-PF

and cells treated with YY-PF or YN-PF, but there was a trend towards
higher expression of CNR1 and SCN11A in cells treated with PF from
endometriosis patients (YY-PF and YN-PF). Similar trends in gene
expression were observed in the mu opioid receptor (OPRM1) and
fractalkine ligand (CX3CL1). No statistical significance in expression
was observed among the treatment groups, but there was a 2–3-fold
induction of CX3CL1 by ox-LDLs.

Fig. 4. Protein array of inflammatory and nociceptive targets: The RayBiotech Human Neuro Discovery Array C1 was used to determine the expression of 20 human
immunomodulators in treated endometrial cells. A) Heat map showing relative expression of inflammatory and nociceptive proteins in endometrial cells treated with PF and ox-LDLs
(n=3). PF was obtained from patients with neither endometriosis nor pain (PF-NN, n=6), with endometriosis and pain (PF-YY, n=6), and with endometriosis and no pain (PF-YN, n=4).
B) Fold change ratio for MCP1 and Mip1a was calculated in comparison to media control (n=4). While cells treated with PF-YY typically had cytokine expression that was lower than or
similar to other cells treatment groups, MCP1 and Mip1α showed an exaggerated increased trend. A similar trend was seen in protein from cells treated with ox-LDLs, particularly native
LDL (L0). Two-way ANOVA determined p>0.05.

Fig. 5. MiRNAs targeting key inflammatory molecules in endometrial cells treated with peritoneal fluid and ox-LDLs. TargetScan and IPA analysis was used to identify associations
between the inflammatory/nociceptive proteins determined using protein array and differentially expressed miRNAs as determined by the Human MiRNome array. ↓/↑ indicates
significant miRNA expression in YY-PF and L1-treated cells. ↓↓/↑↑ indicates an expression change of at least 4-fold. For all noted miRNA expression differences, p<0.05. BDNF
[123–125], IL10 [126,127], IL1a [128,129], Tnfa [130–132], NGF [91,133], Mip1α [17,134], MCP1 [17,132].

K.R. Wright et al. Redox Biology 12 (2017) 956–966

961



4.5. Translational regulation of differentially expressed miRNAS

MicroRNAs modulate both the transcriptional and translational
levels of their target genes, thus regulating gene pathways. The protein
levels of genes involved in nociceptive and inflammatory pathways
were measured in endometrial cells treated with PF or ox-LDLs using
the Human Neuro Discovery Array (Ray Biotech, Inc.). As shown in the
heat map (Fig. 4A), many cytokines had similar expression across all
treatment groups except for MCP1 (CCL2) and monocyte inflammatory
protein-Mip1α (CCL3). Densitometric analysis showed a 14.6-fold and
8.9-fold, respectively, increase in expression of MCP1 and Mip1α in
cells treated with PF from patients with endometriosis and pain (YY-PF)
compared to media control. Expression of MCP1 and Mip1α in YN-PF
treated cells was very similar to that seen in control media (0.83-fold
and 0.97-fold, respectively). These two proteins were also overex-
pressed by 2.78-fold and 1.08-fold in L2-treated cells, with expression
trending downward as LDL oxidation increased (Fig. 4B).

4.6. Pathway analysis to identify associations between differentially
expressed miRNAs and nociceptive/inflammation targets

Fig. 5 summarizes the potential interactions between the miRNAs
differentially expressed in PF and ox-LDL treated cells and their
predicted targets, as determined by RT-qPCR arrays or protein array.
Predicted targets of let-7 family, miRNA10 a/b, −181, −98, −19 and
−374 showed association in the treated cells. Mip1α, is a documented
target of let-7 (TargetScan.org), of which two isoforms (let-7i/g) were
significantly downregulated in PF and ox-LDL-treated endometrial cells.
MCP1 is a target of miR-374 (IPA), whose decreased expression was
only significant in the L2 cell treatment group.

5. Discussion

The role of epigenetic mechanisms, including miRNA regulation, in
endometriosis is still not completely understood and is an area of
intense investigation. In the past few years, there has been a tremen-
dous interest among endometriosis researchers to identify miRNA
signatures that play a role in the pathophysiology of endometriosis.
This led to a series of studies demonstrating differences in miRNA
expression between paired ectopic and eutopic endometrial tissues
versus normal endometrium [60,62–66]. The majority of these miRNAs
are located in the genomically unstable sites, lending to their targeting
of oncogenes, tumor suppressor genes, angiogenesis, and genes asso-
ciated with inflammation or immune function [62,76]. Functional
pathway analyses of miRNA targets showed alterations in genes such
as aromatase (CYP-19) and COX-2 as well as those involved in apoptosis
and cell-signaling to be differentially expressed in endometriosis
[60,61,77–79]. For example, the downregulation of migration inhibi-
tory factor (MIF) in ectopic endometriotic lesions compared to eutopic
endometrium has been attributed to the upregulation of miR-451 [80].
Similarly, miR-93, which targets MMP3 and VEGFA, genes involved in
angiogenesis and shown to inhibit proliferation, invasiveness, and
migration of endometrial stromal cells, was underexpressed in ectopic
tissues when compared to control endometrium [81]. Validation studies
using these tissues or isolated primary endometrial cells showed that
several of these miRNAs were influenced by ovarian steroids [82–84].
Though these studies speculated the association between the differen-
tially expressed miRNAs to pathophysiological changes in endometrio-
sis, none of these studies directly delved into whether any of these
miRNAs may be playing a regulatory role in pain associated with
endometriosis.

There are very few studies in the literature that have shown a direct
relationship between miRNA changes and pain [64,85–88]. Bai et al.
recently showed down-regulation of several miRNAs in the trigeminal
ganglion neurons following inflammatory muscle pain [87]. Recent
investigations have shown that expression of miR-100 and miR-29a in

tissues of the central nervous system (spinal cord and dorsal root
ganglion, respectively) are associated with neuropathic and inflamma-
tory pain in animal models [89,90]. In our study, we observed that both
these miRNAs were significantly upregulated in ectopic lesions com-
pared to the control tissues, along with 27 other miRNAs. Additionally,
we found that mRNA targets of these miRNAs-BCL2, DNMT3B, and
OPRM1-were also downregulated in the endometriotic tissues.

The peritoneal milieu in women with endometriosis expresses
several mediators, such as PGE2, that play an important role in pain
[18,91–94]. The cyclooxygenase (COX-2) enzymes that synthesize
prostaglandins are highly expressed in endometriotic glands
[11,95–97] and their increased expression strongly correlates with
pathological abnormalities [98–101]. However, the contribution of the
PF milieu to the observed miRNA changes during endometriosis is not
clearly known. In a recent study, exposure of primary (eutopic and
ectopic) cells to PF from endometriosis patients compared to control
patients, caused lower expression of a number of miRNAs that played a
role in angiogenesis (e.g. VEGFA) [102]. Our study showed similar
trends in relation to miRNAs that target inflammation and nociceptive
pathways. We did not observe significant overlap between miRNAs
altered in PF-treated cells and those that were differentially expressed
in eutopic/ectopic endometriotic tissues. This lack of overlap might be
related to time of exposure to PF. Most of our cell treatments are 48 h
exposures; however, the endometriotic tissues obtained from patients
have been exposed to PF for months or even years. However, endo PF or
ox-LDL treated cells seemed to cause a global downregulation of miRNA
expression compared to untreated cells. Additionally, there were many
miRNAs that were similarly (up or down) regulated in cells treated with
endo PF and those treated with ox-LDLs (Fig. 2). The ox-LDL treatment
also produced significant overexpression of nociceptive and inflamma-
tory genes NGF, PTGES3, and IL6. While it did not reach significance,
the expression of fractalkine (CX3CL1) and OPRM1 was of interest due
to the established association between these genes and the progression
of endometriosis [14,19,103].

Pathway analysis using TargetScan and IPA analysis identified
protein targets of the differentially expressed inflammatory and noci-
ceptive genes, such as the induction of MCP-1 by IL-6 [104–106]. MCP-
1, along with Mip-1α, was highly expressed in cells treated with ox-
LDLs and YY-PF. Both of these signaling proteins attract macrophages
and monocytes to the site of inflammation [17,107]. Both these
inflammatory molecules are also associated with nociception
[108–110]. Immunoblotting indicated that ox-LDLs may increase the
level of MCP-1 protein in treated cells similar to endo PF treatment,
supporting our paradigm that the LDL components of the PF is
responsible for the modulation of these chemokines and play a key
role in nociception. Additionally, miR-374, which targets MCP-1, was
also significantly downregulated in cells treated with oxidatively-
modified LDLs (L2), further validating our findings.

Pathway analysis also identified potential relationships among the
miRNAs that were modulated by PF or ox-LDL treatments and their
predicted target genes (Fig. 5). A higher frequency of down-regulation
of the let-7 family of miRNAs was seen. This is not surprising when we
consider several evidences in cancer research that let-7 is a potential
tumor suppressor whose altered regulation leads to many types of
cancer [111,112]. The let-7 family also targets opioid receptors and
other nociceptors [113–115]. It was recently shown that the let-7
cluster of miRNAs plays a role in endometriosis. Circulating let-7
isoforms have been reported at varying levels in endometriosis patients
[116]. Studies have shown that the let-7 cluster is regulated by ox-LDLs
[117–119]. Increased expression of the let-7f isoform in endometrial
cells decreased cell migration [71]. While the previous study only
investigated isoforms let-7a-f, our finding that PF and ox-LDL treat-
ments can also modulate let-7i-g suggest oxidative components of
patient PF may also potentially play a role in endometrial cell invasion
and migration.
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6. Conclusions

Endometriosis is a debilitating, chronic inflammatory condition that
afflicts many young women around the world with chronic pain.
Knowledge of pathways involved in the pathophysiology of endome-
triotic pain and regulators of such pathways will be a great asset in
identifying new and appropriate targets for therapy. MiRNAs have
established themselves as critical epigenetic regulators in the develop-
ment and progression of several diseases, including endometriosis.
MiRNAs can regulate several nodal points in the complex etiology of
endometriosis and its associated pain. Our data confirms earlier
findings [60,62,64,82,120] that miRNAs are down-regulated in endo-
metriosis, but also additionally provide evidence that the presence or
absence of pain discriminates the miRNA signature in these women.
Our studies therefore suggest pain symptoms to be a unique discrimi-
nator of miRNA fingerprint in endometriotic women.

Our observation that ox-LDL treated cells have very similar response
on miRNA profile to the endo PF treatment suggests that many of these
pain-targeting miRNAs are oxidation sensitive and can be targeted by
drugs that reduce oxidation. MiRNA-based therapeutics provide a
possible novel way to treat endometriotic symptoms. A potential
example is the let-7 cluster, which is a known tumor suppressor and
apparent target of oxidative stress in the peritoneal cavity of endome-
triosis patients. However, the ubiquitous nature of the let-7 family and
their role in cellular homeostasis makes this option extremely complex.
Over the past several years, researchers in cancer biology have made
key advancements toward a let-7 therapy for various cancers, but the
balancing act requires extensive preliminary studies in cell and animal
models [121,122]. Based on our findings, another option would be to
target the other miRNAs shown in Fig. 5, for which validation studies
need to be conducted. Lastly, our findings also support the potential use
of agents that will diminish the oxidative stress in the peritoneal cavity
(ox-LDLs), thus alleviating chronic pelvic pain.
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